

COMPUTE!s
Beginner's Guide to

Assembly
Language

on the
TI-99/4A

Peter M. L. Lottrup

COMPUTE! Publications/Inc.
One ol the ABC PublishOp Compares

Greensboro, North Carolina

r--

bmm

toa$y

Copyright 1985, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of 1
the copyright owner is unlawful.

Printed in the United States of America ^J

ISBN 0-942386-74-4

10 98 765432 1

(jagg)

i

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403 (919) *•"*
275-9809, is one of the ABC Publishing Companies and is not associated with any
manufacturer of personal computers. TI-99/4A is a trademark of Texas Instruments, ^..i
Inc.

Foreword v

Introduction
Starting Off vii

Chapter 1
The First Step 1

Chapter 2
Directives and Your First Programs 11

Chapter 3
More Programming Power 29

Chapter 4
The Next Few Steps 49

Chapter 5
Keyboard and Joysticks 63

Chapter 6
Utilities, Mathematics, and Scrolling 83

Chapter 7
BASIC and Assembly Language: A Powerful Team 101

Chapter 8
Character Definitions and Color Changes 125

Chapter 9
Creating Sprites 141

Chapter 10
Generating Sounds 165

Chapter 11
Graphics Modes on the TI 181

Chapter 12
Assembly Language Programming Techniques 231

Appendix A
Decimal and Hexadecimal ASCII Codes 249

Appendix B
Assembly Language Instructions 253

Appendix C
Distinguishing Operands 256

Appendix D
Color Codes 258

Index 259

IMIS"")

Firewirl

Machine language of computers is nothing more than a series
of numbers. Those numbers are what make the computer do
what you want it to do. Because it's the language of pref
erence of your TI-99/4A, programs written in it run far faster
than those written in BASIC. And because you can talk to the
computer directly, without going through a translator like
BASIC, you can create more powerful programs than you can
with BASIC.

You write machine language (ML) programs with an
assembler. The instructions you give to it are assembled (hence
the term assembly language) and thus produce an ML pro
gram. But writing programs in assembly language can be diffi
cult for the beginner. Instructions, operands, and directives can
be confusing, even intimidating.

That's why you'll find COMPUTEI's Beginner's Guide to TI
Assembly Language such a valuable book. It's not a complete
reference guide—though it includes dozens of insights, hints,
and techniques on assembly language programming—but then
it's not meant to be. Instead, this book takes you step by step
through the process of creating and writing your own assem
bly language programs. Starting with a clear and easy-to-
follow explanation of just how the Line-by-Line Assembler op
erates, working through such things as programming sound,
sprites, and redefined characters, and ending with a complete
high-resolution drawing program, you'll learn as you program.
It's a hands-on approach, one that will surely take you from
novice to intermediate assembly language programmer quickly
and painlessly.

When you've finished the book, you'll have dozens of
assembly language routines in your software library. With mi
nor modification (and most of those modifications are out
lined), you'll be able to use those same routines in your own
programs. There are even several complete programs here for
you to type in and run. From artist's high-resolution sketch
pads to automatically moving sprites, these programs show
you how powerful and fast assembly language really is.

You'll also learn how to link assembly language programs
with BASIC programs, how to display register values on the
screen, and how to save memory. The techniques and tricks of
assembly language programming are fully covered.

imiiimi

Other than COMPUTED Beginner's Guide to TI Assembly J
Language, all you need to begin programming in assembly lan
guage is the Mini Memory cartridge, and the Line-by-Line j
Assembler that comes with it. This package is still available in
stores. If you want to learn assembly language programming 1
on your TI-99/4A, it's an excellent investment.

With clear explanations and example after example for .j
you to try out, COMPUTEl's Beginner's Guide to TI Assembly
Language helps you access the power of your computer's na
tive tongue.

teasd

VI

r

ksaffil

L AGeneral Overview
r When the Editor/Assembler package appeared on the market

for the Texas Instruments 99/4A Home Computer, eager users
were able to write their own assembly language programs.
Assembly language is the preferred computer language of
many programmers, for it allows extraordinary speed and ef
ficiency. That's because assembly language programs create
machine language code, which works directly with both the
TMS9900 microprocessor, the heart and brain of the TI, and
the TMS9918 Video Display Processor. Unfortunately, not all
TI users could take advantage of this package. People owning
the basic configuration of the computer could not use the
Editor/Assembler, which needed the 32K memory expansion
and a disk drive.

Soon after the Editor/Assembler was released, the Mini
Memory cartridge became available, with all its fantastic
possibilities. It allows you to read and store values in CPU
and VDP memory from BASIC programs, link to assembly
language programs or subroutines (optionally passing string,
numeric, and array variables between the linked programs),
and came with the Line-by-Line Assembler. The Assembler gave
you the tool you need to create your own assembly language
programs. Also included were a debugger, to help troubleshoot
your programs, and a built-in battery. This battery made it
possible for the cartridge to retain BASIC programs, BASIC

i files, or assembly language programs, even with the comput
er's power switched off and the module removed from the

, console.
With this Mini Memory cartridge, and a cassette recorder

r and connecting cable, the beginning assembly language pro-
gramer was ready to write programs.

r But both these packages lacked information you needed to
learn how to program. The Editor/Assembler came with a thick
manual, far too technical for the beginner to understand, and
the Mini Memory cartridge came with two thin manuals, in

r which the most frequent comment told you to look up the
information in the Editor/Assembler manual.

itndicfiei
tartin Pi

Vll

The beginning assembly language programmer needed a i
step-by-step guide to assembly language programming on the
TI-99/4A. But there was no such book.

COMPUTEl's Beginner's Guide to TI Assembly Language was
written exactly for that reason, to help the beginner with
assembly language programming. All examples and programs
in the book have been carefully chosen and written for the
Line-by-Line Assembler, but the basic ideas can be applied to
the Editor/Assembler and even other assemblers. On most
occasions, unless it's absolutely necessary, long and technical
explanations are avoided.

Even more importantly, numerous example programs are
provided, fully explained and documented. The best way to
learn assembly language programming is to sit down at your
computer and try everything yourself. That's what the ex
ample programs let you do.

If you have no idea whatsoever of machine language and
assembly language (both are essentially the same thing—the
terms are often used synonymously), make sure you read this
introduction and the next four chapters carefully before going
on. Then, according to what interests you most, you can turn
to the appropriate chapter. These later chapters have been di
vided into different sections, each concentrating on one topic,
such as creating sprites, generating sounds, or defining charac
ters. They'll show you how to create programs in those areas.

I'm sure this book will be as useful to you as it was to me
as I wrote it. You'll soon be creating exciting assembly lan
guage programs yourself.

All About Assembly Language
Writing a program in assembly language is like writing a pro
gram in the computer's mother tongue. When an assembly
language program is run, the computer doesn't waste time
translating each instruction into its own code first and then
executing it (like it does when it runs BASIC programs). It
means, of course, that you have to learn a new language, but
the results are certainly worth it. You can see this just by
comparing any BASIC program with an assembly language
program. The speed and power of assembly language pro
grams are impressive, to say the least.

Your computer works with numbers. Assembly language
programs on the TI consist of a list of hexadecimal numbers

viii

tote&gi

faiaBgw

r (numbers in base 16), and each number, or group of numbers,
means something. (Although the listings you can see when

r working on a program are in hexadecimal, the computer is
really working in binary, or base two.) For example, the

r following numbers perform the assembly language equivalent
*- of a BASIC CALL CLEAR:

0201

2000

0420

6024

0580

0280

0300

16FA

Don't let this list of strange numbers scare you. You won't
need to write your programs like this, thanks to something
called an assembler. An assembler is a program (written in
BASIC or assembly language) which understands a list of
instructions and translates each of these instructions into its
equivalent hexadecimal number. In other words, instead of
04C0 you would enter CLR R0.

Once you learn to use this list of instructions, writing a
program in assembly language is similar to writing it in
BASIC. You get an idea for a program, then sit down and
write it.

There are many kinds of assemblers. The Editor/
Assembler, for instance, waits until you're finished writing your
symbolic program and then translates it to numbers (assem
bles it) at your command. This allows you to keep a copy of

r the original program you wrote for corrections. After all, it's
*•• much easier to understand AI R3,2 than 0223 and 0002.

The Line-by-Line Assembler included with the Mini Mem-
^ ory cartridge works in a different way. When you press EN

TER after typing a statement, the translation to hexadecimal is
performed immediately. You can actually see this taking place.
In other words, the statements are assembled one at a time,
line by line, unlike the Editor/Assembler, which assembles the
whole program at one time. Syntax errors are reported im
mediately and rejected by the Line-by-Line Assembler.

This immediate assembly is useful; you can actually see
what the computer is doing with your work. However, it in
cludes a major disadvantage. You can't save the original listing

ix

(often called the source code) for corrections and documenta- j
tion. All you have left is the assembled program. Inserting
program lines is practically impossible, and corrections are
difficult to make. Thus, with this Line-by-Line Assembler, the ^
best policy is to write programs on paper first, then try them i
on the computer. Another good idea is to divide your program "***
into sections or blocks, each of which does one thing. For in
stance, a program could be divided into blocks which: ***
1. Clear the screen
2. Color screen black
3. Define characters

And so on.

Then, write each routine and test it until you're sure it works
correctly. Finally, put them together to form a complete pro
gram. If you don't do this, you might face a 20-page program
that has an error and not have the least idea where that error
might be. (We'll look into debugging and programming hints
in a later chapter.)

Command and Control
Writing programs in assembly language gives you complete
control over most of the components of the computer, includ
ing the CPU (Central Processing Unit) RAM (Random Access
Memory) and the VDP (Video Display Processor) RAM.
Routines stored in ROM (Read Only Memory) and GROM
(Graphics Read Only Memory) can also be accessed and used.
You can modify and use values in CPU RAM directly, but to
access VDP RAM you use utilities (similar to BASIC sub
routines) that allow you to read from and write to VDP mem
ory, which includes the screen information, the color tables,
sprite tables, character tables, and so on. m^

Assembly language doesn't limit you; there is always
some way to achieve the desired results. Many times there are mJ
several ways to get the same result.

With COMPUTEl's Beginner's Guide to TI Assembly Lan- *J
guage, you'll quickly be up and running with fast and power
ful assembly language programs. All you have to do is turn «*>
the page.

The First StetIL]
LI

171

• Chapter 1

a

a

a

a

a

y

y

a

a

y

y

3

Hi\(tMl

immk

" Loading the Assembler
[The Mini Memory module allows you to load and run assem

bly language programs. You can even have several programs,
r as many as the module's memory will allow, loaded simulta-

neously. In fact, three programs are loaded when you load the
Line-by-Line Assembler: the OLD option of the Assembler, the
NEW option of the Assembler, and the demonstration program
LINES. These three programs fit in the module's approximate
4K of memory.

To load these programs, more specifically the Assembler,
first insert the Mini Memory cartridge in the computer and se
lect option (2) EASY BUG from the main menu. When the title
screen appears, press any key and type L. This indicates you
want to load a program from tape into the Mini Memory mod
ule. Load the programs (NEW, OLD, and LINES) as you
would normally do in BASIC. When the loading process is
complete, press the FCTN and equals (=) keys at the same
time. This executes the TI's QUIT command. The programs
won't be erased, thanks to the module's special RAM memory.
Return to the selection list and choose (3) MINI MEMORY.
When the Mini Memory option list appears, choose (2) RUN.
You'll be asked for the program name. Typing LINES and
pressing ENTER execute the graphics demonstration program.
For the Line-by-Line Assembler, choose NEW (or OLD if you
are continuing a previously started program). Pressing ENTER
starts the execution of the Assembler program. The computer
enters the 40-column text display and you're ready to begin.

^ Understanding the Assembler
r When you run the Line-by-Line Assembler, you'll see the pro-

gram name and copyright on the center of the screen, and be
low that the following:
7D00 045BB

lS&$^w\

"** The two hexadecimal numbers preceding the cursor tell you
r two things: the position in memory and the contents of that
*"• position. The first number, 7D00, is the memory location or
r address you're presently at. This is the default starting address
^ for the Assembler. Most of the memory before location 7D00 is

Chapter 1

used by the Assembler (from approximately 71A6 onwards). i
That's why, though the Mini Memory has around 4K bytes of
memory, you can only use approximately 770 bytes for your
programs. The remaining memory is used for the Assembler
itself. i

The value 045B is what's currently stored in memory **"*
location 7D00, and represents an assembly language instruc- j
tion. Actually, 045B is an instruction of the program LINES,
loaded together with the Assembler. The program LINES starts
at location 7CD6 and runs to location 7FB2. When writing
your own programs, you'll write over the LINES program. If
you type in a new instruction, the 045B will be replaced by
the hexadecimal translation of the new instruction, and you'll
be immediately ready to enter the new line. You can imagine
the memory locations to be like BASIC line numbers.

Let's try something. Press the space bar once and then type:
CLRR5

Leave a space between CLR and R5. Note that the value
045B changes as soon as you press ENTER. The screen should
now look like this:

7D00 04C5 CLR R5

7D02 C101 •

The value 04C5 in location 7D00 is the hexadecimal
translation of the instruction CLR R5. The counter has ad
vanced to 7D02, waiting for your next instruction. The value
CI01 is also a machine language instruction from the program
LINES which will be overwritten as you go along.

Why did you have to press the space bar before typing
CLR R5? Each assembly language statement must be entered a
certain way. Each line is divided into four sections, called ^J
fields. In each field, the computer expects to find specific infor
mation. Some fields are optional—it may not be necessary to ^
write any information into it—others must be used. To exit
one field and enter the next, press the space bar once. If ^J
you're not going to write anything in a field, hitting the space
bar moves the cursor to the next field.

The four fields are:

• The label field wd
• The instruction (opcode) field
• The operand field mJ
• The comment field

feaffltti

kimiiM)

Chapter 1

Here's a short explanation of what each field is used for,
what it can contain, and whether it's optional or required.

The label field. Labels are used in assembly language to
identify a certain memory location. If you wanted, for ex
ample, to jump to memory location 7F30, you could put a la
bel in 7F30 and then jump to that label. Labels can be one or
two characters long when you're using the Line-by-Line Assem
bler. They should be used as little as possible, since each label
eats up four bytes of memory. Some label examples might be
G, LB, HI, and so on. If one-character labels are used, the
character must be alphabetic. Two-character labels must have
an alphabetical first character and an alphanumeric second
character. Labels should be used only in certain memory loca
tions, those that need some sort of identification. Thus, the la
bel field is certainly optional.

If you want to include a label, type it and press the space
bar.

7D02 C101 AQ • (AQ is the label)

The cursor enters the next field. If no label is to be used,
just hit the space bar and the cursor moves three spaces, to
the second field, the instruction (opcode) field.

The instruction (opcode) field. The instruction (often
called the opcode) field is where the actual instruction (or
directive—see Chapter 2) is typed in. This instruction is called
the opcode and has one to four characters. The opcode you en
ter is a mnemonic which represents the operation you want the
computer to perform. For instance, A represents Add. Obvi
ously this field must be included, since some instruction has to
be given. Type in the instruction and press the space bar to
enter the third field, the operand field. For example, you could
enter:

7D02 C101 AQ LI • (LI is the instruction, or
opcode)

r The operand field. In this third field, you enter the val-
ues the opcode has to work with, which are called operands.

i This field is optional, since some instructions do not require
operands. When more than one operand is used, they're sepa-

[rated by a comma.
*" Pressing the space bar moves the cursor to the comment
r field. If no operands are used, either press the space bar to en-

ter the comment field or press ENTER to assemble that line.

Chapter 1

You could type: ,
7D02 C101 AQ LI R5,2 (R5 and 2 are the operands)

The comment field. The comment field works in a way ^J
similar to the tailing REMark in Extended BASIC. It's ignored
by the Assembler and is really only your guide as you write *J
your programs. The comments are not included when the pro
gram is translated to assembly language. This field is optional. »J
Pressing ENTER ends the line. An example might be:
7D02C101 AQ LIR5,2 THIS IS AN EXAMPLE

In the above, AQ is the label, LI the opcode, R5,2 the
operands, and THIS IS AN EXAMPLE the comment. Another
example of a completed line could be something like:
7D06 E101 SWPB Rl

At location 7D06, which had value El01 originally, no la
bel was used, the opcode is SWPB, and only one operand (Rl)
is included. No comment was added.

Correcting Errors
If an error occurs while you're entering a line, one of the
following two messages appears:
♦ERROR*

or

♦R-ERROR*

The *ERROR* message indicates a syntax error, such as writ
ing a nonexisting instruction in the opcode field or forgetting
required spaces. When this message appears, pressing FCTN-3
(ERASE) will erase the entire line so that you can start over.

If you type in a label and make a mistake, RH instead of
RN, for instance, you can either erase the whole line (with
FCTN-3) or type the correct label immediately after the wrong ****
one. The Assembler considers the correct label as the last two
characters entered in the field. For example, in ^
7D00 045B AWNPG1 •

fi1a,l

the Assembler considers the correct label to be Gl.
The same method can be used when typing in a hexadeci- teJ

mal (base 16) number. If you make a mistake, just type the
right number after the wrong one. This time, the Assembler «
considers the last four digits as the correct number. In
7D00 045B DF AORG >7EF87FF0 «-**

the Assembler considers >7FF0 as the correct number. The
"** greater than symbol (>) indicates a hexadecimal number.
r Numbers without the > symbol are considered decimal num-
" bers. Since the memory location and its contents are always in
I hexadecimal, the > symbol is not included before either of
** those numbers.

r For all other error conditions, it's best to clear the whole
** line and type it over again.

The *R-ERROR* appears when you're trying to jump to a
place in memory too far away. This message indicates an out
of range error. We'll examine this error, its causes and correc
tions, a bit later.

Words and Bytes
Before we continue, you should understand the difference be
tween a memory word and a memory byte.

A memory word is a four-digit hexadecimal number. An
example would be the hexadecimal translation of an instruc
tion, such as 045B.

A word is formed by two bytes, the left or most significant
byte and the right or least significant byte. If the memory word
is 045B, the most significant byte is 04 and the least significant
byte is 5B (remember, we're always talking about hexadecimal
numbers). Many assembly language instructions use the left
byte, others the right byte.

A convenient instruction lets you switch bytes in a word.
This instruction is SWPB (SWaP Bytes). If a word is 5C97 and
you use the SWPB instruction to change its bytes, the word
would become 975C. You'll see how useful this instruction
can be in many of the example programs.

Many instructions in assembly language work with words,
«••* and they are called word instructions; others work with bytes,

and are called, oddly enough, byte instructions. You'll choose
«•* the appropriate instruction based on what you need.

Finally, note that the maximum value that can be repre-
1m sented by a byte is 255 (decimal), which is >FF in hexadeci

mal, and that the maximum value that can be represented by
«** a word is >FFFF (65535 decimal).

L Using Registers
Instead of using variables to store values, as in BASIC, in

L* assembly language you use 16 workspace registers. In each of

Chapter 1

these registers you can store a one-word value. Register con- -,
tents can be manipulated, just like variables. For example, the ^
following line loads register number 7 (R7) with the decimal 5
value of 300: ^

7D00 045B LI R7,300 1

The LI instruction means Load Immediate and tells the
computer to load the value of 300 into register 7. When you J
press ENTER, you'll see the following:
7D00 0207 LI R7,300
7D02 012C

7D04 0A54 •

LI was translated by the Assembler as 0207; and the value of
300, to be loaded into R7, was translated as >012C (which is
300 decimal written in hexadecimal).

In other words, you can see that the instruction LI R7,300
was translated by the Assembler to 0207 and 012C, two words
or four bytes. YouTl find that, in general, most assembly lan
guage instructions occupy two or four bytes when translated
into machine language and that the 770 bytes you have to
work with are really more than they might seem.

Values in registers can be added, subtracted, multiplied,
and divided, just like variables can be manipulated in BASIC.
YouTl see how this works when we begin to examine some
program examples.

Just one more word must be said before going on. The
values in each of the 16 registers must be stored somewhere in
memory. The usual place to store them is from memory loca
tion >70B8 to memory location >70D7, though you can
choose some other area.

There's an instruction which loads the memory area
where the registers store their values, called LWPI (Load ^
Workspace Pointer Immediate). All you have to do is enter
LWPI in the opcode field and the memory location where the "**
registers will begin storing their values. This location should ,
be somewhere in the beginning of your program. The LWPI *•*'
instruction isn't always needed, but it's safest to include it. f

For example, to tell the computer to store the values in *•**
the workspace registers from >70B8 onwards, you'd enter:
7D00 02E0 LWPI >70B8 ***
7D02 70B8 \
7D04 0A54 • ^

Though you can use other memory areas to store the reg
ister values, be careful your program doesn't overwrite these
locations, or their values will be forgotten by the computer.
It's best to use the usual area of >70B8 onwards and avoid
putting any part of your program in those addresses.

Instructions and Directives
In the opcode field of a line, you can either write an instruc
tion or a directive. Assembly language instructions perform
only one operation, like LI (Load Immediate), which loads a
value into a register, or SWPB (SWaP Bytes), which exchanges
the bytes in a word. The instructions for both the
Editor/Assembler and the Line-by-Line Assembler are practically
the same, and a list of them can be found in Appendix B.

Assembly language directives are similar to BASIC sub
routines in that they perform an entire set of predetermined
instructions. When the Assembler encounters a directive, it per
forms this set of preprogrammed instructions. The
Editor/Assembler has 28 directives to work with, while the
Line-by-Line Assembler has only 7.

Let's take a look at those seven directives of the assembler
found in the Mini Memory module. They're very important to
assembly language programming, and it's vital you know how
each works.

J

J

•J

J.

J-

J

E. Chapter 2
Directives and
Your First
Programs

m

a

j

a

a

3

As mentioned in Chapter 1, the Line-by-Line Assembler has
seven directives which you can use. They are: AORG, END,
SYM, EQU, DATA, BSS, and TEXT. Each is explained in detail
below.

The AORG Directive
The AORG (Absolute ORiGin) directive helps you move from
one merrtory location or address to another, a process which is
useful in correcting errors, adding information, and reviewing
data. For example, when you select the NEW option of the
MiniMemory module, you're placed at the default memory ad
dress of >7D00. If you want to start your program at some
other memory location, such as >7E00, you could enter:
7D00 045B AORG >7E00

and press ENTER. YouTl then be at the correct place in mem
ory to continue with:
7E00 04C3 •

Remember that the directive must be typed in the opcode
field, so press the space bar twice before typing AORG and
again before typing the hexadecimal memory location (>7E00)
to leave the instruction field and enter the operand field.

The AORG directive lets you move freely around mem
ory, but if the memory address specified with the directive is
an odd number, the location will be rounded down to the pre
vious even number. This is because memory locations always
increase by twos. If you entered the following, for instance,
you could see this. Specifying >7D03 sends you to >7D02.
7D00 045B AORG >7D03
7D02C101 •

In the examples which follow, you'll be entering
directives beginning at location >7D00. Use AORG to return
to this location when necessary.

END Directive
The END (end program) directive is used when you wish to
exit the Assembler. The directive has no effect on the program
itself and doesn't stop program execution, as is the case in

13

BASIC. All it does is to return to the Mini Memory title screen. 1
Just type END in the instruction field, as illustrated below:
7D00 045B END J

When you press ENTER, the following message is -
displayed: <-»4
0000 UNRESOLVED REFERENCES

This message indicates that all labels in the operand field have
actually appeared in the label field. That is, the program's not
trying to jump to a nonexisting label or trying to use a value
stored at a label which does not exist. If you're told that there
are no unresolved references, press ENTER twice more and
you'll return to the Mini Memory menu.

If there are one or more unresolved references and you
exit the Assembler, the program will not work correctly. When
you see a message indicating unresolved references, press any
key except ENTER and you'll return to the Assembler. YouTl be
returned to the location from where you typed END. Find the
unresolved references using the SYM directive (explained
shortly), correct the error, and END the program once again.
Continue the process if necessary until there are no un
resolved references.

The SYM Directive
The SYM (Symbol Table Display) directive shows you a list of
resolved and unresolved labels used in your program. To use
this directive, type SYM in the instruction field and press
ENTER, as in:

7D00 045B SYM

If no labels have been used, nothing will happen. Now
enter the following line at >7D00:
SN JMP RQ

Then type:
7D02 C101 SYM

You should see:

RESOLVED REFERENCES
SN - 7D00

UNRESOLVED REFEERENCES (JUMP)
RQ - 7D00

This shows that there is one resolved reference (a label in the
label field), SN, in location >7D00. Any jump or reference to
14

^ that label will be valid, or considered a resolved reference.
However, there's also an unresolved JUMP reference, because

\Z in >7D00 the program is trying to JuMP to a nonexistent la
bel, RQ. JMP is equivalent to the BASIC GOTO statement; it's

h* an unconditional jump. Now add the following line to the
above program:

Lw 7D02 04C0 RQ CLR RO

YouTl see:

7D00*1000

Type another SYM in the next line:
7D04 0A54 SYM

And you'll see this on the screen:
RESOLVED REFERENCES
RQ - 7D02 SN - 7D00

Notice that since you added a line labeled RQ (address
>7D02), the reference is considered resolved. This is even
clearer when the Symbol Table is displayed.

In a program, you're allowed to reference an as yet un
defined label. When you do this, an R appears between the
memory location and its contents. Later on, when you define
this label (add the label in the label field), an asterisk is
printed for each resolved reference, along with the
corresponding memory location.

Let's try this out. Add the following line to the program:
7D04 0207 LI R7,TX

Pressing ENTER displays this on the screen:
7D06R0000

k** Notice the R character between the location and its contents.
Once again display the Symbol Table:

^ 7D08 XXXX SYM (XXXX is any number at that
- location)
^ RESOLVED REFERENCES

RQ - 7D02 SN - 7D00
L» UNRESOLVED REFERENCES (WORD)

TX - 7D06

*" Again, in >7D04 there's a reference to a nonexistent label, TX,
, though not in a JuMP instruction. That's why, this time, the
"-* unresolved label is placed in the word references instead of
f the jump references.

Chapter 2

USfl^iii.i.ij

Qtg^Hg

When writing assembly language programs, it's very com-]
mon to reference a label and then forget to add that label to
the program. Ending a program like this would cause a pro-]
gram bug, or mistake. The UNRESOLVED REFERENCES mes- ^
sage displayed upon exit from the Assembler reminds you if -»
there are still undefined labels in the program. And the SYM "•*
directive helps you find those unresolved labels and correct
them. ^

One final note: If a label is referenced in more than one
location, a maximum of 32 references to that label are
displayed.

The EQU Directive
The EQU (Equate), or assembly-time constant definition, direc
tive is similar in function to the equals sign (=) in BASIC. If
you want a label to be equal to a certain value, use the EQU
directive. For instance,

7D00 045B AB EQU >7FE8

makes label AB equal to >7FE8.
A value assigned to a label can be assigned to another la

bel, as in:

7D00 045B NH EQU AB

The above line makes label NH have the same value as label
AB.

Once you've assigned a value to a label, there's no direc
tive available to change it. Enter these lines:
7D00 045B T7 EQU 118
7D00 045B T7 *ERROR*

When you press the space bar after typing T7 the second time, „j
the error message appears. T7 already has a value, and since it
can't be changed, a new value cannot be assigned to it. ^

16

fpfnt

Chapter 2

The DATA Directive
The DATA, or word initialization, directive places values in
the memory locations you're currently at. These values might
be different data tables, character definitions, and so on. Some
examples might be:
7D00 0000 DATA 0 (Place a zero in location >7D00)
7D02 3589 DATA >3589 (Place value >3589 in location >7D02)
7D04 0100 DATA 259-3 (Place value 256 [>100] in location

>7D04)
7D06 XXXX DATA XN (If XN is defined, place the value of

the label in >7D06; otherwise, the
value is added when the label is
defined.)

7D08 0001 DATA 1,0,>34 (Place a 1 in >7D08, a 0 in >7D0A,
and a >34 in >7D0C)

7D0A 0000

7D0C 0034

7D0E XXXX •

In other words, the DATA directive is used to initialize one or
more memory words to specific values. (In the example above,
the memory word in >7D00 was initialized to 0; location
>7D02 to >3589, and so forth.) Note that several memory
locations can be initialized to specific values simultaneously,
just by separating the values by commas (as shown for ad
dress 7D08 above).

The DATA directive is mainly used to place tables of val
ues into specified memory locations. These tables usually give
information about such things as sprites, colors, sounds, and
custom characters. The following BASIC statement, for
instance,

CALL CHAR (42/TFA23491820100FF")

would be written in assembly language as:
7D00 FFA2 DATA >FFA2,>3491/>8201,>00FF

As soon as you enter the above line and press the ENTER key,
you'd see:
7D02 3491

7D04 8201

7D06 00FF

7D08XXXX •

17

Chapter 2

jH(hM1

Note that the character definition has been placed directly into ,
memory locations >7D00->7D07. You've only placed the ***
character definition in memory, however, not assigned it to -:
any character like you might have done in the BASIC line. ^

The tables or single numbers placed in memory by the
DATA directive must be in an area of memory where they will
not be executed by the program. If they are, the program will
probably not work correctly. Remember that if you place
something like a character definition in memory, you don't
want the computer to think it's assembly language instruc
tions. The best technique is to add all DATA directives after
the end of the program, where you're assured they won't be
executed.

BSS Directive
The BSS (Block Starting with Symbol) directive is similar to
the DATA directive. It also reserves a certain area of memory
for the program to store information. BSS reserves a specified
number of bytes, without setting them to any value (unlike
DATA, which does initialize the locations). Try out the
following:
7D00 045B BSS 32
7D20XXXX •

The 32 bytes from >7D00 to >7D1F have been reserved for
later use. Again, you must be careful that the reserved memory
will not be executed by the computer—make sure it's placed
in an area of memory not used for the program's instructions.

An example of the use of the BSS directive could be when
you perform the equivalent of a BASIC INPUT in assembly
language. Whatever the user types in must be stored some
where in memory. Suppose you want to accept words up to
ten letters long. You could reserve a ten-byte area to store the
word (each character is represented by one byte). The begin
ning of this block of memory is usually assigned a label, so
that the program can know where to find it in memory. Here's
an example:
7D00 045B T3 BSS 10
7D0A XXXX •

In the above, you've just reserved a ten-byte block of memory,
from >7D00 to >7D09, and labeled the block T3.

7

tatailg.J

18

ksMtfl

r

r- "mrf

You might have already noticed that the memory loca
tions where you type the instructions always increase by two
(one word, two-byte increments). This is why, if you specify
an odd number with the BSS directive, the number is rounded
down:

7D00 045B BSS 5
^ 7D04XXXX •

The line 7D00 above reserves only four bytes of memory.
The Assembler doesn't accept negative values with the

BSS directive, and a 1 or a 0 returns you to the original loca
tion without reserving any memory.

The DATA and BSS directives work in a similar way—
both set aside a memory area or block. The major difference is
that DATA assigns values to the memory reserved and BSS
does not.

The TEXT Directive
Completing the list of the seven Line-by-line Assembler
directives is the TEXT, or string constant initialization, direc
tive. As its name indicates, it's used to store a character string
in memory. For example, if you wanted to store the word
COMPUTER in memory, you would enter:
7D00 045B TEXT 'COMPUTER'

and press ENTER. Note that the text to be displayed must be
enclosed in single quotes (the single quote is the only charac
ter which cannot be displayed in a text). When you press EN
TER after typing in the above example, you'll see:
7D00 434F TEXT 'COMPUTER'
7D02 4D50

[7D04 5554
^ 7D06 4552
, 7D08XXXX •

What's happened is that the Assembler has converted each
^ character to its hexadecimal ASCII code and stored that code

in memory. (For a list of hexadecimal ASCII codes, see
^ Appendix A.) In other words, the C has been represented by

value >43, the O by value >4F, and so forth.
I", Text, then, occupies as many memory bytes as it has

characters. Thus it's best to keep text to a minimum, since it
[uses up a lot of memory.

19

Ctaapter 2

If the number of characters in a string is odd, the Assent- i
bier adds a mm// byte (byte >00) at the end of the text, so that
the next memory location is even:
7D00 4845 TEXT 'HELLO'
7D02 4C4C J
7D04 4F00

7D06XXXX]

After the >4F, the null byte (>00) was added.
The string placed in memory is not displayed on the

screen by using TEXT; a set of instructions must be used to do
so. Also, as with DATA and BSS, the code generated by a
TEXT directive is not assembly language instructions. Again,
make sure this code is left outside any program execution.

Accessing VDP Memory
Earlier it was mentioned that VDP memory (containing screen
information, tables, and so forth) could not be accessed di
rectly from the assembly language program. To write or read
values from VDP RAM, you must use one of five system util
ity routines, which require certain information loaded into spe
cific registers. These routines are VSBW (VDP Single Byte
Write), VMBW (VDP Multiple Byte Write), VSBR (VDP Single
Byte Read), VMBR (VDP Multiple Byte Read), and VWTR
(VDP Write To Register).

The first four are detailed in this chapter.

Displaying a Single Character
To write one byte to VDP memory, youTl use the VSBW rou
tine. Though in this example youTl write the byte on the
screen (which forms part of VDP RAM), keep in mind that the
byte can also be written to other areas of memory, such as ^J
data tables. The VSBW routine requires certain values loaded
into specific registers (registers 0 and 1) before it can be ^
executed.

In register 0 (RO) you must load the memory address ^
where you want to write the byte. YouTl want to write the
byte on the screen, which occupies memory locations 0-767 ^J
(decimal). (The screen has 32 columns and 24 rows, 32 X 24
= 768 positions.) To work out the byte's screen location, us- ^
ing the BASIC row and column values as reference, do this:
Count the number of lines before the line where you want to ^
display the character—then multiply this number by 32. Add

kffifci

r

kimaA

mwmi

Chapter 2

to this value the number of spaces on the next line to leave
blank before the printing position and youTl have the correct
memory location to load into RO.

For instance, to display a byte in screen position row 12
and column 7, you would multiply 11 (the line before line 12)
by 32, then add the number of blank spaces before the column
position. The total would be (11 X 32) + 6, which equals
358.

Once RO has been loaded with the screen printing po
sition, you must load the hexadecimal ASCII code of the
character to be displayed into the left byte of register 1 using
the LI (Load Immediate) instruction. Then all you do is branch
to execute the VSBW routine to write the byte on the screen.
To branch to the VSBW routine, use the BLWP (Branch and
Load Workspace Pointer) instruction, which works in a similar
way to the GOSUB statement in BASIC. In the Line-by-Line
Assembler, you're not permitted to branch directly to a routine
by its name, like this:
BLWP @VSBW (The @ means at and must be included before the

routine name or position in memory)

as you can when using the Editor/Assembler, unless you
equate the label to the position in memory of the routine first,
with the EQU directive:

7D00 045B VS EQU >6024
7D00 045B BLWP @VS

To avoid having to use the EQU directive and unnecessary la
bels, it's best to branch directly to the memory location where
the subroutine is located. In other words,

BLWP @>6024

im which means "branch to the routine stored at (@) hexadecimal
memory location >6024 and execute it." When the routine has

La been executed, control returns to the next instruction after the
BLWP. In the Mini Memory manual, pages 35 and 36, you'll

L»t see that the memory location of each routine has been in
cluded. YouTl also find the memory locations in the module's

\m ROM memory map.
At this point in the program, the byte will already have

Ui been printed on the screen. But before you end the program,
you have to stop its execution or the computer will continue

Lii executing instructions in subsequent memory locations. You

21

can create an endless loop condition by labeling a line and
continuously jumping to that label:
NQ JMP NQ

Let's see how the program would look.
7D00 02E0 LWPI >70B8

7D02 70B8

7D04 0200 LI R0,367
7D06 016F

7D08 0201 LI R1,>2A00
7D0A 2A00

7D0C 0420 BLWP @>6024
7D0E 6024

7D10R10FF NQ JMP NQ (This line could also be B *R11.
Here, B is in the instruction
field, and not a label)

7D10*10FF

7D12 XXXX END

Explanation of the Program
First of all, the workspace area to be used by the registers,
>70B8, was loaded with LWPI (Load Workspace Pointer Im
mediate) into memory location >7D00. Then, in memory loca
tion >7D04, R0 was loaded with the printing position. Note
that the character will appear in the center of the screen (row
12, column 16), calculated by ((12-1) X 32) + (16-1) =
367. Next, the left byte of Rl was loaded with the code of the
character to be displayed (an asterisk, ASCII code >2A), and a
0 was placed in the right byte.

All was ready to execute the VDP single-byte write rou
tine in location >6024. In >7D0C, a branch to that routine
was executed. The only thing missing before ending the pro
gram was to stop execution; this was done with the endless
loop in >7D10.

Executing the Program
When you've entered the program/END it and return to the
Mini Memory title screen. Press FUNCTION = (QUIT) and re
turn to the title screen. Select (2) EASY BUG and press any
key to skip the instruction screen. When the question mark
appears, type E7D00. This is telling the computer to EXECUTE
the assembly language program which starts at location
>7D00. Press ENTER and the asterisk will be displayed im-

22

tommi,,'')

tktf^ii

ISi

r mediately. Further on, you'll see how you can give your pro-
gram a name and execute it like the program LINES or from

I BASIC. FCTN = (QUIT) will not return control to you. Switch
the computer off (the program will remain in memory), wait a
few seconds, and switch it back on, selecting the NEW option
of the Assembler. YouTl be ready to continue.

i If you substitute the line B *R11 for the endless JMP loop
(NQ JMP NQ), you can avoid the inconvenience of having to
turn the computer off to break out of the program. This
branching command, explained in greater detail in Chapter 4,
will, in this case, return you to EASY BUG.

jtoflji

Using the VMBW Utility
The VDP Multiple Byte Write routine is similar to the single-
byte write routine except that it writes multiple bytes to mem
ory. A good example would be the values represented by text.
In the description of the TEXT directive, it was mentioned that
the text loaded into memory was not displayed on the screen
just by using the directive. You can use the VMBW routine to
display it on the screen.

The utility needs registers 0, 1, and 2 loaded with certain
values in order to work. In RO, place the memory location
where the bytes will start to be printed, just as in VSBW. In
Rl load the location in memory where the bytes to be dis
played will be found (remember, these should not be within
execution of the program), and in R2 load the number of bytes
to be written. Then you can branch to the VMBW utility
stored starting at memory location >6028:
7D00 02E0 LWPI >70B8

7D02 70B8

7D04 0200 LI R0,67
7D06 0043

7D08 0201 LIR1,PQ
^ 7D0AR0000

7D0C 0202 LI R2,18
k*tf) 7D0E 0012

7D10 0420 BLWP @>6028
iifa^ 7D12 6028

7D14 045B B *R11
f 7D16 4153 PQ TEXT'ASSEMBLY LANGUAGE
^ 7D0A*7D16
j 7D28 XXXX END

23

Program Explanation _
The memory area for the registers is loaded into location
>7D00. In RO, the initial printing position (67—row 3 and col- ^J
umn 4) is loaded. Rl is loaded with the label where the text to
be displayed will be found (label is PQ). The text itself will be J
added to the end of the program. The number of bytes to
write, 18 to match the length of the text, is loaded into R2. In ^J
location >7D10, a branch executes the VMBW routine at
>6028, and in location >7D14 the program returns to EASY
BUG, just as in the previous example. Ending the program
here would leave one unresolved reference, PQ, so it's added
in location >7D16. Then the program ends.

Run the program as you did in the previous example, by
selecting EASY BUG and typing E7D00, where the assembly
language program begins.

The VSBR and VIYIBR Utilities
These routines have the opposite effect of the two previous
ones. The VSBR (VDP Single Byte Read) routine reads one
byte from a specific memory address and the VMBR (VDP
Multiple Byte Read) routine reads a certain number of bytes,
starting at a determined address.

The VSBR utility only requires RO to be loaded with the
memory address from where to read the byte. When you
branch to the routine (found in location >602C), the value of
the byte in that location is placed in the left byte of Rl. For
instance:

7D00 02E0 LWPI >70B8
7D02 70B8

7D04 0200 LI R0,300
7D06 012C

7D08 0420 BLWP @>602C ^
7D0A602C

This program segment places the value of the byte found in
VDP memory location 300 into the left byte of Rl.

The VMBR routine requires R0 to be loaded with the VDP
RAM memory address from where to start reading the bytes,
Rl loaded with the place in memory where to put these bytes
(an area reserved with the BSS directive), and R2 with the

24

(jy&jgmj

lisaail

number of bytes to be read. A branch to the VMBR routine in
location >6030 does the rest. Here's a sample program seg
ment to show you how it can be done.
7D00 02E0

7D02 70B8

7D04 0200
7D06 0585

7D08 0201

7D0AR0000

7D0C 0202

7D0E 000A
7D10 0420
7D12 6030

7D14 045B

7D16 XXXX BF
7D0A*7D16
7D20 XXXX

This loads the memory area labeled BF with the ten bytes read
from VDP RAM locations >0585 on up. The memory area BF
has been added where it will not be executed as program
instructions (stored in memory address 7D16). As with the
two previous sample programs, this one returns you to EASY
BUG.

Since this segment does not write to any screen memory
addresses, nothing appears to happen when the program exe
cutes. The next example, however, will visually demonstrate
the VMBR routine by writing what was read from the screen
back to the screen.

Using VMBW and VMBR
The last example in this chapter combines the VMBW (VDP
Multiple Byte Write) and VMBR (VDP Multiple Byte Read)
routines to place a message on the screen, read it, and print a
portion of it elsewhere. Type in the following program:

Read and Write

7D00 02E0

7D02 70B8

7D04 0200

7D06 0043

7D08 0201

LWPI >70B8

LI R0,>0585

LI R1,BF

LI R2,10

BLWP @>6030

B*R11

BSS 10

END

LWPI >70B8 (Load memory area for
registers)

LI R0,67 (Memory location where bytes
will be written)

LI R1,PQ (Bytes to be written are stored
atPQ)

25

7D0AR0000 J
7D0C 0202 LI R2,18 (Number of bytes to write)
7D0E 0012

toi«n,'4

7D10 0420 BLWP @>6028 (Execute the VMBW routine)
7D12 6028

IfgWLj7D14 0200 LI R0,67 (Memory location where bytes
will be read)

7D16 0043 Imsmiii

7D18 0201 LI R1,BF (Read in bytes will be stored at
BF)

7D1AR0000

7D1C 0202 LI R2,18 (Number of bytes to be read in)
7D1E 0012

7D20 0420 BLWP @>6030 (Execute the VMBR routine)
7D22 6030

7D24 0200 LI R0,330 (Memory location where bytes
will be written)

7D26 014A

7D28 0201 LI R1,BF (Bytes to be written are stored
atBF)

7D2AR7D1A

7D2C 0202 LI R2,8 (Number of bytes to be written)
7D2E 0008

7D30 0420 BLWP @>6028 (Execute the VMBW routine)
7D32 6028

7D34 045B B *R11 (Return to EASY BUG)
7D36 5345 PQ TEXT'ASSEMBLY LANGUAGE '
7D0A*7D36

7D48 10E2 BF BSS 18 (Set aside 18 bytes for storing
message)

7D2A*7D48

7D1A*7D48
7D5A XXXX END

When executed with EASY BUG (E7D00), the program will
write the message ASSEMBLY LANGUAGE on the top of the
screen, read the entire message from the screen, and then
print the first eight characters (bytes) at screen location 330.

Saving Your Program on Tape
Whenever you want to save your program on tape, select the
EASY BUG option from the master selection list, press any
key to skip the instructions, and type S. This command means
"save the contents from memory to tape." The computer will
have to know from what memory location to start saving and

26

up to where to continue the process. It's always best to save
^ the entire contents of the module's 4K RAM to tape (from
, >7000 to >7FFF), so when the question mark appears, type
*" S7000 and press ENTER. The compter will ask TO ?. Type

>7FFF and press ENTER.
It's not necessary to include the greater than (>) symbol.

Now follow the usual process to save a program onto tape.
To load the program from tape, follow the same instruc

tions as for loading the Assembler and LINES programs. If the
name of your program has been added, run the program like
the LINES demonstration program or by calling it from
BASIC. Otherwise, use the E (Execute) instruction of EASY
BUG as you've been doing already.

You're already using the Line-by-Line Assembler to do
complex things like read and write from your TI's screen
memory. Of course, there's more to learn, more powerful
assembly language programming techniques. That's what
Chapter 3 is all about.

IfjSJtajl

27

'J

J

m Chapter 3 •
More
Programmin

we

J

a

a

3

yj

3

3

3

3

lire Programming Powe

Instructions are kept very simple in assembly language—that's
" both an advantage and a disadvantage, for although the

instructions are easy to remember (for the most part), it does
^ make program listings quite long. Don't be intimidated by an
(assembly language program's length. Just because it's long
^ doesn't mean it's complicated. To perform even a simple op

eration, such as a machine language equivalent to BASIC'S
CALL CLEAR, a whole set of instructions has to be written.

But assembly language programs are powerful. And in
this chapter, you'll see more detailed examples to help you so
lidify your programming knowledge.

Note: From this point on, program listings will not in
clude the contents of the locations. You'll see the memory ad
dress, and the instruction to type in. Simply enter the
instructions as you've done in the first two chapters.

Increasing and Decreasing a Value
Though instructions are provided to add and subtract values
stored in memory locations and registers, four convenient
instructions exist which operate directly. They are: INC, INCT,
DEC, and DECT.

INC (INCrement) increases the value in a memory ad
dress or register by one; adds one to the value there:
7D00 INC R3 (Adds one to the value stored in

R3)

DEC (DECrement) decreases the value in a register or
memory location by one; subtracts one from the value there:
7D02 DEC @>7F00 (Subtracts one from the value

I stored at memory location >7F00)

(Remember that when you reference a hexadecimal or decimal
^"* memory location directly, it must be preceded by the @sym

bol, except when using jump instructions.)
!•* INCT (INCrement by Two) adds two to the value in a

register or memory address:
7D04 INCT @>7E18 (Adds two to the value stored in

location >7E18)

DECT (DECrement by Two) subtracts two from the
value in a register or memory location:
7D06 DECT R5 (Subtracts two from the value in

R5) 31

Chapter 3

1

1

Use these instructions whenever you need to add or subtract i
one or two from a value, instead of using the addition and ^
subtraction instructions. The latter instructions use more bytes. i
Adding and Subtracting

AI. To add to or subtract from a value stored in a register, **"'
you can use the AI (Add Immediate) instruction. This instruc-'
tion is called an immediate instruction because the first op
erand is a register and the second a number (decimal or
hexadecimal). See Appendix Bfor a list of the instructions.

Ifyou want to add, say 32 to the value in R4, you would
enter:

7D08 AI R4,32 (The value in R4 is increased by
32)

To add >312 to the value in R12:

7D0C AI R12,>312 (The value in R12 is increased by
>312)

The same instruction can be used to subtract a value from the
contents in a register (nothing called subtract immediate exists).
Just add the negative value of the number you want to sub
tract. For example, to subtract 712 from the value in R7, you
would type:

7D00 AI R7,-712 (Subtracts 712 from the value in
R7)

To subtract >24 from the value stored in R15:

7D04 AI R15,->24 (Subtracts >24 from the value in
R15)

The result of addition or subtraction by the AI instruction is
placed in the same register where the initial value was stored.
In the previous example, for instance, the value after
subtracting >24 from the value in R15 is placed back in R15.

A and S. In many cases you might want to add or sub
tract the values in two registers, two memory locations, or a
register and a memory location. Then the A (Add words) and
S (Subtract words) instructions are useful. These are word
instructions, which means that they work with the complete
four-digit hexadecimal number in a register or memory
address.

The A (Add words) instruction adds the word value in the
first operand to the word value in the second operand. It then

32

G^aj

^ ttapter 3
\tiJStmMJ

r places the addition in the second operand. Assuming that R3
• is loaded with >1201 and Rl with >1362, the following line:

r 7D00 A R1,R3

adds >1201 and >1362 (for a total of >2563), and places the
L, answer in R3. The first operand remains unchanged by the op

eration. If you want the answer in Rl, just invert the operands,
Ij^i liKe so:

7D00 A R3,R1 (Adds the values and places the
addition in Rl, leaving R3
unchanged)

Some more examples:
7D02 A R3,@>7FC0 (Adds the word value in R3 to the

value stored in location >7FC0
and places the answer in >7FC0)

7D06 A @>7FC0,R3 (Same as above, but answer is
placed in R3)

7D0A A @>7D04,@>7E12(Adds the value in >7D04 to the
value in >7E12, placing the an
swer in >7E12)

The S (Subtract words) instruction works the same way,
only subtracting the word values of two registers, two memory
locations, or a register and a memory location. The value of
the first operand is subtracted from the value of the second
operand and the answer placed in the second. For example, if
R5 is loaded with 2 and R7 with 5, then

7D00 S R5,R7

subtracts the value in R5 (2) from the value in R7 (5) and
places the answer (3) in R7. The value of R5 remains un
changed. Other examples are:

L» 7D00 S @>7FC2,@>7100 (Subtracts the word value at loca
tion >7FC2 from the word value

La at >7100, storing the answer at
>7100)

La 7D00 S @>7F00,R14 (Subtracts the word value found
at memory location >7F00 from

j the word value in R14, placing
the answer in R14)

Li AB and SB. Two instructions similar to A and S are AB
(Add Bytes) and SB (Subtract Bytes). Both do the same as

Li the word instructions, but operate only with the left (most

ksmmi OO

significant) byte of the word, leaving the right (least signifi
cant) byte unchanged. If R4 is loaded with >0492 and R5 with <—'
>1067, the instruction

7D00 AB R4,R5 «L
adds the left byte of the word in R4 (>04) to the left byte of ^J
the word in R5 (>10), placing the answer (>14) in the left
byte of R5. The right byte of R5 remains unchanged. The ,J
value found in R5 now would be >1467. R4 remains
unchanged.

Here's another example:
7D00 AB @>7BFE,@>7100

This adds the left byte of the word found at (@) >7BFE to the
left byte of the word at >7100. The answer is placed in the
left byte of the word at >7100, and the least significant byte
(>7101) remains unchanged.

SB (Subtract Bytes) works in the same way as S, but sub
tracts the value found in the left byte of the word in the first
operand from the left byte of the word in the second operand.
The resulting answer is stored in the left byte of the word in
the second operand. If R2 is loaded with >0127 and Rl with
>0256, the instruction

7D00 SB R2,R1

subtracts >01, the left byte of R2, from >02, the left byte of
Rl. Rl now contains >0156, while R2 remains unchanged.

Instruction Formats
Each instruction is classified into one of nine formats. For ex
ample, all instructions which use two operands in the operand
field, separated by a comma, and where the operands are gen
eral addresses (such as a memory address or a workspace reg- „L
ister) are considered Format I instructions. They're also called
"two general address instructions." ;

7D00 A @>837C,R5 (>837C and R5 are two general
addresses separated by a comma, mJ
so A is a Format I instruction)

Other formats which include instructions you'll use are: ***
Format II. All the jump instructions, which transfer con

trol to a memory location or a label representing a memory *"J
location.

7D00 JMP LP ^

34

Chapter 3

(^ Format III. Logical instructions, which contain a general
address as first operand, separated by a comma from the see

ls^ ond operand, which is a workspace register.
Format VI. Single address instructions, which require

[^ only a general address. Examples include the INC, INCT,
DEC, and DECT instructions discussed earlier in this chapter.

^ Format VIII. Immediate instructions, which require a reg
ister as the first operand, followed by a comma and a numeric
expression in the operand field.
7D00 LI R5,3

Also included in this format are two instructions requiring
only a numeric expression in the operand field:
7D00 LWPI >70B8

and two instructions requiring only a register in the operand
field.

Format IX. Extended operation instructions. This format
includes the extended operation instructions and the mul
tiplication and division instructions.

Don't worry about understanding the formatting of
instructions yet. As you start to work on your own assembly
language programs, you'll get used to what instructions to use
where. Whenever you come across an instruction which gives
you some doubt about what kinds of operands it works with,
refer to Appendix C. The instructions are listed there, as well
as the operands each uses.

Comparing Values
If you want to compare the value in a register to a number,
you'll use one of the compare instructions. There are three

U^ we'll look at here.
CI (Compare Immediate) is a Format VIII immediate

U* instruction, and requires a register as the first operand and a
numeric expression as the second operand. For example, to

L^ compare the value stored in R5 (register 5) to 118, you would
enter:

^ 7D00 CI R5,118 (Compares the value stored in R5
to 118)

35

(Chapter 3

ml

tjiatifirir

To compare the words in two memory locations, two reg- 1
isters, or a memory location and a register, use the C (Com
pare words) instruction. For instance: 1

7D00 C R3,R4 (Compares the word value in R3
to the value in R4) ^J

7D02 C @>8374,R3 (Compares the word value stored
at >8374 to the word value in R3)]

Finally, to compare the left bytes of two words, the CB
(Compare Bytes) instruction can be used, like this:
7D00 CB R3,R4 (Compares the left byte of R3 to

the left byte of R4. If the bytes are
the same, the registers are consid
ered equal even if the least signifi
cant [right] bytes are different.)

7D02 CB @>7500, @>7C00 (Compares the left bytes of the
words stored in memory locations
>7500 and >7C00)

Jumping According to a Result
After having made a comparison, you'll want to transfer pro
gram control according to the result. You've already seen the
JMP (JuMP) instruction, similar to BASIC'S GOTO. But assem
bly language has other kinds of jumps which can be used
according to the result of a comparison. They have the same
function as the IF-THEN in BASIC. Some of these instructions
are:

JEQ (Jump if EQual). If the compared values are equal,
this jump will be executed. Otherwise it's ignored, and the
program continues with the next instruction after the jump.
7D00 C R1,R2 (Compares Rl and R2)
7D02 JEQ LP (If they are equal, transfers control **

to address labeled LP)

JGT (Jump if Greater Than). If the value of the first op- ^
erand is greater than the value of the second operand, execute
the jump. Otherwise not.

7D00 CI R3,300 (Compares the word value in R3 ^
to the decimal number 300)

7D04 JGT NQ (If the value in R3 is greater than ^
300, control is transferred to
memory location with label NQ)

36

JHE (Jump if High or Equal). If the value of the first op
erand is greater than or equal to the value of the second op
erand, the jump executes.
7D00

7D02

7D00

C R3,R4

JHEP3

(Compares the value in R3 to the
value in R4)
(If the word in R3 is greater than
or equal to the word in R4, con
trol is transferred to the location

labeled P3)

JLE (Jump if Low or Equal). If the value of the first op
erand is less than or equal to the value of the second operand,
this jump executes.

C R7, @>7F00 (Compares the word in R7 to the
word stored at memory location
>7F00)

7D04 JLE >7D08 (If the value in R7 is less than or
equal to the value found at
>7F00, control is transferred to
>7D08)

JLT (Jump if Less Than). If the value of the first operand
is less than the value of the second operand, the program exe
cutes the jump.
7D00 C NM,R2 (Compares the value stored in

location labeled NM to the value
inR2)

7D04 JLT A5 (If the value in NM is less than
the value in R2, program execu
tion continues in the memory ad
dress labeled A5)

JNE (Jump if Not Equal). If the two values compared are
different, the jump is executed.
7D00 C R3,R4 (Compares R3 and R4)
7D02 JNE >7D50 (If the values are different, control

passes to location >7D50)

Other jump instructions exist, but the above are the most
frequently used. One thing to remember is that a jump
instruction cannot jump to a location more than >100 (256)
bytes away. If you try to do this, you'll get an *R-ERROR*
(out of range) message. To see this, try the following:
7D00 JMP >7F00

37

Chapter 3
(igHLJ

As soon as you press ENTER, an *R-ERROR* message -,
will appear, because >7F00 is more than 256 bytes away from ^
>7D00. To avoid this error message, it's best to use the B .
(Branch) instruction, which allows you to branch to any mem-
ory address in the program: j
7D00 B @NG (Branches to the location labeled

NG. Here you must include the at J
[@] sign before the memory loca
tion or label)

7D04 B @>7F00 (Branches to memory location
>7F00)

Branching After a Comparison
You don't have all the different kinds of jump instructions
available with the branch instruction. What would happen if a
conditional jump caused an *R-ERROR* because of trying to
jump to a location more than 256 bytes away? For instance,
consider the following error:
7D00 CI R2,300
7D04 JLT NG *R-ERROR*

If the value in R2 is lower than 300, you want the program to
jump to the location labeled NG. But NG is too far away in
memory to be reached by a jump (in this case, JLT) instruc
tion. How can this same routine be done using the B (Branch)
instruction?

It's not hard. Just invert the problem. Instead of compar
ing and looking for results less than, compare and look for re
sults greater than. Glance at the following solution:
7D00 CI R2,300
7D04 JHE NQ
7D06 B @NG teifci
7D0A NQ
(program continues)... ^

In the first example you told the computer to jump to NQ if
R2 was less than 300, but here you said that if R2 is equal to or toJ
greater than 300, skip to NQ and continue the program. If not
equal to or greater than, it branches back to NG (>7D06). ^

Creating More Programs '**
All this theoretical background has shown you a whole new
set of instructions. Now we'll write some example programs to ^
see how many of these instructions can be used.

A Delay Loop
In most of your assembly language programs, you'll need to
use delay loops to slow down execution. Assembly language is
fast—often too fast. Many times you need to slow it down so
people can use the program.

A delay loop is simple to create; one way is to load a
value in a register and decrease it until it's equal to zero. It's
similar to something like a FOR I = 1 TO 1000:NEXT I state
ment in BASIC.

7D00 LI R7,5000
7D04 LP DEC R7

7D06 CI R7,0
7D0A JNE LP

When you're comparing the first operand to zero (only),
as in the above, you don't need to include the comparison.
The previous could thus be written as:
7D00 LI R7,5000
7D04 LP DEC R7

7D06 JNE LP

The jump (JNE) instruction automatically compares R7 (the
last register operated with before the jump instruction) to zero.

Remember that the maximum value you can load in a
register is 65535 (>FFFF), and in assembly language, a loop
with such a delay only causes the program to pause for
around a second. The following program waits with the maxi
mum loop value and then prints the word FINISHED on the
screen.

Maximum Loop—FINISHED

7D00 LWPI >70B8

7D04 LI R9,>FFFF

7D08 LP DECR9

7D0A JNE LP
7D0C LI R0,300

7D10 LI R1,TX

7D14 LI R2,8

7D18 BLWP @>6028

(Load the memory area for the
registers)
(Load delay value into R9)
(Decrease value in R9 by one)
(If not zero, return to loop LP)
(Delay loop finished. Load screen
printing position)
(Load position of text in memory,
TX)
(Load the length of the text)
(VMBW routine to display the
message)

39

Chapter 3

7D1C B *R11 (Return to EASY BUG)
7D1E TX TEXT TINISHED' (Text to be displayed)
7D26 END

When you run this program, the delay is only a moment long.
For longer delays, you'll need to use nested loops. For ex
ample, to make the previous delay five times as long, load an
other register with the value of five and each time a delay is
executed, decrease it. When the register is zero, continue. If it's
still not zero, then return to the delay loop:

Longer Delays

7D00 LWPI >70B8

7D04 LI R12,5

7D08 LI LI R5,>FFFF

7D0C L2 DECR5

7D0E JNEL2

7D10 DEC R12

7D12 JNE LI

7D14 LI R0,300

7D18 LI RLTX

7D1C LI R2,5

7D20 BLWP @>6028
7D24 B*R11

7D26 TX TEXT 'READY'

7D2C END

(Load memory area for registers)
(Number of times to execute outer
loop)
(Number of times to execute inner
loop)
(Decrease value of inner loop)
(If not equal to zero, loop not
completed)
(Decrease value of outer loop)
(If not zero, return to repeat inner
loop)
(Loops finished. Load screen dis
play position)
(Load position of text in memory)
(Load length of text)
(Branch to display text)
(Return to EASY BUG)
(Add text to program)

This program creates two nested loops. The inner loop is exe
cuted five times (the value in the outer loop) before the pro
gram continues. Run the program and you'll see that the
computer waits a little longer than before.

Clearing the Screen
In this next example you'll create a routine to clear the screen,
located in VDP memory from locations 0 to 767.

40

IMP"

lyffiSBfe:/

If you didn't have the CALL CLEAR subroutine in BASIC,
how would you clear the screen? The easiest way would be to
print a blank character (a space) in each of the 768 screen po
sitions. The same thing can be done in assembly language; us
ing the VSBW (VDP Single Byte Write) routine, you can print
a blank on each of the 768 positions.

Clear Screen with Assembly Language

7D00 LWPI >70B8

7D04 CLRRO

7D06 LI Rl,>2000

7D0A LP BLWP @>6024
7D0E INCRO

7D10 CI R0,768

7D14

7D16

7D18

JLT LP

B*R11

END

(Load memory area for registers)
(Load zero in register 0)
(Load the ASCII code for the
space [>20] in the left byte of Rl)
(Print the blank)
(Increase the screen printing
position)
(Compare it to the first position
beyond the screen. Screen goes to
location 767)
(Screen position is still smaller, so
printing is not complete. Return to
loop LP)
(Return to EASY BUG)

This program uses the same instructions as previous examples,
and the program explanation included beside each instruction
should help you follow its workings. The only new instruction
used is CLR (CLeaR) in location 7D04, which sets the word
value in a register or memory address to zero, as:
CLR @>8374 (Load >0000 into >8374)

It's better to use CLR than to LI (Load Immediate) the value of
zero, because CLR uses only two bytes of memory with reg
isters and also can be used to directly clear a memory location.

Run the screen-clearing routine once you've entered it.
Keep an eye on the E7D00 message at the bottom of the
screen. Note how quickly it's erased, indicating that the CALL
CLEAR routine was successful.

Crossing At
The next example program makes the @ symbol run along
the top of the screen, from left to right. This is another easy

41

Chapter 3

routine to program. You must create a loop to print the @
from positions 0 through 31, erasing it again after each print
by printing a blank over it.

Moving Qp

7D00 LWPI >70B8

7D04 LI CLRRO

7D06 L2 LI Rl,>4000

7D0A BLWP @>6024
7D0E LI Rl,>2000

7D12 BLWP @>6024
7D16 INCRO

7D18 CI R0,31

7D1C

7D1E

JNEL2
JMP LI

7D20 END

(Load the memory area for the
registers)
(Load RO with zero, first screen
position)
(Load Rl with code for the @
symbol)
(Print symbol on the screen)
(Load code for blank to erase the
@ symbol)
(Print blank erasing the @ sign)
(Increase printing position by one)
(Is it the last position of the top
line?)
(No. Return to print a new @)
(Yes. Return to reset printing po
sition and start over)

Run the program. Doesn't the @ symbol move a little bit too
fast? To make the program run a bit slower, you'll have to add
a couple of delay loops. Adding one after the @ symbol is
printed, and another after the blank has been printed, should
be enough. The new listing would look like this (ifyou don't
want the @ to blink so much, try leaving out the delay loop
after the blank is printed):

Slower @

7D00 LWPI >70B8

7D04 LI CLRRO

7D06 L2 LI Rl,>4000

7D0A BLWP @>6024
7D0E LI R7,2000

7D12 L3 DEC R7

7D14 JNE L3

42

(Load memory area for the
registers)
(Initial screen printing position)
(Load the code for the @ symbol)
(Print the @)
(Load R7 with the value for the
delay loop)
(Decrease the loop value)
(If R7 equals zero, the program
continues; if not, control returns
toL3)

7D16 LI Rl,>2000

7D1A BLWP @>6024

7D1E LI R7,2000

7D22 L4 DECR7

7D24 JNEL4

7D26 INCRO

7D28 CI R0,31

7D2C JNEL2

7D2E JMP LI

7D30 END

(Load code for the blank)
(Print the blank, erasing the @
sign)
(Load R7 with the value for the
delay loop)
(Decrease loop value)
(If R7 is not equal to zero, control
returns to L4)
(Screen printing position is
increased)
(Is it the last position of the top
line?)
(No. Return to printing routine,
label L2)
(Yes. Restart complete routine, la
bel LI)

Run this new program. If you want to change the printing
speed of the @ symbol, changing the values in the delay
loops, you don't need to retype the program. Just return to the
module's title screen, select (3) MINI MEMORY and (2) RUN.
Type OLD and press ENTER. Then use the AORG directive to
get to memory location >7D0E, where the value for the first
delay loop was loaded:

XXXX AORG

7D0E •

>7D0E

Type the LI instruction once again, including the value you
want to use in R7:

7D0E LI R7,XXX (where XXX is the new delay
value)

Then use the AORG directive to get to the next delay loop:
7D12 AORG >7D1E

7D1E LI R7,YYY (where YYY is the new value for
the second delay)

7D22 END

End the program and run it again. One recommended
change is to leave the first loop with a 2000 delay and change
the second loop to contain a delay of only 2.

43

Chapter 3

Squaring the Screen
This program will make the @ sign flash in a square around
the screen. For the top of the screen, you'll do the same as for
the previous example program, increasing the screen position
with the INC instruction. Then the symbol is moved down
one line at a time. For the printing position to move exactly
one line down, you must add 32 characters to the current
screen printing position in RO. The instruction AI R0,32 will
move the @ sign down one line at a time.

To move the symbol from right to left, you decrease the
value in RO with the DEC instruction. Then, move the symbol
up again by subtracting 32 from its current position. In other
words, add —32 for each line up with AI R0,—32. Take a look
at the next program:

Squared @

7D00

7D04

LWPI >70B8

CLRRO

7D06 LI LI Rl,>4000

7D0A BLWP @>6024

7D0E LI Rl,>2000

7D12 BLWP @>6024

7D16 INC RO

7D18 CI R0,31

7D1C JNE LI
7D1E L2 LI Rl,>4000

7D22 BLWP @>6024
7D26 LI Rl,>2000

7D2A BLWP @>6024
7D2E AI R0,32

7D32 CI R0,767

7D36 JNE L2

7D38 L3 LIR1,>4000

7D3C BLWP @>6024

44

(Load memory area for the
registers)
(Clear register 0)
(Load Rl with the hexadecimal
code for the @ symbol)
(Print the @ symbol on the
screen)
(Load code for the blank)
(Print blank on the screen, delet
ing the @)
(Increase printing position)
(Has the last position [31] been
reached?)
(No. Return to first printing loop)
(Yes. Load @ code in Rl)
(Print it on the screen)
(Load blank in Rl)
(Print it on the screen)
(Move printing position one line
down)
(Has last line been reached?)
(No. Return to second printing
loop)
(Yes. Load code for @ into Rl)
(Print @ on the screen)

"1

la&aaj

Chapter 3

fears'

ill^l

Iswgi
7D40 LI Rl,>2000 (Load code for blank into Rl)
7D44 BLWP @>6024 (Print blank, deleting the @ sign)

l^^l^l
7D48 DECRO (Decrease the printing position)
7D4A CI R0,736 (Has the first position of the last

I^&^mJ
line been reached?)

7D4E JNEL3 (No. Stay in the third printing

kaaal
loop)

7D50 L4 LI Rl,>4000 (Yes, load code for @ in Rl)
7D54 BLWP @>6024 (Print the @ on the screen)
7D58 LI Rl,>2000 (Load code for blank into Rl)
7D5C BLWP @>6024 (Print blank on the screen)
7D60 AI R0,-32 (Move printing position one line

up)
7D64 JNEL4 (If printing position in RO is not

equal to zero, stay in loop 4)
7D66 JMP LI (Printing sequence complete. Start

over at LI)

This program has no delays. If you want to add them, placing
one after each printed @ symbol will be enough.

The program above can be written in more efficient
and/or shorter ways. There's almost always more than one
way to write a routine. But with the instructions you know at
this point, the best and clearest way to write this particular
program is the way you just saw.

General Addressing Modes
When an instruction works with two operands in the operand
field, we call the source operand the one we're going to operate
on or manipulate. The operand where the result of the opera
tion is placed is called, naturally enough, the destination op
erand. In the following example
7D00 A R4,R3

R4 is the source operand and R3 the destination operand.
There are five ways to work with values in a register or

memory location. Called the General Addressing Modes, they
are:

Workspace Register Addressing. This is what you've
been doing in the example programs so far, working with the
values contained in a register (from 0 to 15):

45

A R8,R9 (Adds the word in R8 to the word in R9, placing the -,
result in R9) ~

Workspace Register Indirect Addressing. This is when]
the register contains the memory location where the value to
be used is found. Indirect addressing is specified by preceding i
the register with an asterisk:
A *R3,*R4 (Adds the value found at the address stored in R3 to ^J

the value found at the address stored in R4 and
places the answer in the location specified in R4)

If an asterisk precedes the register, it represents the phrase the
contents found in the memory location specified by the value in
this register. In the previous example, if R3 contained >7D00
and R4 contained >7E00, the instruction adds the word stored
in >7D00 to the word stored in >7E00, placing the answer at
memory location >7E00.

You don't need to precede both operands with an asterisk
if you want only one of the registers to hold the address of a
memory location. For instance, you could use:
S *R2,R5 (Subtracts the value stored in the location addressed

by the value in R2 from the value in R5 and stores
the answer in R5)

Note that the value found in register 5 was used, not the con
tents of a memory location loaded into that register.

You've seen the asterisk, and thus indirect addressing,
used several times already. The line B *Rllf which returned
several example programs to EASY BUG, meant to branch to
the memory location addressed by the value in register 11.

Workspace Register Indirect Auto-Increment Address
ing. Symbolized by following the register with a plus (+)
sign, this mode increases the memory address stored in the
register by one byte or one word, according to the instruction •**
used. For example, assuming R3 is loaded with memory loca
tion 7D00, the following instruction ^
AI *R3+,100 i

adds 100 to the value found in the memory address stored in
R3 (the asterisk causes this), and then increases the memory „—j
address in R3 by two, leaving >7D02 stored in R3. The +
does this. The increment was of one word, two bytes, because ^J
AI is an instruction operating with words.

46

i In the next example, imagine that R5 is loaded with
"•"' >7EF8, and R7 loaded with 7F50. The instruction
U 7D00 AB *R5,*R7+

adds the left byte of the word in memory location >7EF8,
La stored in R5, to the left byte of the word in memory location

>7F50, stored in R7. The value in R7 is incremented by one
L* byte because AB is a byte instruction. If this instruction was

executed a second time, the left byte of the word stored in the
memory location found in R5 (>7EF8) would be added to the
byte found in >7F51 (stored in R7), because the value in R7
was already incremented by one byte when the instruction
was executed the first time.

This addressing mode is very useful when working with
data tables, as you'll see in a later chapter.

Symbolic Memory Addressing. This is when you work
directly with a memory location or a label at a memory ad
dress. The symbolic memory address is preceded by the @
symbol. Some examples are:

A @>7F00,@>7EC2 (Adds the word found in >7F00
to the word found in >7EC2,
placing the answer in location
>7EC2)

CB @NM,@>7100 (Compares the left byte of the
word found at the memory loca
tion labeled NM to the left byte of
the word found in >7100)

SB R7,@>7D08 (Subtracts the leftbyte of the
word in R7 from the left byte of
the word stored in memory loca
tion >7D08, placing the difference
in the left byte of the word at

mmi >7D08)

i Indexed Memory Addressing. An indexed memory ad-
dress is preceded by the @ sign and followed by a register en-

| closed in parentheses (any register except RO may be used). To
understand this type of addressing, study the following

I examples:
S @5(R9),R7 (Subtracts the word stored in the

r memory address found by adding
^ 5 to the value in R9 from the
Lvaluein R7. The difference is

placed in R7)

Itfaaal ~Jb/

A R7,@NM-3(R3) (Adds the word found in R7 to
the word stored in the location ~
found by subtracting 3 from the
value in NM, and then adding mai
this to the value in R3. The an
swer is placed in the same com- ^j
puted address)

Indexed memory addressing is not used as frequently as «—J
the others. We'll cover it in more detail later.

The previous modes, however, are very useful when
programming. You'll see just how useful in the next chapter.

fafeAj

48 fawaiifc)

U

Chapter 4 •

h m Next Few
Steps

j

j

3

3

Planning an Assembly Language Program
Assembly language programs are not difficult to write, as long
as you plan them carefully. Due to the lack of editing features
in the Line-by-Line Assembler, you'll find that writing programs
at the TI's keyboard is difficult. The only exceptions are ex
tremely short or simple routines. The best thing to do is to
write your programs on paper first.

Before you start this, though, divide the program into
blocks, as mentioned in the Introduction. For instance:

• CALL CLEAR

• Print title screen

• And so on

Then create and individually test each routine. When
you're sure that all the segments work correctly alone, put
them together to form the complete program.

Writing a complete program on paper and then testing it
might lead to disastrous results, and may leave you staring at
a 4K program, without knowing where the program bug is.
Hours of time wasted.

You'll probably have to do a great deal of what I call re
search each time you write a new program. This research
ranges from investigating memory tables to interpreting
strange errors or confusing effects from the computer. Never
get discouraged—it's all part of the intricate world of assembly
language.

Repeated Coding: Subroutines Needed
Every byte counts when you're using the Line-by-Line Assem
bler. Memory has to be used very carefully. Routines which
are used more than once in the same program should be cre
ated as subroutines, just as you often do in BASIC. The
instruction to call a subroutine, similar to BASIC'S GOSUB, is
the BL (Branch and Link) instruction. It's used like the B
(Branch) instruction, transferring control to any memory loca
tion desired. However, the instructions should not be
confused.

While B sends control to another memory address (as
BASIC'S GOTO does), BL lets you return from a routine to the

51

Cltoapler 4

instruction immediately following the BL. That's just the way
BASIC'S RETURN works. The BL instruction is used like this:

7D00 BL @NM (Branches and links to the sub
routine starting at the memory
location labeled NM)

7D04 BL @>7BC0 (Branches and links to the sub
routine starting at memory loca
tion >7BC0)

When using BL, the memory location with the instruction
immediately following that containing the BL instruction is
placed in register 11. To return from a subroutine, then, all
you have to do is branch to the value stored in Rll:
7FC0 B *R11 (Branches to the address stored in

Rll, returning to the main
program)

Thus control returns to the main program, specifically to the
instruction following the call to the subroutine. This method of
returning from a subroutine is very helpful because the RT
(ReTurn) instruction in the Editor/Assembler is not available in
the Line-by-Line Assembler. Fortunately, B *R11 does the same
thing as RT.

In the following example, the CALL CLEAR routine is im
plemented as a subroutine labeled CR. Each time the screen
has to be cleared in a program, you'd just branch and link
(BL) to this routine.

7D30 BL @CR (Screen has to be cleared. Branch
and link to the routine at CR)

7F80 CR CLRRO

7F82 LI Rl,>2000

7F86 LP BLWP @>6024
7F8A INC RO

7F8C CI R0,768

7F90

7F92

52

JLTLP
B*R11

(Screen clearing subroutine be
gins. Load RO with zero)
(Load Rl with the ASCII code for
the blank, >20)
(Print the blank on the screen)
(Increase printing position)
(Has last printing position been
passed?)
(No. Return to printing loop)
(Yes. Clearing routine finished.
Return to instruction following the
subroutine call by branching to
the memory location stored in
Rll)

J

"%fHj|i»

tHltf'i'

fan^i

L* Using NOP
This convenient instruction helps you prepare your programs

lm for later editing. The NOP (No OPeration) instruction leaves
one or more blank memory locations which the computer ig-

La nores as it continues to the next assembled instruction. This
allows you to later correct errors in your program by adding

L« instructions in those free memory addresses.
Consider the following example, where memory location

>8374 should have been cleared for the program to work cor
rectly. Luckily, some locations were left open just in case.
7D00 LI R5,4
7D04 NOP

7D06 NOP

7D08 NOP

7D0A BLWP @>6020

Thanks to the free memory locations, you can correct the er
ror, so that the program lines read:
7D00 AORG >7D04

7D04 CLR @>8374
7D06 END

Memory location >7D08 will still be free to add some other
missing two-byte instruction if necessary.

Memory locations containing machine language transla
tions of the NOP instruction are ignored by the Assembler.
You should use NOP whenever you feel something might
have to be added to the program later on.

(It's wise to leave some NOP instructions when you are
^ jumping to a label not yet defined with one of the jump
, instructions, because it may end up that when the label is fi-
*"" nally defined, that it's beyond the 256-byte limit of the
r instruction. If there are no NOP instructions after or before the
'**' jump, you won't be able to change it to a B(Branch) instruc-
r tion, because it uses two bytes more than the jump
" instructions.

, The next example jumps to the label NT, which is beyond
*— range when defined, causing an *R-ERROR*:
i 7D00 LI R2,5
•" 7D04 CI R2,5
r 7D08 JEQNT

53

Umju'iiii

5
a IWJflumi

7F60 NT CLRR2

7D08 *R-ERROR* *J

The *R-ERROR* message is caused by the jump (JEQ)
instruction trying to transfer control to NT, which is too far
away. The free locations left after the jump will let you correct
the mistake, replacing the jump instruction with a branch
instruction:

7D0A NOP

7D0C NOP
7D0E RN (program continues)

7F62 AORG >7D08
7D08 JNERN
7D0A B@NT
7D0E END

The error has been corrected by inverting the jump, replacing
it with a branch instruction, as you saw demonstrated in
Chapter 3.

Copying Registers: MOV and MOVB Instructions
Many times you'll need to copy the value from one register to
another register or memory location, or from a memory ad
dress to another address or register. In these cases, youTl need
the MOV (MOVe word) and MOVB (MOVe Byte) instructions.

The MOV (MOVe word) instruction makes a copy of the
word value in the source operand, placing it in the destination
operand (refer to the short definition of source and destination
operands in Chapter 3).

7D00 MOV R3,R4 (Place the word found in R3 in
R4, leaving R3 unchanged)

7D02 MOV R4,@>7E00 (Place the word found in R4 into
>7E00)

7D06 MOV @>7D24,R5 (Place the word found in location
>7D24 in R5)

The MOVB (MOVe Byte) instruction works in much the
same way, but instead operates only with the left (most
significant) bytes of the words.
7D00 MOVB R7,R2 (Copy the left byte of R7 into the

left byte of R2. The right byte of
R2 and the word in R7 remain
unchanged)

^ 7D02 MOVB *R2+,@>7EF2 (Copy the left byte of the
word found in the address stored

: - in R2 and place it in the left byte
*— of the word in >7EF2. The value
r in R2 is increased by one byte)
1" 7D04 MOVB @>7EF2,*R8 (Copy the left byte of the word

in >7EF2 into the left byte of the
Lw address stored in R8)

Saving Memory: Fewer Labels
Every time you use a label in your program, you're consuming
four bytes of valuable memory. Though labels are convenient
and easy to use, they should be avoided whenever possible.

When you create a label, it's added to the Symbol Table,
which starts at location >7CD8. When you select the NEW
option of the Assembler, you're placed at the default memory
address of >7D00. Starting your program there will leave
space in the Symbol Table for nine labels. If you use more
than this, the table will overwrite the beginning of your
program.

According to the number of labels you're using, you can
decide where to start the program. Count the number of labels
you're planning to use, and add one (because the computer
adds a null entry as the last entry of the table). Multiply this
number by four, because each entry in the Symbol Table occu
pies four bytes. Convert the answer to hexadecimal so you can
add it to the location where the Symbol Table begins—this
will give you the exact place in memory to start your assembly
language program.

Assume your program will have 14 labels. The calculation
to find the first free address for your program would be:
(14 + 1) X 4 = 60 (decimal)

r 60 = >3C (hexadecimal)
"*"" >7CD8 + >003C = >7D14

j Location >7D14 is where you should start your program.
If your program will have only three labels, the calcula-

j tion would be:

(3 + 1) X 4 = 16

>7CD8 + >0010 = >7CE8

L* So start your program at >7CE8.
Labels use up a lot of memory and can be avoided in sev-

L* eral ways. cc

lidibpmi

Chapter k

• Do not use the EQU directive. Instead of giving a memory ^J
location or routine a label, branch to it directly. The first ex
ample shows how the code would be written with a label; ^J
the second example illustrates avoiding a label.
1. 7D00 N3 EQU>6034 J

7D00 BLWP @N3

2. 7D00 BLWP@>6034 iJ
• These two program segments have exactly the same result,

but the second avoids using memory for the Symbol Table.
• If you know where you're going to place a subroutine, in

stead of branching to a label and assigning it later, branch
directly to the starting memory address of the routine.
1. 7D00 BL@CC

7EF8 CC CLRRO

7D00 BL @>7EF8

7EF8 CLR RO

Again, the second example avoids using a label.
>The same method can be used with the jump and branch
instructions:

Jump

1. 7D00 JMPZ5

7D50 Z5 LI R7,5

2. 7D00 JMP >7D50 (No @ is needed)

taifteJ

7D50 LI R7,5 ^j

56 taafci

Branch

1. 7D00

7E50

2. 7D00

B@PQ

PQ CLRR1

B @>7E50

7E50 CLR Rl

• You can also refer directly to a memory location when using
a DATA table or text if you know where it is, or will be, in
memory.

1. 7D00 LIR0,300
7D04 LI R1,TX
7D08 LI R2,5
7D0C BLWP @>6028

7F30 TX TEXTXABEL'

7D00 LI R0,300
7D04 LI R1,>7F30
7D08 LI R2,5
7D0C BLWP @>6028

7F30 TEXT TABEL'

Both these program segments display the word LABEL on
the screen, but the second uses no label.

• The Assembler predefines the dollar symbol ($) to mean "the
current memory location." This is a great help when your
program is jumping around in memory without using labels.
For instance, these two instructions mean the same thing.
1. 7D00 JMP$
2. 7D00 NQ JMPNQ

The first example means to jump to the current memory
location, which happens to be >7D00. The second, which
also creates an endless loop, does the same, but it uses a
label.

57

To jump three words (six bytes) forward in memory, you _]
could write:

7D00 JMP $+6 (Control passes to >7D06, cal- J
culated by adding six bytes to
>7D00) }

To jump two words (four bytes) back in memory, you
would subtract four bytes from the current memory location. «J
7D0A JMP $-4 (Control passes to >7D06)

Executing Your Program
When you've finished writing an assembly language program,
there are three ways to execute it. The first and most immedi
ate method is to END the program, exit the Assembler, select
EASY BUG and use the E (Execute) command, followed by the
hexadecimal address where your program begins. This is the
method you've used to execute the example programs so far.

The second way is to add the name and position of your
program to the REF/DEF Table (Table of REFerences and
DEFinitions) and execute the program like the LINES
demonstration program, using the RUN option of the Mini
Memory menu. (You'll see how to add the name and position
to your program in just a moment.)

The third method also requires the name and starting po
sition of the program added to the REF/DEF Table. To call the
program from BASIC, you must use the CALL LINK sub
routine with the following syntax:
CALL LINK ("program name")

where program name is the name of the program as added in
the REF/DEF Table. Care must be taken when linking BASIC
and assembly language programs. Read Chapter 7 before try- **i
ing to link your own programs.

To test the three execution methods just mentioned, load *®*i
the LINES program from tape. To execute it from EASY BUG
with the E (Execute) command, type: wJ
? E7D9E (>7D9E is where LINES begins)

To run LINES from the Mini Memory menu, choose (2)
RUN and when the PROGRAM NAME? message appears,
type LINES and press ENTER.

To run LINES with the BASIC CALL LINK statement, se- ^
lect (1) TI BASIC from the module's title screen and then type,

58

ti%»%<

fc^spai

liijeSgifl

ti—a)

Chapter

in immediate mode (in other words, without line numbers):
CALL LINK ("LINES") and press ENTER.

Adding Program Name and Position
Adding the name and position of your program to the
REF/DEF Table, so that you can run it from Mini Memory or
from BASIC, is relatively simple.

The REF/DEF Table starts at >7FFF and grows "back
wards" toward >7000. That means it occupies the last portion
of RAM memory in the module. Each entry is only eight bytes
long—thus several program names can be added to the table.
The programname uses six bytes of memory and the starting
address uses two.

When you load the Assembler, the entry for the NEW op
tion of the Assembler occupies addresses >7FF8 to >7FFF. The
OLD option occupies addresses >7FF0 to >7FF7. LINES has
its name and starting address from >7FEF to >7FE8.

You can add the name and position of your program
before the entry for LINES (from >7FEF to >7FE8), or use the
entry for LINES directly since your program will overwrite
part or all of it anyway. Of course, your program must not be
longer than the place where you will add the name and po
sition of it in the table, or you'll overwrite your own program.

Two memory addresses tell you the First Free Address of
the Module (FFAM) and the Last Free Address of the Module
(LFAM). >701C contains the FFAM (first free address after
your program is finished) and >701E holds the LFAM (the
place in memory where your program name and position are
loaded).

To check this, load LINES from tape and choose the NEW
option of the Assembler. Then type:
7D00 045B AORG >701C

to get to FFAM. You'll see:
701C 7FB2

This value (>7FB2) is the FFAM, the first free address
after the program LINES is finished. Press ENTER to get to
the next memory location, >701E, where LFAM is stored. Now
you should see:
7D00 7FE8

59

Chapter

This means that the last free position before the REF/DEF]
Table entry for LINES is >7FE7. The entry for LINES begins ^
in >7FE8.

When you finish writing your program, you must update
these values. Use AORG to get to the correct memory loca
tions and DATA to place the correct values there. Remember
that your program has to leave eight bytes for the name and
starting address of your program. When you have updated the
values in >701C and >701E, you can proceed to add your
program entry to the REF/DEF Table.

The steps to change the FFAM and LFAM are:
• Use AORG to get to >701C, where the FFAM is stored.
• Use DATA to change the value there to the new first free ad

dress after your program is finished.
• Use DATA to change the value in >70IE to the place in the

REF/DEF Table where you'll add the entry for your program.
To use the same entry as for LINES, use >7FE8. For the entry
before LINES, use >7FE0. For each new entry, subtract eight
bytes from the previous one. Check that the place where
you'll make the entry for your program (the value you place in
>701E) is at least seven or more bytes than the value in
>701C, or there won't be a place to add the entry to your
program.

Once you've updated the FFAM and the LFAM addresses
in memory, you can add the name and starting position of
your program to the REF/DEF Table. To do this, use the
AORG Directive to get to the place in the table where you
want to make the entry for your program. (This should be the
same location you earlier stored in >701E.) Once there, use
the TEXT directive to add the program name. The name can
be one to six characters long—if it's shorter than six charac
ters, you must pad the name with blanks. The text you add
with the TEXT directive must be six characters long. Then use
the DATA directive to add the starting position of your pro
gram into memory. If your program starts at >7D30, enter
DATA >7D30. If the program's first instruction is labeled, with
N5 for instance, you could instead use DATA N5.

An Example
It's always easier to understand something if you have an ex
ample in front of you. Let's do just that—we'll write a short

60

1
VWIit'il

Chapter

routine which will print TI-99/4A on the screen, and then
we'll save it in the REF/DEF Table under the name of TI-99.
7D00 LWPI >70B8 (Load memory area for the

registers)

7D04 LI R0,298 (Load screen printing position)
7D08 LI R1,TX (Load position of text in memory)
7D0C LI R2,8 (Length of text: eight bytes)
7D10 BLWP @>6028 (Print text on screen)

7D14 JMP$ (Create endless loop to stop the
program)

7D16 TX TEXT TI-99/4A' (Text to be displayed)

7D1E AORG >701C (Jump to the address with the
FFAM)

701C DATA >7D1E (Set the new FFAM)

701E DATA >7FE0 (Set the new LFAM—where the
entry for the program will be
added to the REF/DEF Table)

7020 AORG >7FE0 (Jump to the location in the table
where you'll add the name and
position of the program)

7FE0 TEXT 'TI-99' (Program name: five characters
plus one blank)

7FE6 DATA >7D00 (Place in memory where the pro
gram begins)

7FE8 END

Now run the program using the RUN option of the Mini Mem
ory menu. You don't need to leave a blank space after TI-99
when prompted for the program name.

This program will not work if it's called from BASIC. The
reason is an existing screen bias discussed in Chapter 7.

More to Come
So far you've learned many of the basics of assembly language
programming. You've been introduced to directives and
instructions, and have even seen how to write and save a sim
ple program. If you're at all confused about anything already
covered, it would be best to go back and look over it again.
We'll be exploring more and more complex techniques of
assembly language programming as we continue.

61

Chapter k

tn^i

In fact, the next chapter will show you how to create pro- ;,
grams to read and control the keyboard and joystick. Almost *"•*
all programs, from spreadsheets to arcade-quality games, use
one or the other to get input from the user. In a short time ^
you'll be able to design subroutines which allow assembly Ian- >
guage speed in reading and using these input devices. ^

^fe^

^^jj

tjffai

62 teula

.]
Chapter
Keyboard and
Joysticks

3

3

g§

Is

All BASIC operations like INPUT, CALL KEY, ACCEPT AT,
and CALL JOYST are executed in assembly language with the
aid of the KSCAN (Keyboard SCAN) utility, which is stored at
location >6020. This routine works in the same way as the
CALL KEY subroutine in BASIC. To perform an INPUT or
ACCEPT AT kind of operation in assembly language, we have
to accept characters or numbers one at a time, checking to see
if they are valid, printing them on the screen if they are, and
storing them somewhere in memory until the code for the EN
TER key is detected, indicating that the operation is complete.
CALL KEY and CALL JOYST operations are also easy to write,
as you'll see in a few moments.

Preparing for the KSCAN Routine
The KSCAN routine needs to know the keyboard device num
ber when it's called, so this value has to be put into memory
before the branch (BLWP) to the KSCAN utility is executed.
The keyboard device number is the same as the key unit in
the BASIC CALL KEY subroutine. A 0 means a standard key
board scan, 1 is used to read joystick 1, and so on. This value
has to be put in the byte at location >8374. To place a 0, just
clear the memory address:
CLR @>8374

To place another value, load it into the left (most signifi
cant) byte of a register and then move that byte into the
corresponding memory location:
LI R7,>0200
MOVB R7,@>8374

The above lines place a 2 (reading joystick number 2) into
byte >8374.

Once this has been done, you can branch to the KSCAN
routine in location >6020 with:

BLWP @>6020

If a key is pressed, its hexadecimal ASCII code is placed in
byte >8375. You can detect whether a key was pressed by
simply checking another byte, the status byte, at location
>837C, just as is done with the status variable in the BASIC
CALL KEY. In BASIC, if the status variable is 0, no key has
been pressed. If it's -1, a key has been pressed. The status
byte doesn't work quite like this. -

Chapter 5

Checking the Status Byte
Before we go on with anything else, we need to make a short
sidetrip. A byte is divided into eight pieces, called bits. These
eight bits, numbered 0 through 7 from left to right (the
convention used by TI), may be either set (contain a 1) or reset
(contain a 0). The following byte has bits 2 and 4 set and the
rest reset:

01234567 Bit number
0 0 10 10 0 0 Condition (set or reset)

The values of each set bit double as you move from right
to left. Bit 7, the bit on the far right, has a value of 1 when it's
set. Bit 6 has a value of 2, bit 5 has a value of 4, and so on,
until bit 0 has a value of 128. It looks like this:
0 1234567 Bit number
128 64 32 16 8 4 2 1 Bit value when set

To get the total value of a byte, simply add together the values
of the bits which are set. The byte above, then, would have a
total value of 40 (32+ 8).

What makes the status byte so important for the KSCAN
routine is that bit number 2 is set if a key is pressed. Other
wise, it's reset. The other bits in that byte don't interest us. By
checking the condition of the second bit in the status byte, you
can know whether a key was pressed. To do this checking,
you'll use the COC (Compare Ones Corresponding) instruc
tion. This instruction compares the bits set in the first operand
to the bits set in the second operand. If all bits set to 1 in the
first operand have a corresponding bit set to 1 in the second
operand, the operands are considered equal. It doesn't have to
be reciprocal. For example, these two bytes are considered
equal by the COC instruction:
First operand byte 10100100
Second operand byte 11101101

All the bits set in the first byte have a corresponding bit set in
the second byte. If the bytes were reversed (the first becomes
the second, the second the first):
First operand byte 11101101
Second operand byte 10100100

the bytes would be considered unequal by the COC instruc
tion because not all the set bits in the first byte have a
corresponding set bit in the second byte.

66

fj0itgj

1

lapri

So how can all this help? If you create a byte with only
the second bit set, like this

00 100000

and compare it to the status byte with the COC instruction,
the bytes will be considered equal if the second bit of the sta
tus byte is set and different if it is reset, regardless of the other
bits. Then you'll know that if the two compared bytes are
equal, a key was pressed. If they're different, no key was
pressed.

This instruction places a byte with only bit 2 set in the
left byte of the memory location labeled MR:
MR DATA >2000

>20 in hexadecimal is 32 in decimal—that's the binary num
ber 00100000—the value needed. The right byte of location
MR was filled with zeros so as not to affect the comparison.

Before we go on to see an example, be assured that noth
ing is amiss if this last section has left you a bit (no pun in
tended) confused. As you start getting used to thinking in
assembly language, you'll understand these explanations much
better. For the time being, it's enough to just understand the
method to perform a KSCAN, not really about why it's done a
certain way.

The labeled memory location with the comparison byte is
usually placed at the end of the program where it won't be
executed as an instruction. Then, when you check whether a
key was pressed in the KSCAN loop, you can clear a register
(to make sure the unused byte of it is set to zero), move the
status byte into the register, and compare it to the labeled
value. Like this:

CLR Rl (Clear Rl to receive status byte)
MOVB @>837C,R1 (Move status byte into left byte of Rl)
COC @MR,R1 (Compare bits set to 1 of the value stored at

MR to the bits set to 1 in Rl)

Then, if the result of the COC indicates that the operands are
equal, a key was pressed. Otherwise, no key was pressed.

Displaying a Message
The next example demonstrates the technique to perform a
KSCAN, checking the status byte with the COC instruction.
Note the way that the KSCAN operation is written. The

67

Chapter 5

following program waits for you to press a key and then dis
plays the message KEY DETECTED on the screen:

Waa^'M

Key Detectoii y§j£si

7D00 LWPI >70B8 (Load memory area for registers)
\f0jjfii

7D04 CLR @>8374 (Clear byte >8374: standard key
board scan)

\ffiffif»*

7D08 LP BLWP @>6020 (Branch to the scanning routine)
7D0C MOVB @>837C,R1 (Move status byte into Rl)
7D10 COC @BT,R1 (Compare set bits of the compari

son value added at the end of the
program, with label BT, to the set
bits of the word in Rl)

7D14 JNELP (The second bit of Rl is not set
and the bytes are considered dif
ferent by the COC instruction: No
key was pressed, so return to loop
LP)

7D16 LT R0,298 (Key was pressed. Load screen po
sition to display the message)

7D1A LI R1,TX (Load position of text in memory)
7D1E LI R2,12 (Load length of text)
7D22 BLWP @>6028 (Display text on the screen)
7D26 B*R11 (Return to EASY BUG)
7D28 BT DATA >2000 (Comparison value for the

KSCAN loop)
7D2A TX TEXT TCEY DETECTED' (Text to be displayed)
7D36 END

Run the program. The message will be printed on the screen
the moment you press any key.

Computer Typewriter
This next example takes further advantage of the KSCAN rou
tine by reading the ASCII value of the key pressed and print
ing the corresponding character on the screen, just as if the
computer were a typewriter. (Certainly not a word processor,
but this is an important part of any word processing program.)

The first part of "Computer Typewriter/' with the key
board reading loop, is the same as "Key Detector," the pre
vious program. However, instead of printing a message when
a key is pressed, Computer Typewriter reads the ASCII of the

68

WMji&i

felB*)

r key pressed and displays the corresponding character on the
screen,, returning to the KSCAN loop for a new keypress.

ll&ajMg) Computer Typewriter

mjjpipd
7D00 LWPI >70B8 (Load memory area for the

registers)

liiiiiiiiay 7D04 CLRRO (Initial screen printing position)
7D06 CLR @>8374 (Clear byte >8374. Standard key

board scan)
7D0A LP BLWP @>6020 (Branch to KSCAN routine)
7D0E MOVB @>837C,R1L(Move the status byte into Rl)
7D12 COC @BT,R1 (Compare both bytes with the

COC instruction)
7D16 JNELP (Bytes different, no key pressed,

return to loop. Else continue
program)

7D18 MOV @>8374,R1 (Key was pressed. Move the byte
with the key's ASCII value [in
>8375] into the least significant
byte of Rl by moving the com
plete word at >8374 over)

7D1C SWPB Rl (For the VSBW routine, the key's
ASCII value must be in the left

byte of Rl, so switch bytes)
7D1E BLWP @>6024 (Write the character to the screen)
7D22 INCRO (Increase printing position)
7D24 CI R0,768 (Has the last screen position been

passed?)
7D28 JLTLP (No. Return to loop for a new key)
7D2A CLRRO (Yes. Reset screen value)

^i^j 7D2C JMPLP (Return to loop for a new key)
7D2E BT DATA >2000 (Comparison value for the

ketoaai KSCAN loop)
7D30 END

When you run this program, each key you press prints on the
screen. Some keys with no printable codes (such as the EN
TER key) will just print as blanks. If the last screen position is
reached, the new characters will begin to overprint the old

69

ones. Here are some characters you might like to see printed
(executing with EASY BUG):
FCTN - 1

FCTN - 2

FCTN - 3

FCTN - 4

FCTN - 7 (Parts of the TI title screen map)
FCTN - 8

FCTN - S

FCTN - D

FCTN - X (The copyright symbol from the computer's title screens)

Note that the character is not printed again if you keep on
pressing the key. This might be a problem with some kinds of
scans, as youTl see later on.

An Assembly Language INPUT
To execute an INPUT operation in assembly language, you
must print each character read and accepted by the KSCAN
loop on the screen, store it in some memory area, and check
to see whether ENTER was pressed to end the input. If it was,
the KSCAN loop ends. If not, the program returns to the loop
for a new key. You should keep track of how many characters
there are in the input value or string.

The next program simulates BASIC'S INPUT (without the
beep sound and flashing cursor), letting you input a string of
characters with no restrictions. It then prints the string be
neath whatever you entered. The loop to read the keyboard is
the same as the previous examples. Each time a key is pressed,
its hexadecimal ASCII code is moved into a register to be
printed on the screen; it's also moved to a memory location
for storage. When the ENTER code is detected, 13 (>0D), the
program ends the KSCAN loop and prints whatever you typed
in. The assembly language routine will be similar to the
BASIC statements:

100 INPUT A$
110 PRINT A$

Assembly Language INPUT

7D00 LWPI >70B8 (Load memory area for registers)
7D04 CLR @>8374 (Clear byte >8374. Standard key

board scan)

70

r "

kmBwl

Uymp

7D08 LI R0,100

y^)
7D0C LI R1,>3F00

t^MgfJ 7D10

7D14

BLWP @>6024
INCT RO

^mmJ

7D16 CLRR7

7D18 LI R9,>7F00

7D1C LP BLWP@>6020

7D20

7D24

MOVB @>837C,R1
COC @>BT,R1

7D28 JNELP

7D2A MOV @>8374,R1

7D2E

7D32

CI Rl,13

JEQCT

7D34 SWPB Rl

7D36 INCR7

7D38

7D3C

BLWP @>6024
MOVB R1,*R9+

7D3E

7D40

INCRO

JMPLP

7D42 CT CIR7,0

Chapter 5

(Load screen position to print the
prompt)
(Load code for the question mark
prompt)
(Print the question mark)
(Prepare the screen position to re
ceive input)
(Prepare a register to store the
number of characters in input)
(Load R9 with the memory area
where the input will be stored)
(Start the KSCAN loop to read the
keyboard)
(Move status byte into Rl)
(Compare Ones Corresponding to
the value in BT)
(If the values are different, no key
has been pressed so return to
loop)
(Move the key pressed into the
least significant byte of Rl. The
left byte is zero because byte
>8374 had been cleared)
(Was ENTER key pressed?)
(Yes. Jump to CT to continue the
program)
(No. Place the keycode in the left
byte of Rl)
(Input has one more character. In
crease character counter in R7)
(Print the character on the screen)
(Store ASCII in memory address
found in R9 and increment this
address by one byte, for the next
character code to be stored)
(Increase screen printing position)
(Return to KSCAN loop for a new
key)
(Start routine when ENTER is
pressed. Check that there is at
least one character to be printed)

71

7D46 JEQLP

7D48 LI R0,164

7D4C LI R1,>7F00

7D50 MOV R7,R2

7D52 BLWP @>6028
7D56 JMP $
7D58 BT DATA>2000

7D5A END

(No character in user's input. Do
not accept the ENTER key and re
turn to the KSCAN loop)
(Load RO with the screen position
to print the input)
(Place in memory where the input
is found, is loaded into Rl)
(Load R2 with the length of the
text. This is the value kept track of
inR7)
(Print input on the screen)
(Endless loop)
(Comparison value for the
KSCAN loop)

It's necessary to check that the input is at least one
character long, for the VMBW routine won't work if the num
ber of bytes to be displayed is zero. Since the program keeps
track of the string length in R7, it can also check whether the
value stored there is zero (>7D42). If it is, the program returns
to the KSCAN loop, ignoring the ENTER keypress.

Limiting the length of the input is also helpful when
displaying the string of characters on the screen with the
VMBW utility. If this value was fixed, and the input was
longer, it would be truncated and the remaining characters ig
nored. If the input was shorter than the number of bytes in
R2, the computer would just read the values in the following
memory locations, whatever they were, and print them on the
screen after the actual input.

When you run the program, a question mark prompt ap
pears at the top of the screen. Type in whatever you want and
press ENTER. Whatever you entered appears below the input.

Repeating Keys
The previous examples are useful when you have to perform
an INPUT operation in assembly language, or in cases when
you want a key to be read only once each time it's pressed. In
other words, programs where you want a key to be detected
continuously, not having to release the key first and then press
it again, will not work with the previous method.

72

bam/

We'll look at a routine which produces a repeating key
stroke shortly. First, however, let's see the nonrepeating ver
sion of this routine.

It moves the plus sign (+) around the screen, leaving a
trail. You guide the + sign with the arrow keys. No screen
limit checks are executed, so don't move the + off the top or
bottom of the screen, or you'll be writing into other memory
areas and the program might crash. This example uses the sta
tus byte checking method to read the keyboard, so you'll have
to press and release a key each time you want the + to move
one space in any direction.

Moving Plus—Single Keystroke

7D00 LWPI >70B8 (Load memory area for registers)
7D04 LI R0,300 (Initial screen printing position)
7D08 CLR @>8374 (Clear byte >8374. Standard key

board scan)
7D0C LP BLWP @>6020 (Branch to KSCAN routine)
7D10 MOVB @>837C,R1. (Move status byte into Rl)
7D14 COC @BT,R1 (Use the COC instruction to com

pare the set bits of the value in BT
to the word in Rl)

7D18 JNELP (If the bytes are different, return
to loop)

7D1A MOV @>8374,R1 (Move the ASCII code of the key
pressed into the right byte of Rl)

7D1E CI Rl,68 (Was the D key pressed?)
7D22 JNE $+6 (No. Jump six bytes forward)
7D24 INCRO (Yes. Move printing position one

right, since right arrow [D] was
pressed)

7D26 JMPPR (Printing position updated. Go to
the printing routine)

7D28 CI Rl,83 (Was the S key pressed?)
7D2C JNE $+6 (No. Jump six bytes forward, to

the next comparison routine)
7D2E DECRO (Key pressed was the left arrow

[S]. Move printing position left
one by decreasing the value in
RO)

7D30 JMPPR (Position updated. Jump to print
ing routine)

73

HMgM

7D32 CI RL69 (Was the E key pressed?) 1

7D36 JNE $+8 (If not, jump four words forward)
7D38 AI R0,-32 (Up arrow [E] pressed. Move the

+ one position up)
IjtBfrfc.i

7D3C JMPPR (Jump to the + printing routine)
Smr"H

7D3E CI Rl,88 (Was the X key pressed?)
7D42 JNE LP (If not, jump back to the KSCAN

loop)
umkl

7D44 AI R0,32 (Down arrow [X] pressed. Move
printing position one down by
adding 32 to the current position)

7D48 PR LIR1,>2B00 (Printing routine. Load Rl with
the code for the +)

7D4C BLWP @>6024 (Print the + sign)
7D50 JMPLP (Jump back to the loop for a new

key)
7D52 BT DATA>2000 (Comparison value for KSCAN

loop)

End the program and execute it. The + sign appears when
you press a key. Try it out—move the symbol around the
screen with the arrow keys.

But this program would be much more efficient if the
symbol would continue moving as long as a key was held
down. Another KSCAN method can be used to do that.

When you want a key to be read continuously, you can
directly check the ASCII value of the key in location >8375
and branch accordingly. If no key was pressed, the value in
>8375 will be >FF. Study the following program, which does
the same thing as the previous example—the only real dif
ference is that it reads the value in location >8375 to perform
the KSCAN loop. (Since this is so much like the previous pro
gram, it's not commented, with one exception.)

Moving Plus—Repeating Keys

7D00 LWPI >70B8

7D04 CLR @>8374
7D08 LI R0,300
7D0C LP BLWP @>6020
7D10 MOV @>8374,R1 (Move ASCII of key pressed to the

right byte of Rl)

74

Wsj^ffi/

7D14 CI Rl,68
W 7Di8 JNE $+6

7D1A INC RO

U* 7D1C JMP DR
7D1E CI Rl,83

L* 7D22 JNE $+6
7D24 DEC RO

L, 7D26 JMP DR
7D28 CI Rl,88
7D2C JNE $+8
7D2E AI R0,32
7D32 JMP DR
7D34 CI Rl,69
7D38 JNE LP
7D3A AI R0,-32
7D3E DR LIR1,>2B00
7D42 BLWP @>6024
7D46 JMP LP
7D48 END

End the program and run it. Be very careful when you press
the arrow keys (hardly touch them). The program has no de
lays and the + sign might move a little faster than expected.
That's part of the magic of assembly language programs—
things move quickly, far more quickly than in BASIC.

No screen limit check is made, so start off by pressing the
left or right arrow keys so the + will not move into other
memory areas. If you wish, you can add a delay loop after the
+ symbol is printed to slow down program execution.

Two Joystick Reading Routines
Now that you know how to read the keyboard for input,
whether it's single keypresses or repeating keys, you have one
of the most important elements of programming available.
After all, what program doesn't take some sort of input from
the user via the keyboard?

How about games? Many games (and even programs that
aren't games) don't use the keyboard, or if they do, use it in
frequently. Instead, most games use a joystick for user input.
How can you read and use joysticks in assembly language?

It's not any more complex than what you've already done.
Joysticks 1 and 2 are read with the KSCAN routine, just as the
keyboard is.

75

Chapter 5

To read joystick 1, you must place a 1 in the byte at loca
tion >8374. To read joystick 2, load a 2 in the same byte.
When you branch to the KSCAN routine, the Y-return of the
joystick (see the User's Reference Guide for details of Y-return
and its companion, X-return) is placed in location >8376 and
the X-return is placed in location >8377. By checking these
values, you can tell in what direction the joystick was moved.
The figure below illustrates the hexadecimal values placed in
both bytes when the joystick is moved in a particular direc
tion. The first number indicates the value placed in >8377 (X-
return) and the second number the value in >8376 (Y-return).

Joystick Values

(>FC>04)

(>FC,>00)

(>FOFC)

(>00,>FC)

(>04,>04)

(>04,>00) Center (joystick not
moved) is (>00,>00)

(>04,>FC)

When the joystick is pushed forwards (to the north), the value
in >8377 would be >00 and the value in >8376 >04. If the
joystick was left centered, the value in both bytes would be
>00. The other directions produce their appropriate values in
these two memory addresses.

Making comparisons for all eight possible directions can
be a tedious task. Oftentimes, programmers, even those who
use assembly language, use only four positions of the joystick.
The top two diagonals can be considered as up or north move
ments, while the bottom diagonals can be considered as down
or south. The two left diagonals can indicate a left or west
movement; the two diagonals on the right would then be right
or east movements. The necessary comparisons are then re
duced to four.

In the first joystick reader example, we'll read just four
directions. In the second sample, however, all eight directions
will be read so you can see how it's done.
76

UMjIiJ.i

Chapter 5

iniaa

kairt

y^gj
Moving Cross
The following example moves an X around the screen in the

y^y
direction you move the joystick. There are no screen limit
checks,, so don't move the X off the top or bottom of the

t^^j
screen.

7D00 LWPI >70B8 (Load memory area for registers)
kayj 7D04 LI R0,300 (Initial screen printing position)

7D08 LI Rl,>0100 (Load joystick number in left byte
ofRl)

7D0C MOVB Rl,@>8374 (Move joystick number into byte
>8374, so joystick 1 will be read
by the KSCAN loop)

7D10 LP BLWP @>6020 (Branch to the KSCAN routine)

7D14 CLRR1 (Clear register where the value in
>8376 will be placed. It's cleared
to insure that its right byte will be
zero in the comparison).

7D16 MOVB @>8376,R1 (Move the value in >8376 [Y-re
turn] into the left byte of Rl)

7D1A CI Rl,>0400 (Is the Y-return >04, meaning the
joystick was moved in one of the
three up directions?)

7D1E JNET1 (If it was not, jump to the second
comparison, starting at TI)

7D20 AI R0,-32 (Joystick moved in one of the up
directions. Move printing position
one up by subtracting 32 from the
current position)

7D24 JMPPG (Position updated. Jump to print
ing routine)

IhbjJ
7D26 TI CI R1,>FC00 (Second comparison. Was joystick

moved in one of the down direc

iigiaaaal

tions—is Y-return >FC?)

7D2A JNET2 (If it wasn't, jump to third

itt^gl

comparison at T2)
7D2C AI R0,32 (Move printing position one down

j by adding 32 to the current
L—n position)

i 7D30 JMPPG (Position updated. Jump to print
|iai,B^ ing routine)

['iriaii
7D32 T2 MOVB @>8377,R1 (Third comparison. Check the X-

return, so move the byte in >8377
into the left byte of Rl)

kmmi 77

Chapter 5
fajiftM^'iii

(j^^

(mMti

7D36 CI Rl,>0400 (Is the X-return >04, meaning the
imMijoystick was moved right?)

7D3A JNET3 (If not, jump to last comparison at 1

T3) tfljffife.iij

7D3C INCRO (Update printing position by add
ing one to current position) fewtfji'l

7D3E JMPPG (Jump to printing routine)
7D40 T3 CI Rl,>FCOO (Last comparison. Was joystick

moved left?)

t<Hfi»J

7D44 JNE LP (If not, return to KSCAN loop be
cause the joystick remained
centered)

7D46 DECRO (Update printing position by add
ing one to current position)

7D48 PG LI R4,3000 (Printing routine. Start delay loop)
7D4C DECR4 (Decrease the value in R4 by one)
7D4E JNE $-2 (If it is not zero, delay loop still

incomplete. Jump back one word
in memory to the DEC
instruction)

7D50 LI Rl,>5800 (Load ASCII code for the X in Rl)
7D54 BLWP @>6024 (Print the X on the screen)
7D58 JMP LP (Return to loop to read the joy

stick once again)
7D5A END

A delay loop was added to the program to slow down execu
tion. For the program to run at different speeds, change the
value stored in R4, which is loaded in memory address
>7D48. (Choose the OLD option of the Assembler, and do not
rewrite the line with the label PG; simply enter 7D48 LI
R4,XXX, where XXX is the new delay you want to use.)

The KSCAN loop is prepared by loading location >8374
with the joystick number (1 in our example). Then the branch
to the KSCAN utility is executed and the value in >8376 (Y-
return) is moved into Rl for checking purposes. If the value is
>04, the joystick was moved up or in one of the up diag
onals—thus the X character is moved up one screen line by
subtracting 32 from its position. If the value returned is >FC,
the joystick was moved in one of the three down directions—
the Xis moved one screen line down by adding 32. If the Y-
return was none of these values, the X-return is checked in
location >8377.

78

WllWtt1

Chapter 5

mftfl

If it's equal to >FC, the X character is moved one position
left. If it's >04, the X moves one position right. Then the pro
gram returns to the main loop to read the joystick once again.

Moving Cross—Reading Diagonals
This program works practically the same as the previous
one—the major exception is that diagonals are also read. The
only addresses commented are those which are additions to
the previous program. The other instructions can be followed
quite simply by referring to the "Moving Cross" program and
its explanations.
7D00 LWPI >70B8

7D04 LI R0,300

7D08 LI Rl,>0100

7D0C MOVB Rl,@>8374
7D10 LP BLWP @>6020
7D14 CLRR1

7D16 MOVB @>8376,R1
7D1A CI Rl,>0400

7D1E JNE CI
7D20 MOVB @>8377,R1

7D24 CI R1,0

7D28 JNE $+8

7D2A AI R0,-32

7D2E JMPDR

7D30 CI Rl,>0400
i,

7D34 JNE $+8

\rMiiimf

7D36 AI R0,-31

[Mumnii

kgi^jjj)
7D3A JMPDR
7D3C AI R0,-33

(Umj

(Joystick moved in one of the
up directions. Check the X-
return to know which one)
(Is the X-return equal to zero?)
(If not, jump eight bytes
forward)

(Was joystick moved diagonally
up and right?)
(If not, jump eight bytes
forward)
(Update printing position to
move the X up one line, then to
the right by one position)

(The only possible position left
for the joystick to have been
moved is up and left, so update
the position to move one line
up and one position left)

79

Chapter 5

7D40 JMP DR
7D42 CI CI R1,>FC00

7D46 JNEC2

7D48 MOVB @>8377,R1

7D4C CI R1,0

7D50 JNE $+8

7D52 AI R0,32

7D56

7D58

JMPDR

CI R1,>FC00

7D5C JNE $+8

7D5E AI R0,31

7D62

7D64

JMPDR
AI R0,33

7D68 JMP DR
7D6A C2 MOVB @>8377,R1

7D6E

7D72

7D74

7D76

7D7E

80

CI R1,>FC00

JNE $+6
DECRO

JNE LP

INCRO

(Was joystick moved in one of
the down directions?)
(If not, jump to the last
comparison)
(Yes. Check the X-return to
know in what down direction
the joystick was moved)
(Was the joystick moved
straight down?)
(If not, jump eight bytes
forward)
(It was. Add 32 to the current
position, to move one screen
line down)

(Was lever moved down and
left?)
(If not, jump forward eight
bytes)
(It was. Update position by
adding 31. Screen position will
be moved one line down and
one space left)

(If lever was not moved down
or down and left, then it was
moved down and right. Update
printing position by adding 33
to the current position)

(If lever was not moved in any
of the up or down directions,
then it was either moved west
or east [left or right]. Move X-
return into Rl to check this)
(Was lever moved left?)
(If not, jump six bytes forward)
(It was. Decrease printing po
sition by one)

(Lever moved right. Update
position)

tittM

Mmou

teaiJ

Ifofjtffei

r

Ifejjjjj^

7D80 DR LI Rl,>5800
BHiil

7D84 BLWP @>6024

IsMWl
7D88 LI R4/3000

7D8C DECR4

Iftf^ft 7D8E JNE $-2
7D90 JMP LP

kany 7D92 END

Chapter S

End the program and run it. If the Xcharacter doesn't move
diagonally, it's probably because you have a stiff joystick.
Many joysticks, primarily the newer ones from TI, seem to
have trouble detecting the diagonals.

Note that when a diagonal movement is detected in the
program, the position is adjusted by adding or subtracting a
value which changes the position one line, then one character
left or right. Also note that Rl is clearedbefore a value is
loaded into it. This is so that we can be sure that the right
byte of Rl is 0. Many times when you're comparing two bytes
with a word instruction, the bytes might actually be equal but
considered different because the right bytes are not the same.
Always try to make sure that the right bytes will be equiva
lent, generally by zeroing out the unused bytes of the word.

81

J

J

Q

J

J.

I

El

LA

Chapter 6
Utilities
Mathematics
and Scrolling

3

- Utilities, Mathemetlcs, ail
u Scrolling

Utilities
You've just seen how to write some of your own assembly
language routines on the TI-99/4A. There are others, how
ever, built-in routines, that are available to you. These ROM
routines can save you considerable time and effort, for they're
already in your computer. You don't have to sit down and
write them. Instead, you can access them directly through
assembly language.

This chapter shows you how to use two of the three util
ity routines, called the Extended Utilities, which in turn call
other routines stored in your TI's ROM and GROM. The three
routines are: GPLLNK (LiNK to GPL routines in GROM),
XMLLNK (LiNK to routines in ROM), and DSRLNK (LiNK to
Device Service Routines). We'll just look at the first two for
now.

You have to be careful when linking to a preprogrammed
routine in ROM or GROM. Make sure you've loaded the cor
rect values in the correct addresses before calling the routine.
Just as important, make sure that it doesn't destroy any mem
ory areas where you've stored values.

Using GROM routines. To branch to a routine in GROM,
use the GPLLNK utility, which is located at memory address
>6018. To execute it, enter:

BLWP @>6018

The GROM routine you want to execute must be specified
with a DATA statement following the call to the subroutine in
GROM. For example, to call the accept tone GROM routine
(which is routine number 34), you would type:
BLWP @>6018
DATA >0034

When a program has to execute sounds, allow automatic
sprite motion, enable the FCTN = (QUIT) key, and so on, you
have to allow program interrupts. This means that the program
will quickly check whether any operation has to be executed,
and if so, do it. It's best to quickly enable interrupts and dis
able them again with the LIMI instruction (Load Interrupt

85

Chapter 6

Mask Immediate), as it's dangerous to allow a program to con
tinue running with the interrupts enabled. That's because if
you access VDP RAM while they are enabled, other values in
VDP will be changed, causing strange effects in your program.
VDP interrupts are disabled by default, so you will first have
to enable them with the instruction LIMI 2, and then disable
them again before accessing VDP RAM with the instruction
LIMI 0. If there is a program segment constantly executed in
your program (most programs have at least one), you can
quickly enable and disable the program interrupts there. That
will be sufficient for the computer to execute any operation
which requires having VDP interrupts enabled. Just add these
two lines in the frequently executed program segment:
LIMI 2

LIMIO

The computer will come across these two instructions, quickly
enable and disable the interrupts, and then continue. In this
way, you don't need to worry whether the interrupts are en
abled or disabled at some obscure point in your program.

GROM routine access. The following program issues an
accept tone when executed. The program will not work when
run with EASY BUG's EXECUTE command, so the name and
position will be added to the REF/DEF Table. Do this when
ever your program will be using routines in GROM and/or
ROM. No special data setup is necessary to call the routine.

Accept Tone

7D00

7D04

7D08

LWPI >70B8

BLWP @>6018
DATA >0034

7D0A LP LIMI 2

7D0E LIMIO

7D12 JMPLP

7D14 AORG >701E

86

(Load memory area for registers)
(Link to GROM routine)
(Number corresponding to the
GROM routine)
(Start loop and allow VDP inter
rupts for the sound to be
generated)
(Disable VDP interrupts)
(Stay in the loop to stop program
execution)

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT 'BEEP ' (Add name and position of the
program to the REF/DEF Table.
Two spaces after the four-
character name)

7FE6 DATA >7D00

7FE8 END

If you change the value of the DATA statement in location
>7D08 to >0036, a bad value sound will be generated.

Another example is the routine to execute the power-up
operation. The following program executes that routine, caus
ing the same effect as pressing FCTN = (QUIT) during the
execution of a BASIC program. As soon as you run the next
program, the computer will reset itself:

FCTN = (QUIT)
7D00 BLWP @>6018 (Execute GROM routine)
7D04 DATA >0020 (Routine to be executed is power-

up routine)
7D06 END (End program—after the power-

up routine is executed, program
execution stops, so it's not nec
essary to stop program with an
endless loop)

End this program and execute it. Remember that the name
and the position of the program had to be added to the
REF/DEF Table, since the program won't run from EASY
BUG. If you've entered the Accept Tone program, just use the
same name to run this new routine—the entry point for both
is location >7D00.

Executing ROM routines. ROM routines can be executed
in the same way as GROM routines. By using the XMLLNK
utility, you can access a ROM routine. All you have to do is
branch to >601C and specify the desired routine with a DATA
statement.

BLWP <g»601C
DATA >1200

(Branch to ROM routine)
(Convert floating-point number to integer
number)

Remember that some memory addresses may be overwritten
when you use a ROM routine. Double-check that those

87

Chapter 6

addresses contain no data necessary to your program. If the
data is needed, move it to some other area. Make sure to load
the correct data into the correct memory addresses.

You have to be quite careful when using mathematical
routines, both in ROM and GROM, as they work with
floating-point values and not with integer values. There is a
routine which resides in ROM, routine number >2300, which
converts an integer value to a floating-point value, but it can't
be used in your program unless you have both the memory
expansion and the Editor/Assembler. You can find more details
of this in Chapter 7.

Using routines in ROM and GROM requires some under
standing of assembly language, so it may be a good idea to
avoid them until you have a firm basis in assembly language
programming. If you're just beginning to use assembly lan
guage, you can always come back to these routines later.

Mathematics in Assembly Language
How about two more assembly language instructions? You'll
undoubtedly find uses for these instructions, for they perform
multiplication (MPY) and division (DIV).

Multiplying two numbers. To multiply two numbers in
assembly language, you can use the MPY (MultiPlY) instruc
tion. This instruction uses two operands; the first may be a
register, a memory address, or a label representing a memory
address, while the second must be a register. Once the mul
tiplication is executed, the answer is placed in the second op
erand (the workspace register) and the next workspace register.
For example:
MPY R3,R4

multiplies the value in R3 by the value in R4 and places the
answer in R4 and R5. If the answer is smaller than >FFFF, it
fits entirely in R5. Otherwise, it uses both R4 and R5 (that's
why two registers are used).

Let's suppose R3 contains a 1 (>0001) and R7 contains a
7 (>0007). If you then enter:
MPY R3,R7

the answer (>0007) is placed in R7 and R8. Because >0007 is
less than >FFFF, the maximum value which can be repre
sented by a memory word, it fits entirely in R8. The value in

88

|Ssg|)

WSjji^t

f R8 is now >0007 and the value in R7 is >0000. R3 remains
unchanged.

i The first operand may also be a memory address:

MPY @>7FA0,R4 (Multiplies the value at location >7FA0 by the
^ value in R4, and places the answer in R4 and

R5)

La Or it can be a memory address with an assigned label:
MPY @NM,R8 (Multiplies the value stored at the address with

label NM by the value in R8, then places the
answer in R8 and R9)

Dividing values. The DIV (DIVide) instruction works
much like MPY. The second operand (two memory words) is
divided by the first operand. The integer result is placed in the
first word of the second operand, the remainder in the second
word of that same second operand.
DIV R3,R7

for instance, divides the value in R7 and R8 by the value in
R3, and then places the integer result in R7. If there's any
remainder, it's put in R8.

If the value you're going to divide (the second operand)
can be represented by just one memory word, and is stored in
R4, for example, don't use R4 in the DIV instruction. Instead,
use R3. You can do this because the second operand is a two-
word memory area (in this case using both registers 3 and 4).
Assume that R3 is loaded with a four and R9 with a nine. R8
must contain a zero so that the value represented by R8 and
R9 can be nine. Then the instruction

DIV R3,R8

; divides the contents in R8 and R9 (>00000009) by the con-
tents in R3 (>0004). The answer is placed in R8 (>0002) with

^ the remainder in R9 (>0001).
You can also divide a value in a pair of registers by the

1 value at a memory address.

DIV @>7B74,R7

*•» divides the value in registers R7 and R8 by the value stored at
location >7B74. The integer result is placed in R7 and the

b* remainder in R8.

Law
89

Chapter 6

Register Shifting
In some cases you can use an easier method to multiply or di
vide. If you want to multiply a value by 2, 4, 8, 16, 32, and so
on, and the result of the multiplication will be less than >FFFF
(65535 in decimal), or if you want to divide a number by 2, 4,
8, 26, 32, you can shift the register to arrive at an integer re
sult (with no remainders). The register shift instructions are
Format V instructions. There are four of them: SLA (Shift Left
Arithmetic), SRA (Shift Right Arithmetic), SRC (Shift Right
Circular), and SRL (Shift Right Logical).

We'll be looking at just two of these instructions for now,
SLA and SRL.

SLA (Shift Left Arithmetic). This instruction moves the
bits in a word a determined number of positions left, filling
the vacant positions with zeros. Imagine the following word
(two bytes with eight bits each) as the content of workspace
register 3:

1000101011101110

If you used the following instruction
SLR R3,3

each bit in the word in R3 would be moved three positions to
the left. Vacant positions are set to zero, so the word in R3
would now be:

0101011101110000

This is useful, because, as you might have realized if you're
familiar with binary, moving each digit of the number one col
umn to the left is the same as multiplying the binary number
by two. Moving each digit two positions to the left is like mul
tiplying the number by four, moving each three places is the
same as multiplying by eight, and so on.

In other words, if you have the binary number 00000101,
which is 5 in decimal (the bit on the far right has a value of 1,
the bit to its left has a value of 2, the next bit to the left has a
value of 4, and so on, until the last bit has a value of 128) and
you shift each digit two positions to the left (giving you
00010100), it's the same as multiplying 5 by 4. The result is
20, the same decimal value as 00010100.

90

fecial

j The following instruction multiplies the value in R7 by

L, SLAR7,4
and leaves the answer stored in R7.

Un Register shifting can also be used for other applications,
such as moving the least significant byte of a word to the po-

hm sition of the most significant byte. This is done simply by
shifting the value in the register eight bits to the left. The dif
ference with the SWPB instruction is that the other byte is set
to zero. For example:
1. LI R7,>B8A5

SLA R7,8
2. LI R7,>B8A5

SWPB R7

The first program segment leaves R7 loaded with >A500,
while the second leaves R7 loaded with >A5B8. For some
applications, the first method will prove more efficient.

SRL (Shift Right Logical). The SRL instruction shifts the
bit of a word a number of positions to the right, filling the va
cant places with zeros. The opposite of SLA, you can use this
instruction to divide a value by 2, 4, 8, 16, and so on. If the
answer to the division is not exact, you'll receive as answer the
integer value of the floating-point result. If you need to know
the remainder, you'll have to use the DIV instruction to per
form the operation.

If R7 is loaded with 32 (00100000), the instruction

SRL R7,3

shifts the bits of the word in R7 three positions to the right,
thus dividing the value in R7 by 8. The integer answer re-

L, mains in R7, so the number would now be 00000100 (or 4 in
decimal).

L* Use these two instructions to multiply and divide when
ever you can—it can greatly simplify your programming work.

Finding the Absolute Value
In many applications, you might need to find the absolute
value of a number. In those cases, the ABS (ABSolute value)
instruction can be used. If a register is loaded with —32, and
the ABS instruction is used, the value in that register is

ii^jjfck

91

changed to 32. Notice that the only change is that the neg- i
ative number becomes positive. However, if the value in the
register is positive, say 32, then it would be left unchanged. i

The number can be loaded in a register or at a memory —
address before its absolute value is calculated.)

ABS R7 (Computes the absolute value of the word
loaded in R7) J

ABS @>7E00 (Computes the absolute value of the word at
>7E00)

ABS @NT (Computes the absolute value of the word
stored at the address with label NT)

Scrolling the Screen
Many times you may find it necessary to scroll the screen.
Games and application programs often use a scrolling screen
to allow the user to see several pages of images or text.

In the example programs you've seen so far, whenever
text has been displayed, it's been much like the DISPLAY AT
statement in Extended BASIC. The screen doesn't scroll.
Screen scrolling—in any of the four directions—can be handy,
and even necessary. How can you program this in assembly
language?

To scroll the screen up, as happens when you use the
PRINT statement in BASIC, you have to read each of the 24
lines on the screen and print it one line further up.

It works like this. Once the text is displayed, the computer
reads the top line and stores it in a reserved memory area.
Then the second line is read and printed where the first line
was. This continues until the last screen line is reached. When
this happens, the first line (remember, it was stored in a re
served memory area) is printed as the bottom line and the se- i
quence starts again. The VMBR (VDP Multiple Byte Read)
utility reads the lines and the VMBW (VDP Multiple Byte
Write) utility prints them again.

This next program prints HELLO on the bottom line of
the screen and scrolls it up to the top. When the first screen ^
line is passed, the scrolling sequence repeats itself. The pro-]
gram is listed here in several parts for clarity.

92

Chapter 6

Lyd

liivyjgfl

l.sa^-l Scroll Up
First of all, the message needs to be displayed:

VjiT8^ 7D00 LWPI >70B8 (Load memory area for registers)

ksmm\

7D04 LI R0,748 (Position onscreen to display the
text)

(s^j

7D08 LI R1,TX (Load position in CPU RAM of
the text to be displayed)

7D0C LI R2,5 (Text is five characters long)
7D10 BLWP @>6028 (Display the text)

liiliptjial

|i»ppip)

Then the program reads the first line and stores it at the mem
ory area labeled Bl:

(Starting position of line to be
read—top line, starting at position
0)
(Place in memory [CPU] where
the line read from VDP RAM will
be stored)
(Line is 32 characters long)
(Read the line into reserved mem
ory area)

7D14 ST CLR RO

7D16

7D1A

7D1E

LI R1,B1

LI R2,32

BLWP @>6030

The next loop reads each of the 23 lines in turn, printing each
one line up:
7D22 LI R0,32

7D26 LI R1,B2

7D2A LI R2,32

7D2E LP BLWP @>6030
7D32 AI R0,-32

7D36 BLWP @>6028
7D3A AI R0,64

7D3E CI R0,768

7D42 JLT LP

(Position where to read the first
line on the screen to be moved—
it's line 2)
(Store it at reserved memory area
labeled B2)
(Line is 32 characters long)
(Read the line)
(Move printing position one line
up to print the line which has just
been read)
(Print the line)
(Move reading position two lines
down, to read the next line which
has to be moved up)
(Past the last line?)
(No. Stay in the scrolling loop)

93

Chapter 6

7D44 LI R0,736

7D48 LI R1,B1

7D4C

7D50

BLWP @>6028
JMPST

7D52 TX TEXT HELLO'

7D58 Bl BSS 32

7D78 B2 BSS 32

7D98 END

(Prepare to print top line at the
bottom)
(Load position in CPU RAM
where this line was stored)
(Print the line on the screen)
(Jump back to restart scrolling
sequence)
(Text to be displayed and scrolled)
(Buffer where to store the top line
when read)
(Buffer where to store each line
when it's moved up)

When you end the program and run it, the HELLO message
prints and scrolls up the screen. If you run your program from
EASY BUG, the E7D00 message will scroll also, along with
whatever else happens to be on the screen.

To scroll the screen down, you just have to invert the op
erations. The following program prints HELLO and scrolls it
down off the bottom of the screen. It reappears at the top and
starts over. To scroll the screen, the program reads and stores
the bottom line in a designated memory area, reads line 23
and prints it as line 24, reads line 22 and prints it as line 23,
and so on until the first line has been printed as the second
line. Then the bottom line (read at the beginning) is reprinted
as the first line.

Scroll Down
First of all, the text has to be displayed:
7D00 LWPI >70B8 (Memory area for registers)
7D04 LI R0,748 (Position on the screen where to

display the text)
7D08 LI R1,TX (Position in CPU RAM where the

text is stored)
7D0C LI R2,5 (Length of the text to be

displayed)
7D10 BLWP @>6028 (Display the text)

94

<aMj;a

t'fWfi

ia$^

lasftspL

Li-ap^

I'ii^ffH

Chapter 6

Then the program reads the bottom line into a reserved area
in CPU memory:
7D14 ST LI R0,736

7D18 LI R1,B1

7D1C LI R2,32

7D20 BLWP @>6030

7D24 LI RO/704

7D28 LI R1,B2

7D2C TB BLWP @>6030
7D30 AI R0,32

7D34 BLWP @>6028
7D38 CI R0,32

7D3C JEQNQ
7D3E AI R0,-64

7D42 JMPTB

7D44 NQ CLRRO

7D46 LI R1,B1

7D4A BLWP @>6028
7D4E JMP ST
7D50 TX TEXT HELLO'

7D56 Bl BSS 32

7D76 B2 BSS 32

7D96 END

(Screen position to start reading
the bottom line)
(Position in CPU RAM to store
the read line)
(Length of the line to be read)
(Read the last line from the
screen)
(Prepare to read line 23)
(Prepare the memory area to store
the line)
(Read the line from memory)
(Move one line down to print in
its new position)
(Print the line in its new position)
(Printed line one in the position of
line two? Loop finished?)
(If so, jump to label NQ)
(No, move up two lines to read
the next line which has to be
moved one position down)
(Jump back to the reading and
printing loop)
(Prepare to write the last line,
read before, in the first line po
sition of the screen)
(Load the line to be displayed,
stored in Bl)
(Print it on the screen)
(Start the scrolling routine again)
(Text to be displayed and scrolled)
(Memory area reserved for the
first line read)
(Memory area reserved to store
each line as it is moved one po
sition up)

95

Chapter S

The last section of the program reads each line, except the last
one, and prints it one line further down. Finally, it prints line
24 in the position of the first line and restarts the scrolling.

You can also scroll the screen horizontally by moving the
columns from side to side one at a time. To scroll the screen,
the last column (column 31) is moved into a reserved memory
area and stored. Then column 30 is moved to column 31's po
sition, column 29 to column 30's position, and so on, until the
first column (column 0) has been moved to column l's po
sition. Finally, column 31 is placed in column O's position. The
VSBR utility, with a loop, reads each character one at a time,
so execution is considerably slower when compared to vertical
scrolling. Reprinting the columns is done with the VSBW util
ity and a loop.

The following program fills the screen with text in BASIC
and then branches to the assembly language routine to scroll
the entire screen to the right. Whatever goes off the right edge
reappears on the left.

Scroll Right
First of all, column 31 is read and stored

7D00 LWPI >70B8

7D04 SS LI R6,31

7D08 MOV R6,R0

7D0A LI R7,B1

7D0E LP BLWP @>602C

7D12 MOVB R1,*R7+

7D14

7D18

7D1C

AI R0,32

CI R0,768

JLTLP

(Load memory area for registers)
(Initial screen reading position)
(Move it to R0 for the VSBR
utility)
(Load memory area to store the
bytes read from VDP RAM)
(Start loop. Read first byte from
column 31)
(Move it to the reserved memory
area and increase the storage po
sition by one byte for the next
character to be read)
(Move down one position to read
the next character)
(Still within screen limits?)
(If so, return to reading loop)

With this loop, the last column has been read and stored in
the CPU memory area labeled Bl. Now another loop reads
each column on the screen, except the last one, and prints it

96

Clapto 6
kmsmt,

I

mmml

iffjitttl

one column further to the right until only the first screen col
umn remains to be updated.
7D1E LI R6,30

7D22 LI R8,B2

7D26 MOV R6,R0

7D28 L2 BLWP @>602C
7D2C MOVB R1/R8+

7D2E

7D32

7D36

7D38

AI R0,32

CI R0,768

JLTL2

INCR6

7D3A MOV R6,R0

7D3C LI R8,B2

7D40 L3 MOVB *R8+,R1

I ""mf
7D42

7D46

BLWP @>6024
AI R0,32

7D4A

7D4E

CI R0,768

JLTL3

fawwk
7D50 CI R6,l

Imstml

7D54 JEQED

ti«^M»l

^gjH)

(Prepare to read column 30)
(Prepare CPU memory area to
store the read columns)
(Move screen position to start
reading the bytes to R0 for the
VSBR utility)
(Read the byte from the screen)
(Store it in the memory area in R8
and increase the storage position
by one byte for the next character
to be stored)
(Move reading position one line
down)
(Still within screen limits?)
(If so, stay in reading loop and re
turn to L2 to read the next
character)
(Column read. Move one position
to the right to print that same col
umn just read)
(Move initial printing position to
R0 for the VSBW utility)
(Load the storage position of the
column to be printed)
(Start printing loop. Move byte to
be printed into Rl for the VSBW
utility and increase the pointer to
the next byte to be read in R8)
(Print the byte)
(Move printing position one line
down)
(Within screen limits?)
(If so, column still not printed
completely. Return to printing
loop)
(Has the second column [column
1] been printed?)
(It has. Jump to end routine to
print column 31 in column O's
position)

97

Chapter 6

7D56 DECT R6 (It has not. Decrease by two the
value in R6 to read the new
column)

7D58 LI R8,B2 (Load the buffer area to store the
new read column)

7D5C MOV R6,R0 (Move column read position into
RO for the VSBR utility)

7D5E JMPL2 (Jump back to read a new column)

Now that all columns have been moved one position to
the right, all you're missing is to print column 31 in column
O's position. That's done with the following lines:
7D60 ED LIR7,B1

7D64 CLRRO

7D66 NQ MOVB *R7+,R1

7D68 BLWP @>6024
7D6C AI R0,32

7D70 CI R0,768
7D74 JLT NQ
7D76 JMP SS

7D78 Bl BSS 24

7D90 B2 BSS 24

7DA8 AORG >701E

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT 'SCROLL'

7FE6 DATA >7D00

7FE8 END

98

(Load the position in CPU mem
ory where the column was stored)
(Position to start printing the
column)
(Move the byte to be printed from
the area where the column was
stored to Rl for the VSBW utility.
Increase the pointer to the next
byte to be printed from R7)
(Print the character on the screen)
(Move printing position one line
down)
(Within screen limits?)
(If so, stay in the printing loop)
(All columns moved. Restart
scrolling sequence)
(Memory area reserved for the ini
tial column read)
(Memory area reserved to store
each column on the screen as it's
moved one position right)

(Add program name and position
to the REF/DEF Table)

L, End the program, FCTN = (QUIT), and select TI BASIC. Enter
the following lines and run the BASIC program. Everything on

^ the screen will be scrolled to the right.
100 CALL CLEAR

L, 110 FOR A = 1 TO 20
120 PRINT "HOME COMPUTER"

U, 130 NEXT A
140 CALL LINK ("SCROLL")

k\>Mm\

kiimmi

i'Viift

99

J

Chapter
BASIC and
Assembly
anguage:

A Powerful Team

•J

J

Li

3

m

m

kaMil

[mmi

lliiiy^.l

Being able to link BASIC and assembly language programs
greatly increases your programming power, giving you the
chance to use the simplicity of BASIC with the speed and
versatility of assembly language. Linking programs also gives
you several ways to save the memory available for assembly
language programs. You can also pass string and numeric vari
ables between the programs.

Placing Values Directly in Memory
Before discussing the CALL LINK BASIC subroutine, we'll first
see how to write and read values in memory with different
BASIC statements.

Two such statements let you place integer values in CPU
or VDP memory: CALL LOAD (load values into CPU RAM)
and CALL POKEV (load values into VDP RAM).

CALL LOAD is used when one or more values have to
be placed in CPU memory. The statement must specify a
memory location (0-65535) and the value to be placed in that
byte (0-255). For instance, to load the value of 3 at location
8350, you would enter:
CALL LOAD(8350,3)

If the address where you have to load the value is greater
than 32767 (>7FFF), you must subtract 65536 from it and load
the value at this negative address. For example, to load a
value of 12 at address >9000:

>9000 = 36864 (decimal), so 36864-65536 = -28672
CALL LOAD(-28672,12)

Several values can be loaded simultaneously, starting at the
address specified in the CALL LOAD. The following loads the
values of 15, 139, and 252 in addresses 32000, 32001, and
32002 respectively:
CALL LOAD(32000,15,139,252)

You can also load values starting at one address and val
ues starting at another address in one CALL LOAD statement
by separating the different address and value groups with an
empty string (""). For example, to load address 28532 with the

103

Cfeapter 7

ifMMiiia

value of 73 and addresses 16538, 16539, and 16540 with val
ues 15, 19, and 251, you would use: <•*»
CALLLOAD(28532,73,"",16538,15,19,251)

You can also use CALL LOAD to pass values to an
assembly language subroutine. These values must be between J
0 and 255. For greater values, the best and fastest technique
will be to pass the values using the CALL LINK subroutine. If J
you wanted to load a value of 227 (>E3) into register 7, you
could first place it in location >7E00 (or any unused memory
location) from BASIC, and then in assembly language, move
the value at location >7E00 (32256 in decimal) into that same
register. In BASIC, you'd enter:
CALL LOAD(32256,0,227)

Note that the above loads the left byte of the word at >7E00
with 0 and the right byte with 227. Thus the value in >7E00
(and >7E01) would be >00E3. In assembly language you can
then move the value in >7E00 to R7 with:

MOV <g»7E00,R7

You can also directly place the value in a register. As
mentioned previously, all the registers store their values in a
certain area of CPU RAM. If you indicated that this area
should start at location >70B8, R0 would store its values in
locations >70B8 and >70B9, Rl its values in >70BA and
>70BB, and so on.

To load a value, in Rl for instance, you could load it di
rectly into the corresponding memory addresses. If Rl must be
loaded with >0003, you'd load >70BA (28858) with 0 and
>70BB (28859) with 3:
CALL LOAD(28858,0,3)

In this way you can load values up to >FFFF. For ex- *"
ample, to load the value >0745 into R0, you would load >07
(7) into >70B8 (28856) and >45 (69) into >70B9 (28857) with: —
CALL LOAD(28856,7,69) J

CALL POKEV. Values can be loaded to VDP memory in
the same way by using the CALL POKEV statement. The ad- *«j
dress must be between 0 and 16383 and the value between 0
and 255. The same conditions which apply for CALL LOAD ***
apply to the CALL POKEV instruction. With CALL POKEV,
you can change values in the color tables in VDP RAM, «i

IiBwiM

character definitions, and in the sprite table. Values can be
^ read or written to the screen, but the value of 96 must be

added to the ASCII code of each character written to, or read
^ from, the screen. That's due to an existing screen bias, dis-
r cussed in another section.
La* For example, the following statement prints HELLO on
r the screen, starting at position 300:

CALL POKEV(300,168,165,172,172,175)

Letter

H

E

L

L

O

Note: The CALL LOAD subroutine is also used to load an ob
ject file (assembled program) into CPU RAM. If the memory
expansion is connected, the first program is loaded at starting
address >A000. If the expansion is not attached, the program
is loaded into the Mini Memory module at starting address
>7118. Other programs are loaded sequentially after the first.
To load the assembled program named HELLO into CPU
memory from disk drive 1, for instance, you would use:
CALL LOAD("DSKl.HELLO")

Reading Values from Memory
Just as you can write integer values to specified memory ad
dresses in CPU and VDP RAM, so you can read these values
from BASIC.

L« To read values from CPU memory, you must use BASIC'S
CALL PEEK subroutine. As with previous subroutines, you

Us can read the value from one address.

CALL PEEK(30567,X)

The above assigns the value stored at address 30567 to the
r BASIC variable X. Or you can read values from several ad

dresses starting with a specified location.
L- CALL PEEK(28768,X,Y,Z)

assigns the values stored at locations 28768, 28769, and 28770
J- to the variables X, Y, and Z respectively. You can also read

ASCII Code Code + 96

72 168

69 165

76 172

76 172

79 175

y^ti

105

groups of DATA values starting at different addresses. For
instance,

CALL PEEK(300,A,B,"",28769,RT)

assigns the value stored at location 300 to variable A, the
value at 301 to B and the value at 28769 to RT. The "" sepa
rates nonconsecutive addresses. (Remember that to read values
from addresses greater than 32767, you must first subtract
65536 to arrive at the correct negative address.)

To read values from VDP memory, you must use the
PEEKV subroutine. The memory address from which a value
is read must be between 0 and 16383. The values have a value
of 96 added due to screen bias. See details of the CALL
POKEV statement discussed earlier.

Initializing Memory
You can clear the 4K RAM of memory in the Mini Memory
cartridge in much the same way as the *RE-INITIALIZE* op
tion of the Mini Memory menu. This technique is useful be
cause it allows you to clear, from BASIC, the memory in the
module and in the memory expansion if it's attached. How
ever, when this instruction is used, all DATA in memory is
lost.

The memory is initialized by simply typing CALL INIT in
command mode or in a program.

Using CALL LINK
Because you can link programs, you can write parts of your
program—those which require speed, for instance—in assem
bly language. Other sections of your program you can write in
BASIC. Putting the two together isn't hard.

You can write as much assembly language as you wish—
you're really only limited by the amount of RAM in the Mini
Memory. Character definitions, color assignments, title screens,
and game options use up a lot of memory, so it's probably
best to write these in BASIC. These operations generally don't
affect the program's speed anyway.

To link a BASIC and assembly language program, you'll
use the BASIC subroutine CALL LINK. The assembly lan
guage program you're calling must be loaded in Mini Memory
RAM or in the memory expansion unit and must have its
name and position added to the REF/DEF Table (as you saw
in Chapter 4). You can call several different assembly lan-

106

mm4

; guage routines, as long as each one has its own entry in the
^ REF/DEF Table.
j When your BASIC program is ready to link with the

assembly language program, enter:
^ CALL LINK("program name")

where program name is one to six characters long and is the
Utf name of the program as listed in the REF/DEF Table. Execu

tion continues automatically when the assembly language pro
gram is called. If the program is not found in the table, the
error message PROGRAM NOT FOUND will appear.

When control is passed to the assembly language pro
gram, the memory area for the registers is automatically
loaded, starting at location >70B8. You don't need to load this
area with the LWPI instruction. (This is also true for the Mini
Memory RUN option, but not for EASY BUG's EXECUTE
command.)

The BASIC program address where execution will return
once the assembly language routine is finished (assuming you
want the program to return to BASIC) is stored in register 11,
so care must be taken not to lose this value. If you need to use
Rll for your own program (if you're using subroutines in your
assembly language program, Rll is used to store the return
address of the subroutines), you can move the value in Rll to
another register or memory location and store it until you're
ready to return to BASIC. It could be done like this:
MOV Rll/R14

or

MOV R11,@>7F00

When you're ready to return to BASIC, you must branch
• to the value stored in Rll (or whatever other register you put

the return address in). If you stored the return address at a
^ memory address, move it back to any register. To branch to

the value stored in a register, precede it by an asterisk. For ex-
I*"* ample, to branch back to BASIC, assuming the return address

is loaded in Rll, you would enter:
B*R11

[^ Or if the return address was stored in location >7F00:
MOV @>7F00,R5

iiMaffiJ

107

'Mir

When this instruction is encountered, control is immedi- 1
ately transferred back to the BASIC program, specifically to
the statement following the subroutine call.]

Linking Dangers
You'll have to keep certain things in mind when you're link
ing programs. First of all, before returning from the assembly]
language program to BASIC, you must clear the status byte
(byte >837C). If this isn't done, a false error might be reported
upon return to BASIC. Clear this byte with:
CLR @>837C

Another problem is an existing screen bias of >60 (96 in deci
mal). This means that whatever character is read from the
screen or displayed on the screen must have the value of >60
added to its hexadecimal ASCII code. This screen bias is also
present when using the POKEV and PEEKV subprograms to
read and display values on the screen from BASIC. You must
always add 96 decimal to the ASCII code of the character you
are printing or reading from the screen.

For instance, suppose you want to display the at (@) sym
bol on the screen in position 300. The assembly language pro
gram will be called from BASIC. First you would have to add
the screen bias value of >60 to the code of the @ symbol
(>40) and then display it on the screen. The code would then
be >A0 (>40 + >60) and the program segment to display the
symbol would be:
LI R0,300
LI R1,>A000
BLWP @>6024

The same thing happens when you read a value from the]
screen in an assembly language program called from BASIC. If ***
you read a code from the screen and want to check if the j
character was the exclamation mark (!), with ASCII code >21,
you would compare the value read from the screen to >81
(>21 + >60). -*

CLRR1

BLWP @>602C
CI Rl,>8100 •"

If you're writing an assembly language program to be fc
called from BASIC and you want to display text on the screen,

ty^jj

\l^^

do not use the TEXT directive to place the string in memory.
First make a list of the ASCII codes of each character in the
string (spaces included) and add 96 (>60) to each one. Then
add the string to memory with the DATA directive.
Letter ASCII Code Code + 96

H 72 168

E 69 165

L 76 172

L 76 172

O 79 175

To place the text in memory:
DATA 168, 165,172, 172,175

Remember that now the text will be displayed correctly on the
screen only if the assembly language program is called from
BASIC.

To finish, if you have enabled VDP interrupts with the
LIMI 2 instruction to move sprites, generate sounds, and so
on, disable them with the LIMI 0 instruction before you return
to BASIC, unless you need them enabled for a specific reason
(like simultaneous sound and BASIC program execution).

Unking Two Programs
The following program defines character 128 in BASIC, sets its
color, and then links to assembly language. The assembly lan
guage program displays the character on the screen and then
returns to BASIC where the message READY—RETURNED
FROM ASSEMBLY LANGUAGE displays and program execu
tion stops with an endless loop. The only purpose of this pro
gram is to clarify the linking technique. First enter the
assembly language program, then the BASIC program.

Linking—Assembly Language Listing

7D00

7D04

7D08

LI R0,300

LI R1,>E000

BLWP @>6024

(Load character printing position)
(Load ASCII code of character to
be printed [plus >60 to solve the
screen bias], since the program
will be called from BASIC)
(Print the byte on the screen)

109

Chapter 7

7D0C CLR @>837C

7D10 B*R11

7D12 AORG >701E

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT UNKS '

7EE6 DATA >7D00

7FE8 END

(Clear the status byte to avoid
false errors reported upon return
to BASIC)
(Return to BASIC)

(Add name and starting address of
the assembly language program to
the REF/DEF Table)

Linking—BASIC Listing

100 CALL CLEAR

110 CALL CHAR (128,"FF818181818181FF")
120 CALL COLOR (13,5,1)
130 CALL LINK ("LINKS")
140 PRINT "READY—RETURNED FROM ASSEMBLY
LANGUAGE"

150 GOTO 150

Now run the BASIC program. A blue square will appear in
screen position 300, indicating that control was successfully
passed to the assembly language program. The message
READY—RETURNED FROM ASSEMBLY LANGUAGE dis
plays when control is returned to the BASIC program.

You can see that all character definitions you'll use in
your program can be written in BASIC, thus avoiding using
your valuable assembly language CPU RAM to program the
definitions.

Passing Data Between Programs
The LINK subroutine not only lets you combine the advantage
of both BASIC and assembly language, it also allows you to
pass data between programs. You may pass the values of nu
meric or string variables, direct numbers, elements from an ar
ray, or an entire array if necessary. Up to 15 variables may be
passed between programs with the LINK subroutine. In the
BASIC program you only have to specify the variables you
want to use for the data transfer in the CALL LINK statement.
In the assembly language program, you have to use one of

110

J

1

r

l^ five TI BASIC interface utilities to retrieve a number or string
in the assembly language program, pass a number or string to

j BASIC from assembly language, or report an error. The util-
ities are: NUMREF, NUMASG, STTREF, STRASG, and ERR.

! They'll be discussed after the following section.

r. Changing Floating-Point and Integer Values
Any number which is transferred between an assembly lan
guage and a BASIC program must be in floating-point format.
Since most values in your program will be in integer form,
you can use two ROM routines to change integer values to
floating-point values and vice versa.

To change a floating-point value to an integer value, the
value must be loaded starting at address >834A. Then you
simply branch to the ROM routine in >601C, indicating the
routine to be executed with a DATA statement following the
branch. To convert a floating-point value to an integer value,
use DATA >1200. The integer result (>FFFF maximum) will
be placed at location >834A. For example, assuming the
floating-point value you want to change starts at >834A, the
following program segment would leave its equivalent integer
value loaded in register 7:
BLWP @>601C
DATA >1200
MOV @>834A,R7

To change an integer value to a floating-point value, you
also use a ROM routine (not the one stated in the Mini Mem
ory manual, with DATA >2300, as this routine only works
with the Editor/Assembler cartridge). A routine which executes
the desired conversion is located in the ROM of the Mini

L. Memory cartridge and is accessed by branching to a ROM rou
tine with DATA >7200. In other words, if your integer value

U is located at >834A, all you have to do is branch to execute
the ROM routine

U> BLWP @>601C
[and follow the branch with the value of >7200.

DATA >7200

La» The floating-point equivalent of the integer value will
then be placed starting at >834A. For instance, if the integer

La value is located at >834A, the program segment:

lmn$
111

BLWP @>601C 1
DATA >7200 J

leaves the floating-point equivalent starting at >834A. In the „J
examples which follow, these routines will be used when val
ues are transferred between BASIC and assembly language J
programs. Remember also that for all mathematical routines in
ROM and GROM which require floating-point values, you'll ^J
have to convert your integer values to floating-point values
first.

Numeric Values from BASIC to Assembly Language
To pass a numeric value from a BASIC program to an assem
bly language program, you must use the NUMREF (get nu
meric parameter) utility stored in >6044. In the BASIC
program, the variables you want to use to pass data are listed
after the program name.
CALL LINK ("program name",S,TR,NS,H$)

S is considered the first variable, TR the second, NS the third,
and H$ the fourth. If you need to know the value of a vari
able, say NS, use the NUMREF utility in assembly language
because it's a numeric variable.

The assembly language program is prepared to receive the
value of NS like this: The NUMREF utility reads the value of
a specified variable and places the value in floating-point for
mat starting at location >834A. The routine requires RO loaded
with the array element number if the variable belongs to an
array (otherwise just place a zero), and Rl loaded with the
variable's position in the list of variables in the LINK sub
program. To read the value of NS, for instance, you'd load a 3
in Rl, since NS is the third variable. Then, by branching to
>6044, the value of the variable is placed starting at address md
>834A. If you need the value in integer format, use the ROM
routine to convert the floating-point value to an integer value. *•*

The following program will call an assembly language
program from BASIC and pass the value of a numeric variable *^
to it. In assembly language, this value will be read and then
converted from a floating-point value to an integer value. The ***
integer value will then be assigned to R5, as well as placed at
>7F00, and control will then return to BASIC. ^

110 ItoMMhl

kaif^a)

Numeric Values—Assembly Language

7D00 CLR RO

7D04 LI Rl,l

7D08 BLWP @>6044

7D0C BLWP @>601C

7D10 DATA >1200

7D12 MOV @834A,@>7F00

7D18 MOV @>834A,R5
7D1C CLR @>837C

7D20 B *R11

7D22 AORG >701E

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT 'NUMVAL'

7FE6 DATA >7D00

7FE8 END

(Variable does not belong to an
array)
(Use first variable of the vari
able list in the LINK statement)
(Get numeric parameter
routine)
(Convert floating-point to
integer)
(ROM routine to be executed)
(Move the integer result in
>834A to memory address
>7F00)
(Place the integer value in R5)
(Clear the status byte to avoid
false errors upon return to
BASIC)
(Return to BASIC)

(Add name and position of the
program to the REF/DEF
Table)

Numeric Values—BASIC Program

100 X=18
110 CALL LINK("NUMVAL",X)
120 END

When you run the BASIC program, the value of 18 will be as
signed to variable X and control transferred to the assembly
language program. The assembly language program will read
the value of X and place its value in floating-point format
starting at >834A. The value could occupy up to eight bytes,
starting at that address.

This value is then converted to an integer value and
placed in the memory word at >834A. It's moved to register 5
and to address >7F00. The status byte is cleared to avoid false

113

Chapter 7

t^paiijj

errors and control returned to BASIC, where the program i
ends. **"

To know whether the value of Xwas read correctly in the i
assembly language program, you can check the value stored in
>7F00. It should be >0012. To do this, FCTN = (QUIT) and ,
select EASY BUG. Skip the title screen by pressing any key ^
and use the M command to display CPU memory by typing i
M7F00 and pressing ENTER. CPU memory addresses starting "^
at address >7F00 will be displayed. The first value you will
see is >00, the left byte of the word stored at >7F00. Press
ENTER again and you'll see the value of > 12. In other words,
>7F00 has been loaded with >0012 (18), which is the value
you passed from BASIC.

Passing Values Back to BASIC
The variable list in the BASIC CALL LINK statement can also
be used to retrieve values from the assembly language pro
gram. Any variable in the list can be used. The assembly lan
guage program assigns the values to determined variables
from the list in the CALL LINK statement. The same variable
can be used to pass a value to assembly language and then to
retrieve a new value.

In the assembly language program, the variable chosen is
assigned its value. This is done with the NUMASG (NUMeric
ASsiGnment) utility at location >6040. The routine requires
RO loaded with the array element number if the variable be
longs to an array (if not, just clear the register), and Rl loaded
with the variable position the value will be assigned. The
value assigned to the variable must be loaded starting at loca
tion >834A and in floating-point format. If you've been work
ing with integer values, convert the integer number into
floating-point format first. Once this is done, and RO and Rl ^
have been loaded with the appropriate values, you can branch ,
to execute the NUMASG routine in >6040. When you return "
to BASIC, the variable will have the value assigned by the
assembly language program. ^

The following example program links to an assembly lan
guage program, where the value 15736 will be assigned to the *•*
variable XI. Control will then pass to the BASIC program
which will print the value on the screen. Enter the assembly ^
language listing first.

114

[••jfc^

r

Passing Back to BASIC—Assembly Language

IfftiMtiml

7D00 LI R7,15736 (Load value to be passed to
BASIC)

7D04 MOV R7,@>834A (Place it at >834A)
7D08 BLWP @>601C (Branch to ROM routine)

|yj^j

7D0C DATA >7200 (Convert the integer value to
floating-point format for the value
transfer to BASIC. The converted

value will be stored starting at
>834A, ready for the NUMASG
routine)

7D0E CLRRO (Variable does not belong to an
array)

7D10 LI Rl,l (Assign the value to the first vari
able of the variable list in the
BASIC CALL LINK statement)

7D14 BLWP @>6040 (Execute the numeric assignment
routine, thus assigning the value
to the BASIC variable)

7D18 CLR @>837C (Clear the status byte so no false
errors will be reported upon re
turn to BASIC)

7D1C B*R11 (Return to BASIC)
7D1E AORG >701E (Add the name and position of

the program to the REF/DEF
Table)

ilWi^jiji

i,$&&

701E

7020

7FE0

7FE6

7FE8

DATA >7FE0

AORG >7FE0

TEXT 'TEST

DATA >7D00

END

Passing Back to BASIC—BASIC Program

100 CALL CLEAR

110 CALL LINK ("TEST",X1)
120 PRINT XI

130 END

When you run the BASIC program, the screen will be cleared
and control transferred to the assembly language program.
The latter will assign the value of 15736 to the variable XI in
the CALL LINK statement. Control will then return to BASIC,

115

Chapter 7

ffiWi't

where the value of the variable will be printed so you can see
that it was transferred correctly. **J

Operating with Strings J
Strings can be passed between programs quite easily, but you n
must remember the existing screen bias of >60 (96 in decimal) md.
when passing a string to assembly language. When a string is
passed from assembly language to BASIC, there's no screen *J
bias to worry about.

First of all, you'll see how to pass a string from BASIC to
assembly language and how to handle problems arising from
the existing screen bias. Then we'll look at passing strings
from assembly language to BASIC.

BASIC to assembly language. The BASIC statement used
to pass a string is the same as for that used to pass numeric
variables. Just include the string variable(s) in the variable list
found in the CALL LINK statement.

CALL UNKCprogram name",G,H$)

where H$ is the string variable.
To retrieve the string in the assembly language program,

you must use the STRREF (get string parameter) utility in loca
tion >604C to place the string in an assigned memory area.
Before executing this routine, you first need to prepare a mem
ory area to store the string which will be read. You can do this
with the BSS directive. STRREF also requires RO to be loaded
with the array element number if the string belongs to an ar
ray, or zero if it does not. Load Rl with the position of the
variable you want to use in the CALL LINK statement, just as
in previous examples. Register 2 must be loaded with the
starting address in CPU memory where you want the string to
be stored. The first byte of this memory area must contain the j
string's maximum length. If the string doesn't fit into the as
signed area (determined by this first byte of the reserved area, i
also called the length byte), an error is reported. Assuming the
string does fit, it's located and the length byte is updated to re- i
fleet the correct length of the string. This is useful because you
can then know the exact length of the string you have in _•
memory—something needed to later display the text or string.

The following program passes a string from BASIC to ,
assembly language. Note that once the string has been stored
in memory, it cannot be displayed using the VMBW (VDP]

X 1 O tijpijsani}

|;gaM

[•<sm$l

\l<m$f>l

Multiple Byte Write) routine because the screen bias value of
>60 has to be added to the ASCII code of each character
before it's displayed. In the example program, a loop reads the
characters from the string one by one, adds >60 to the ASCII
code of each character, and then displays it on the screen us
ing the VSBW (VDP Single Byte Write) utility.

diyf^ String Passing—Assembly Language

7D00 CLR RO

7D02 LI Rl,l

7D06 LI R2,RM

7D0A LI R5,>1200

7D0E MOVB R5,@RM

7D12 BLWP @>604C

^MpjtSjiJ
7D16 LI R0,296

bmsfflAi

7D1A MOVB *R2+,R5

Laad

asaftfl

wmfflbil 7D1C SWPB R5

(Clear RO. The string does not be
long to an array)
(Use the first variable of the vari
able list in the CALL LINK

statement)
(String has to be placed at the re
served CPU memory area labeled
RM which will be added to the
end of the program)
(Prepare to write the maximum
string length to the first byte of
the reserved memory area. The
maximum string length will be 18
[>12] characters)
(Move the maximum length byte
to the first byte of the reserved
memory area)
(Place the string in the prepared
memory area with string param
eter routine. The length byte is
updated if the string fits in the
memory area. Otherwise, an error
message is reported)
(Load screen position where the
text must be displayed)
(Move the new length byte to R5
to keep track of how many
characters have been displayed.
Add one to the pointer to the
screen in memory, so the next
character loaded will be the first
one from the string)
(Place the length of the string in
the right byte of R5)

117

7D1E LT MOVB *R2+,R1

7D20 AI Rl,>6000

7D24

7D28

BLWP @>6024
INCRO

7D2A DECR5

7D2C JNELT

7D2E CLR @>837C

7D32

7D34

7D48

701E

7020

B *R11

RM BSS20

AORG >701E

DATA >7FE0

AORG >7FE0

7FE0

7FE6

7FE8

TEXT 'STRING'

DATA >7D00

END

(Start loop to display the string.
Move the ASCII code of the first
character to be printed into the
left byte of Rl, increasing R2 to
point to the next character in the
string at the same time)
(Add the screen bias value of >60
to the ASCII code of the
character)
(Print the character on the screen)
(Increase the screen printing
position)
(Decrease number of characters
left to display)
(If there still are characters left to
display, stay in the loop)
(Clear the status byte, preparing
to return to BASIC)
(Return to BASIC)
(Reserve memory for the string)

(Add the name and position of
the program to the REF/DEF
Table)

Using the VSBW utility to display the string, you can correct
the ASCII code of each character and also control the screen
position, which is updated after each character is displayed.

String Passing—BASIC Program
100 CALL CLEAR

110 R$="ASSEMBLY LANGUAGE"
120 CALL LINK("STRING",R$)
130 GOTO 130

When you run the BASIC program, the string will immedi
ately be displayed. If the string you transfer to the assembly
language program is shorter, it will still be displayed correctly
on the screen. If the string is longer than 18 characters, the

118

ta|Mflio

)'{^wj

|,iii^^

iimtwi

value of the length byte, the message STRING TRUNCATED
IN 120 will appear and program execution will be interrupted.

Passing a String Back to BASIC
This problem is much simpler than the previous one because
you don't need to worry about screen bias. To pass a string
back to BASIC, use the STRASG (STRing ASsiGnment) utility
at location >6048. The routine requires that the string is
loaded in a predetermined CPU memory area and that the
first byte of that area contains the length of the string. RO
must then be loaded with the array element number if the
string is to be assigned to an array element, or zero if not. Rl
must contain the list number of the variable you want to as
sign the string to, and R2 must contain the starting address of
the string in CPU RAM. When you branch to the STRASG
routine, the string will be assigned to the desired variable.

The next program links a BASIC program to an assembly
language program, where a string will be assigned to a vari
able. The string passed from assembly language will then be
printed on the screen in BASIC.

Back to

7D00

7D04

7D08

7D0A

7D0E

7D12

7D16

7D1A

7D1C

BASIC—Assembly Language

LI R5,>0C00 (Load the length of the string in
the left byte of R5. The string is
12 characters long)
(Write the length byte to the first
byte of the reserved memory area)
(String is not an array element)
(Assign the string to the first vari
able in the variable list)
(The string is located starting at
RM)
(Execute the string assignment
routine)
(Clear the status byte to avoid
false errors upon return to BASIC)
(Return to BASIC)

RM TEXT ' HELLO THERE ' (String to be displayed.
The first byte is left blank because
it will be replaced by the length
byte)

MOVB R5,@RM

CLRRO

LI Rl,l

LI R2,RM

BLWP @>6048

CLR @>837C

B*R11

119

7D2A AORG >701E

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT TRYOUT'

7FE6 DATA >7D00

7FE8 END

(Add name and position of the
assembly language program to the
REF/DEF Table)

Back to BASIC—BASIC Program
100 CALL CLEAR

110 CALL LINK('TRYOUT",VR$)
120 PRINT VR$
130 GOTO 130

When you run the BASIC program, the message HELLO
THERE will be printed on the screen.

Generating Error Messages
You can report a TI BASIC error upon return from the assem
bly language program by using the ERR (ERRor reporting)
utility stored in >6050. This utility is used by simply loading
the desired error code in the left byte of R0 and branching to
execute the routine. The list of error codes you can issue is
found on page 55 of the Mini Memory manual.

For example, to report a NUMBER TOO BIG error (code
>14) upon return to BASIC from assembly language, you
would use something like the following program.

7D00 LI R0,>1400

7D04 BLWP @>6050

7D08

7D0C

CLR @>837C
B*R11

7D0E

701E

7020

AORG >701E

DATA >7FE0

AORG>7FE0

120

(Load code of the error to be re
ported in the left byte of R0)
(Execute the error-reporting rou
tine in >6050)
(Clear the status byte)
(Return to BASIC, where the error
will be reported)

(Add name and position of the
program to the REF/DEF Table)

^gjj

IjgHm

fey 1

taf«4

7FE0 TEXT TRROR'

7FE6 DATA >7D00

7FE8 END

Chapter 7

For the error to be reported, simply link to the assembly lan
guage program. When the program control is passed back to
BASIC, the error message is reported. You can type in direct
mode:

CALL LINK ("ERROR") and press ENTER

Displaying Strings
The following assembly language program allows you to dis
play a string at a specified screen position. No screen limit
checks are executed, so if the message printed goes off the
screen, it will be printed in other VDP memory areas. Also,
passing a null string to the assembly language program will
make the program run incorrectly and cause the computer to
lock up (it won't respond to keypresses). You'll have to turn
the computer off and on again to regain control.

Since there's a screen bias of >60, the program has to
read each character, add >60 to its hexadecimal ASCII code,
and then display it on the screen.

Displaying a String—An Example

7D00 CLRRO

7D02 LI Rl,l

7D06 BLWP @>6044

ijt&^

HifW

7D0A

7D0E

BLWP @>601C
DATA >1200

ii'iiiam^
7D10 MOV @>834A,R7

jBjjjja^
7D14 LI Rl,2

1

iMtoflj^

7D18 LI R2,RS

paaia

(Clear RO. Variable does not be
long to an array)
(Read the value of the first vari
able in the variable list [the screen
position to display the string])
(Read the value of the numeric
variable and store it in floating
point format starting at >834A)
(Execute ROM routine)
(Convert floating-point value to
integer value)
(Place the text screen position in
register seven)
(Prepare to read the string vari
able, second variable in the vari
able list)
(The string will be placed at the
CPU RAM area assigned label RS)

121

Chapter 7

7D1C LI R5,>8000

7D20 MOVB R5,@RS

7D24 BLWP @>604C
7D28 MOV R7,R0

7D2A CLR R4

7D2C MOVB *R2+,R4

7D2E SWPB R4

7D30 LP MOVB *R2+,R1

7D32 AI Rl,>6000

7D36 BLWP @>6024
7D3A INCRO

7D3C DECR4

7D3E JNELP

7D40 CLR @>837C

7D44 B *R11

7D46 RS BSS 128

7DC6 AORG 701E

701E DATA 7FE0

7020 AORG 7FE0

7FE0 TEXT UTIL

122

(Prepare to write the maximum
string length allowed to the first
byte of the reserved memory area.
The maximum string length will
be >80, or 128 in decimal)
(The string will be placed at the
CPU RAM area assigned RS)
(Read the string from BASIC)
(Prepare to print the string. Move
the string printing position to RO
for the VSBW utility)
(Prepare R4 to keep track of the
characters left to be displayed in
the string)
(Move the length byte to R4, and
increase the pointer to the string
to the first character of the string)
(Place the length byte in the right
byte of R4)
(Move the ASCII code of the
character to be printed to the left
byte of Rl and increase the
pointer in R2 to the next character
of the string)
(Add the screen bias value to the
ASCII code of the character)
(Display the character)
(Increase printing position)
(Decrease number of bytes left to
be displayed)
(If there are still characters left,
stay in the printing loop)
(String displayed. Clear the status
byte to avoid false errors upon re
turn to BASIC)
(Return to BASIC)
(Memory area for the string)

(Add name and position of the
program to the REF/DEF Table)

toaqpi

(feglg

(

tMawd

7FE6

7FE8

DATA 7D00

END

Ctapto 7

To use the assembly language text-displaying program, use the
following BASIC statement:
CALL LINK('aJTIL",X,M$)

where X is the screen position from where to display the
string (0-767) and M$ is the string to be displayed (the maxi
mum length of the string is 128 characters). For example:
CALL LINK("UTIL",100,"HI THERE")

displays the message HI THERE on the fourth line of the
screen.

An Assembly Language Square Root
The following BASIC program asks for a decimal value and
then links to the assembly language program which calculates
the square root of the number. It uses the SQR floating-point
GROM routine. The answer is then returned to BASIC and
printed. The assembly language routine executes the same as
the BASIC statement SQR and is really only here as a
programming example.

Square Root—Assembly Language Routine

7D00 CLRRO (Value does not belong to an
array)

7D02 LI Rl,l (Read the value of the first vari
able in the CALL LINK variable
list)

7D06 BLWP @>6044 (Execute the NUMREF routine)

7D0A BLWP @>6018 (Execute GROM routine)

7D0E DATA >0026 (Find the square root of the
floating-point value stored starting
at >834A)

7D10 BLWP @>6040 (Return the new value to the same
variable in the CALL LINK
statement)

7D14 CLR @>837C (Clear the status byte)
7D18 B*R11 (Return to BASIC)

7D1A

701E

AORG >701E

DATA >7FE0

123

7020 AORG >7FE0

7FE0 TEXT'SQROOT' (Add name and position of the <-*
program to the REF/DEF Table)

7FE6 DATA >7D00

7FE8 END "*

You can find the square root of a value with the following
BASIC lines:

100 CALL CLEAR

110 INPUT A

120 CALL LINK("SQROOT",A)
130 PRINT A

140 GOTO 110

Or directly, in command mode, with:
A=24

CALL LINK("SQROOT",A)
PRINT A

which calculates the square root of 24 and prints it on the
screen.

124

frHff'f

Cha ter 8
Character
Definitions and
olor han es

J

a

3.

y

y

3

Chntster Millions art Mor

I Character definitions and colors are some of the most im-
portant parts of programming games. They can be just as im-

j portant when you're writing application programs, or
programming utilities, for you may want to use custom
characters or snappy color changes to make your program
look more professional. Using character definitions and chang
ing colors can be done from BASIC, but they can be done
much faster, and even easier, if you're using assembly
language.

Where Are the Definitions?
In assembly language, you can change the definition of
characters just as you can in BASIC. All redefined characters
remain redefined as long as the program is working. Only
when the program stops and the computer returns to com
mand mode do some revert to their original shapes. Charac
ters with ASCII values greater than 127 remain defined when
a program stops running, just as in BASIC. In assembly lan
guage, other characters, such as 30 (cursor) and 31 (edge
character), remain defined when a program stops running.
This means that you can give the cursor and border character
the shape you like and let them remain that way until you
type NEW. YouTl be seeing this in an example program.

All characters must have their definitions stored some
where in memory. The first step is to know where those defi
nitions are stored.

A character is described by 16 hexadecimal digits, as you
know from BASIC. Since each byte contains two digits, you
need eight bytes for a character. Remember that you use the
DATA directive to place the definition into memory. For ex
ample, to define a solid box character, you would enter:
DATA >FFFF/>FFFF/>FFFF,>FFFF

This places the 16-digit definition in memory. Eight bytes
of memory are used. The definition is still not assigned to any
character, however. All character definitions are kept in a ta
ble, located in VDP memory. If a program runs entirely in
assembly language, this table is in one place in memory. If the

127

Chapter;

program is called from BASIC, the table is in another area of
memory.

Let's suppose a program is written entirely in assembly
language and is executed either with the Mini Memory RUN
option or EASY BUG's EXECUTE option. If that's the case,
then the table is located from >0800 to >0FFF (see Appendix
E, page 75, of the Mini Memory manual), though the default
character set goes from >0900 to >0AFF. In other words, be
cause each character definition occupies eight bytes:
Character 32 occupies memory addresses >0900 through >0907
Character 33 occupies memory addresses >0908 through >090F
Character 34 occupies memory addresses >0910 through >0917

If you want to change the definition of a character in the pro
gram, character 35 for instance, you would load the definition
somewhere in CPU memory, outside program execution. To
assign the definition to a character, you'd use the VMBW rou
tine to write the definition to VDP RAM (which is where the
table is located).

You first need to find the place in VDP RAM where the
character is to go. Character 35 occupies bytes >0918 through
>091F in the table. You would then have a program segment
which looks like this:

LI R0,>0918 (Location in VDP RAM to startwriting the
character definition)

LI R1,DF (Location in CPU RAM of the new definition)
LI R2,8 (Number of bytes to write to VDP RAM. The

definition is eight bytes long)
BLWP @>6028 (Write bytes to the Character Table in VDP

RAM)

DF DATA >FF81,>8100,>0081,>81FF (Character definition)
When executed, this program segment assigns the definition
loaded at label DF to character 35.

All characters are defined in this way. But you don't need
to write 16 routines to define 16 characters, if they're consec
utive characters. For example, to define characters 35, 36, and
37, just load RO with the starting location of the definitions.

128

tmriiP

teiii'r

Chapter 8

Because you're starting with character 35, you'll load RO with
>0918. In Rl you'll load the position in text where the charac
ter definitions are located. Remember these definitions must
be consecutive and in order. That is, the first definition in
memory will be assigned to character 35, the second to charac
ter 36, and the third to character 37.

In R2 you then load the number of bytes to write to VDP
RAM. There are three characters being defined simultaneously.
That means you'll need 24 (3 X 8) bytes.

LI R0,>0918 (Location in VDP memory of the definition of
the first character [35])

LI R1,DF (Location in CPU RAM of the new definitions)
LI R2,24 (Number of bytes to write to the Character

Table)
BLWP @>6028 (Write definitions to the table)

DF DATA >FF81,>8100,>0081,>81FF (Character definitions)
DATA >0101,>0101,>0101
DATA >0101/>0404,>7575/>C2C2/>C2C2

The same technique applies if an assembly language pro
gram is to be called from BASIC. The only difference is the
location of the Character Table in VDP memory. The table is
located from >0400 to >05FF (1024 to 1535 decimal). See
Appendix F, page 76, in the Mini Memory manual. This means
that:

Character 32 occupies bytes >0400 through >0407
Character 33 occupies bytes >0408 through >040F
Character 34 occupies bytes >0410 through >0417

To change the definition of a character, work out its po
sition in the table and use the methods already described.

Changing Cursor
This example uses all you've just seen. It's an assembly lan
guage program that, when called from BASIC, changes the
definition of the cursor (ASCII code 30). (Remember that the
cursor does not return to its original definition when a

129

Chapter 8

program stops execution. That makes this program possible.)
Because the program is called from BASIC, the definition

of character 32 is located from >0400 to >0407. Character 31
then occupies bytes >03F8 through >03FF, and character 30
(the cursor), bytes >03F0 through >03F7. Your redefined
cursor has to be written into VDP RAM starting at >03F0. The
following program redefines the cursor, making it look like a
small, empty box.

Redefined Character

7D00 LI R0,>03F0 (Location in VDP memory of the
definition for character 30)

7D04 LI R1,CS (Position in CPU memory where
the new definition is added. Label
CS used)

7D08 LI R2,8 (Number of bytes in the
definition)

7D0C BLWP @>6028 (Write definition to the Character
Table)

7D10 CLR @>837C (Clear status byte to avoid false
errors upon returning to BASIC)

7D14 B*R11 (Return to BASIC)
7D16 CS DATA >FF81,>8181,>8181,>81FF (Character

definition)
7D1E AORG >701E

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT 'CURSOR' (Add name and position of the
program in the REF/DEF Table
for the program to be called from
BASIC)

7FE6 DATA >7D00

7FE8 END

After adding the program's name and position to the
REF/DEF Table, end it and press FCTN = (QUIT). Select TI
BASIC. In command mode type:
CALL LINK("CURSOR") and press ENTER

Look at the cursor now. If you want a different shape,
simply return to the Assembler and change the definition
added with label CS to the definition you want. The cursor

130

Chapter 8

(^ will return to its normal state when you turn off the computer,
enter FCTN = (QUIT), or type NEW.

j^ Because the Character Table is in VDP memory, you can
also change definitions directly with BASIC'S CALL POKEV

l^, statement, which lets you POKE values directly into VDP
RAM. To change the cursor definition, you'd do the following

l^ procedure.
The cursor definition starts at address >03F0 in VDP

RAM, which is 1008 in decimal. That's where you'll POKE the
new cursor definition. If you wanted to assign the following
definition to the cursor,

FF818181818181FF

you'd first divide the digits forming the definition into groups
of two, in this way:
FF-81-81-81-81-81-81-FF

Then find the decimal equivalent of each hexadecimal two-
digit group:
>FF = 255

>81 = 129

>81 = 129
>81 = 129

>81 = 129

>81 = 129
>81 = 129
>FF = 255

Finally, POKE the decimal values into memory:
CALLPOKEV(1008,255,129,129,129,129,129,129,255)

By typing this one statement in command mode and pressing
ENTER, the cursor definition will be changed.

: Changing Colors
Colors are changed much like character definitions. Data for
the colors of each character set (a character set is a group of

c— eight sequential characters) is kept in the Color Table, which is
also located in VDP memory. If the program is called from

*** BASIC, this table is in one memory area. However, if it's an
, assembly language program, the table is found someplace else.

Look in Appendix E in your Mini Memory manual and you'll
see that the Color Table is found from location >0380 to loca-

^ tion >03FF (896-1023 in decimal) when the program works

131

entirely in assembly language. If the program is called from
BASIC, the table starts at >0300 (768).

The color for each character set is represented by just one
byte. The left digit of the byte represents the foreground color
and the right digit the background color. See Appendix D for a
list of hexadecimal color codes.

For example, the byte >18 represents a character set with
the foreground color black (>1) and background color medium
red (>8).

Changing the color of a character set in assembly lan
guage involves finding the set's byte in the Color Table in
VDP RAM and writing the byte with the desired color values.

Remember that if you're working entirely in assembly
language, the color table starts at >0380. Thus:
Location >0380 corresponds to characters 0 through 7
Location >0381 corresponds to characters 8 through 15
Location >0382 corresponds to characters 16 through 23

If you have an assembly language program called from
BASIC, the Color Table starts at location >0300. This makes
things a bit trickier. The bytes corresponding to the various
character sets are:

Character set 1 (characters 32-39) is controlled by byte >0310
Character set 2 (characters 40-47) is controlled by byte >0311

To change the color of characters 56 through 63 (character
set 4) in an assembly language program, you'd use a segment
something like:
LI R0,>0387 (Byte corresponding to character set 4 in the

color table)
LI R1,>EF00 (Color byte to be written, in the left byte of Rl.

The color is gray [>E] on white [>F])
BLWP @>6024 (Write byte to the table)

You can also assign colors to several character sets
simultaneously by using the VMBW utility. The following pro
gram, when called from BASIC, will change the color of
character sets 5-8, and make each one a different color

132

combination. Remember that these example programs can also
be written directly with BASIC subroutines like CALL POKEV.
We're creating them here so that you can get an idea of how
the Color Table and Character Table are changed.

Color Changing
This program is called from BASIC, so the Color Table starts
at location >0300. Location >0310 controls the color of
character set 1, so:

Character set 5 is controlled by location >0314
Character set 6 is controlled by location >0315
Character set 7 is controlled by location >0316
Character set 8 is controlled by location >0317

The colors to be assigned will be stored in the memory area
with label CL and will be used with the VMBW utility.

Colors

7D00 LI R0,>0314

7D04 LI R1,CL

7D08 LI R2,4

7D0C BLWP @>6028

7D10 CLR @>837C

7D14 B*R11

7D16 CL DATA >C8E1,>4F63

7D1A AORG >701E

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT 'COLOR '

7FE6 DATA >7D00

7FE8 END

(Address in the table where the
first character set to have its
color changed is located)
(Address in memory where the
color bytes to be assigned are
found)
(Number of character sets to
have their color changed)
(Write color bytes to the Color
Table in VDP)
(Clear status byte to avoid false
errors upon return to BASIC)
(Return to BASIC)
(Color bytes)

(Add name and position of pro
gram to the REF/DEF Table)

133

Chapter

End the program, press FCTN = (QUIT), and select TI BASIC.
Type in and run the following program:
100 CALL CLEAR

110 CALL LINK ("COLOR")
120 PRINT "A - I - R - Z"

130 GOTO 130

The assembly language program will make the characters in
character set 5 dark green on medium red (>C8); those in
character set 6 will be gray on black (>E1); character set 7 will
appear as dark blue on white (>4F); and those in character set
8 will change to dark red on light green (>63). The BASIC
program links to the assembly language program, which
changes the colors of the sets and then returns to BASIC. A
character from each of the sets is printed so you can see that
the color has been changed. An endless loop stops the pro
gram so that the colors will not revert to their original shades.

Changing Screen Color
The screen color is changed in an entirely different way.
Screen color is also represented by one byte. To turn the
screen completely black (>1), for instance, you'd use byte >11
(black on black).

So far you've been writing data to VDP RAM, an area of
memory which holds information for the VDP (Video Display
Processor) chip. However, there are also special control loca
tions within the VDP chip hardware, called the VDP write-only
registers (see Chapter 11). These registers control a number of
display functions, including screen color. The register which
controls the screen color is VDP register 7.

To change the value in one of the VDP registers, you
must use a system utility routine, VWTR (VDP Write to Reg
ister), which was mentioned in Chapter 2. To use this routine,
R0 (the register 0 you've been using all along) must have its
left byte loaded with the VDP register number you want to
change (in this case, >07) and the right byte loaded with the
value you want to put in that register (>11 for this example,
to turn the screen black). Then you just branch to the VWTR
routine at location >6034.

134

r So, to make the screen completely black, you'd use a pro-
gram segment like this:

[^ LI R0,>0711 (Load left byte of RO with the VDP register
number you want to change [>07] and the right

r byte of RO with the color [>11])
BLWP @>6034 (Execute VDP write to register routine in

>6034)

To make the screen medium red (>8), you would:
LI R0,>0788
BLWP @>6034

Bouncing Ball
You may not have realized it, but you have all the elements
available to create a simple assembly language game. You've
seen how to change character definitions, so you can create al
most any kind of figure you want. You've even seen how to
change colors, both of the character sets and of the screen.

The following program creates this simple game. It draws
a wall around the screen and makes a ball bounce around in
side. The program doesn't use sprites—the ball is a redefined
character.

The program listing is divided into sections. A general
explanation is presented first, then the program segment with
an explanation beside each instruction. Since the program runs
entirely in assembly language, all character and color tables
are located accordingly.

A Simple Game
In this first program section, the initial conditions, such as
screen color and variables, are set. The values in the registers
will control the movement of the ball. R5 holds the current
ball position, R6 the value for the delay loop, R7 the ball's
vertical movement (—32 moves it one line up, +32 one line
down), and R8 the ball's horizontal movement (1 moves it
right, —1 moves it left).

Lsml

7D00 LWPI >70B8

7D04 LI R5,300

7D08 LI R6,1000

7D0C LI R7,32

(Load memory area for registers)
(Initial position to print the ball)
(Value for the delay loop
(Ball going down initially)

135

Chapter

7D10 LI R8,l

7D14 LI R0,>0711

7D18 BLWP @>6034

7D1C LI R0,>0B00

7D20 LI R1,D1

7D24 LI R2,8

7D28 BLWP @>6028

7D2C LI R0,>0B40

7D30 LI R1,D2

7D34 LI R2,8

7D38 BLWP @>6028

7D3C LI R0,>038C

7D40 LI R1,CL

7D44 LI R2,2

7D48 BLWP @>6028

(Ball going down and right
initially)
(Load value in RO for the VWTR
routine to change screen color to
black)
(Write to VDP register 7)

Next the program defines character 96 for the ball and charac
ter 104 for the wall, adding the appropriate definitions (Dl
and D2) at the end of the program.

(Load position in VDP memory
corresponding to character 96)
(Load ball definition)
(Definition is eight bytes long)
(Write the definition to the
Character Table in VDP RAM)
(Load position in VDP memory
corresponding to character 104)
(Load wall definition)
(Load number of bytes to write)
(Write definition to the Character
Table in VDP)

The next step is to set the ball and wall colors by changing the
colors of character sets 9 and 10. This can be done simulta
neously, as you've already seen, by using the VMBM utility.

(Position in the Color Table
corresponding to character set 9)
(Position in memory of the two
color bytes to be written to the
Color Table)
(Two bytes to be written)
(Write the color bytes to the Color
Table)

Now the walls are drawn. This will be done with the VSBW
routine and four loops.
7D4C CLR RO (Initial printing position. Start

printing at top-left corner)
7D4E LI Rl,>6800 (Load the wall character [104] into

Rl)

136

7D52 BLWP @>6024 (Print the character)

7D56 INCRO (Increase printing position)
7D58 CI R0,32 (Has it reached the right side of

the screen?)
7D5C JNE $-10 (If not, return to print a new

character, ten bytes back in the
program)

7D5E LI R0,63 (Top wall drawn. Prepare for the
right wall. The first printing po
sition will be screen position 63)

7D62 BLWP @>6024 (Print the wall character)
7D66 AI R0,32 (Move the printing position one

character down)
7D6A CI R0,768 (Was it past the bottom-right

corner?)

7D6E JLT $-12 (If not, continue in the printing
loop)

7D70 LI R0,32 (If it was, start printing the left
wall)

7D74 BLWP @>6024 (Print the wall character)
7D78 AI R0,32 (Move printing position one line.

down)
7D7C CI R0,705 (Has bottom left been reached?)
7D80 JLT $-12 (If not, stay in the printing loop)
7D82 LI R0,736 (Start drawing the bottom wall)
7D86 BLWP @>6024 (Print the wall character)
7D8A INCRO (Increase printing position)
7D8C CI R0,768 (Has bottom-right corner been

passed?)
7D90 JLT $-10 (If not, stay in printing loop)

All that's missing is to put the ball on the screen and set it in
motion. The ball will move diagonally in one of four direc
tions. Each time the ball position is updated, the VSBR routine
reads a byte from the screen (much like the GCHAR sub
program in BASIC). In this way, the program knows whether
the ball has hit a wall to update its direction. If one of the side
walls is hit, the ball's horizontal movement will be inverted. If
the top or bottom walls are hit, the ball's vertical movement is
inverted. This means that the program has to differentiate be
tween the top and bottom walls and the side walls.

137

Glapfer

One way is to check the ball's position. When the ball
hits a wall, if its position is less than screen position 32, the
top wall was hit. If the ball's position is greater than 734, the
bottom wall was hit. Otherwise, one of the side walls was hit.
This is the technique used in the program.
7D92 CT MOVR5,R0

7D94

7D98

7D9C

7D9E

7DA0

7DA2

7DA4

7DA8

7DAC

7DAE

LI Rl,>6000

BLWP @>6024
CLR R12

INC R12

C R12,R6

JNE $-4
LI Rl,>2000

BLWP @>6024
A R7,R5

A R8,R5

7DB0 MOV R5,R0

7DB2 BLWP @>602C

7DB6 CI Rl,>6800

7DBA JNECT

7DBC CI R0,32

7DC0 JLTNC
7DC2 CI R0,734

7DC6 JGTNC
7DC8 NEGR8

138

(Move the printing position of the
ball, stored in R5, into RO for the
VSBW routine)
(Load code for ball character)
(Print ball on the screen)
(Start delay loop. Clear R12)
(Increase the value in R12)
(Is it equal to the delay loop value
in R6?)
(If not, stay in the loop)
(Delay finished. Load the code of
the blank in Rl)
(Print blank, thus erasing the ball)
(Add ball's vertical movement in
R7 to the ball's current position in
R5, moving the ball one line up or
one line down)
(Update the ball's horizontal po
sition, moving it one character left
or right, thus making it move
diagonally)
(Move the updated print position
into RO)
(Read the character found in the
new ball position to see if a wall
was hit)
(Has ball hit a wall?)
(If not, jump back to CT to print
the ball)
(Check to see if it was the top
wall hit)
(If it was, jump to NC)
(Was the bottom wall hit?)
(If it was, jump to NC)
(A side wall was hit. Invert the
ball's horizontal movement)

IggHg

7DCA A R8,R5

7DCC JMP CT
7DCE NC NEGR7

7DD0 A R7,R5

7DD2 JMPCT

(Update the print position so the
ball will not be printed on the
wall)
(Return to print the ball)
(Top or bottom wall hit. Change
vertical movement of the ball)
(Update the print position so the
ball will not be printed on the
wall)
(Jump back to print the ball)

Finally the character definitions and color bytes are added to
the program.
7DD4 Dl DATA >183C,>7EFF,>FF7E,>3C18 (Ball definition)
7DDC D2 DATA >FFFF/>FFFF,>FFFF,>FFFF (Wall definition)
7DE4 CL DATA>87A1

Execute the program. If you wish to change the speed of the
ball, change the value loaded into delay loop register 6, found
in address >7D08. Note that the program used the NEG (NE-
Gate) instruction. This simply changes the sign of a value, just
as if you had multiplied the value by —1.

139

•J

J

'J

-J

J..

Fl
Fl

s Chapter 9
Creating Et`TillTr7

3

a

3

r

Another popular feature of the TI-99/4A is its ability to create
and display sprites. Sprites are simply large characters that
have special properties. One of the nice things about using
sprites on the TI is the ease with which you can create and
move them. It's much easier, for instance, than designing and
moving characters of comparable size.

But you need Extended BASIC in order to use sprites on
your computer. That is, if you use BASIC. Fortunately, you
can create sprites through assembly language. As long as you
have the Mini Memory module and its Line-by-line Assembler,
you can design, create, and manipulate up to 32 different
sprites. These sprites are numbered 0 through 31 and are cre
ated by adding certain values to tables in VDP memory.

To create a sprite, you load its position, character code,
and color into a table called the Sprite Attribute List. Another
table, the Sprite Descriptor Table is loaded with the sprite's pat
tern. To a third table, the Sprite Motion Table, you add the
necessary data if you want the sprite to move automatically
(this feature cannot be used if your computer is in bitmap
mode). Sprites cannot be used when your computer is in text
mode. See Chapter 11 for more information on graphics
modes used on the TI.

The Sprite Attribute List
In the Sprite Attribute List, you must include the initial po
sition of the sprite on the screen, the pattern code for the
sprite, and its color. Each sprite's entry in the table is four
bytes long. In the first byte of the entry you must put the row
value of the sprite. Just as with Extended BASIC, you use the
(high-resolution graphics) screen for sprites, which consists of
256 dots across and 192 dots down. The dots are called pixels.
In assembly language, the screen is divided in the same way.

The leftmost column of dots on the screen is column >00.
Column >01 is next, then column >02, and so on up to col
umn >FF. The rows are a bit different. The top row is num
bered >FF. The second row is >00, the third >01, and so on
until the bottom row, the last visible row on the screen, is
numbered >BE. Higher numbered rows are off the bottom of
the screen.

Decide on the row value of the sprite's initial location and

143

place it in the first byte of the four-byte entry in the Sprite
Attribute List. The second byte is loaded with the sprite's col
umn value. The third byte tells the computer the character
pattern to use for the sprite. Though you may theoretically use
any character number from 0 to 255, it's best to use characters
from 128 on up. If you use automatic sprite motion, only
characters >80 through >EF (128 through 239) may be used.
In the right digit of the fourth byte, you specify the hexadeci
mal color code (see Appendix D) of the sprite. Just leave the
left digit zero for your applications.

Four-Byte Entry in Sprite Attribute List
Byte12 3 4

Row

Value

Column

Value

Character

Code

Zero 1

Color Code

The Sprite Attribute List starts at >0300 in VDP RAM and
is divided as follows:

Sprite 0 is at locations >0300 through >0303
Sprite 1 is at locations >0304 through >0307

Sprite 31 is at locations >037C through >037F

To write values in the Sprite Attribute List (which is in VDP
RAM), use the VMBW utility, just as you do when you write
into any other VDP table. For instance, to make a four-byte
entry for sprite 0, you'd enter:

LI R0,>0300

LI R1,DT

LI R2,4
BLWP @>6028

DT DATA >50A5,>8001

144

(Location in the VDP Sprite Attribute
List where the sprite data will be
placed)
(Location in CPU memory where the
sprite data will be placed, with label DT)
(Number of bytes in entry)
(Write bytes to the table)

(Data on the sprite to be written to the
Sprite Attribute List. The sprite's po
sition will be row >50, column >A5. Its
character code is >80 [128] and its color
black [>1])

J

Chapter

uMmA

j^ As sprites are moved, the corresponding row and column val
ues in the Sprite Attribute List are updated.

[^ Once you've added the sprite information to the table, it's
best to disable any unused sprites. You should always disable

[^ all sprites that have a number higher than the highest num
bered sprite you're using. If you are using sprites 0 through 5,

j^ for example, you should disable sprites 6 through 31. Dis
abling sprites is done by placing a value of >D0 in the Y-
location (the row byte in the attribute list) of the first unused
sprite. In our example, to disable sprites 6-31, you would
place the value of >D0 in the row byte (the first byte of the
four-byte entry) of sprite number 6.

The Sprite Descriptor Table
You place the sprites' patterns in the Sprite Descriptor Table,
in VDP RAM starting at location >0400. Divided into eight-
byte blocks which correspond to characters, it's arranged like
this:

>0400->0407 correspond to character >80 (128)
>0408->040F correspond to character >81 (129)
>0410->0417 correspond to character >82 (130)

To set the sprite definition, load the character definition into
this table at the location of the character you want to use. First
write the character definition into memory with the DATA
directive and then use the VMBW utility to write the bytes to
the Sprite Descriptor Table in VDP RAM. YouTl see how to do
this in the next example program.

Choosing Sprite Magnification
Sprites can even be magnified, or enlarged. There are four
possible magnification modes. In Extended BASIC, this feature
is set with the CALL MAGNIFY statement. With a magnifica
tion of 1, sprites occupy the same area as a character, in other
words eight screen pixels high by eight screen pixels wide.
The sprite pattern is defined by eight bytes, just as a standard
character pattern. A sprite with magnification of 2 is defined
the same as one with magnification 1, except that the sprite
pixels have been enlarged so that each sprite pixel occupies
four screen pixels. A sprite at magnification 2 covers the same

145

CtopflEf 9

J

area as a two-character by two-character shape. Magnification i
factor 3 creates sprites 16 screen pixels high by 16 screen
pixels wide. Like magnification 2, it occupies the same area as i
four characters, but it can have a higher resolution, since you
use four character patterns (32 bytes) to define the sprite's pat- j
tern. Sprites with magnification 4 are also defined with four ""
character patterns, but each sprite pixel is enlarged so that it's i
four times as large as in a sprite with magnification 3. Thus, a
sprite at magnification 4 covers the same area as a four-
character by four-character shape.

In assembly language, the magnification mode of the
sprites is set by writing a value into the two least significant
(right) bits of VDP register 1. Remember that to write a value
into a VDP register, you use the VWTR utility in >6034 (see
the section "Changing Screen Color" in the previous chapter).
The value you write to the VDP register must be in the right
byte of RO (the left byte of RO must contain the number of the
VDP register you want to change).

For sprites with magnification 1, write the value >E0 into
VDP register 1 (see Chapter 11 for a discussion on VDP reg
isters). Again, this is done by placing the magnification value
into the right byte of RO and the number of the VDP register
into the left byte of RO.
LI R0,>01E0
BLWP @>6034

Thus VDP register 1 (as shown by the left byte) is loaded with
>E0. For these unmagnified sprites, the two right bits of VDP
register 1 must be 0. This means that the byte in VDP register
1 must be (in binary): 11100000, which equals 224 in decimal,
or E0 in hexadecimal.

Sprites with magnification 2 need to have the value >E1 J
loaded into VDP register 1:
LI R0,>01E1
BLWP @>6034

>E1 must be loaded because for these sprites, the two right
bits of VDP register 1 must be 0 and 1, in that order from left
to right. In binary, the corresponding value then is 11100002,
or 225 in decimal, which is El in hexadecimal.

Magnification 3 requires >E2 loaded into VDP register 1:
LI R0,>01E2
BLWP @>6034

146

fmmfij

l^mi

r. These sprites have to have the two last bits in VDP register 1
to be 1 and 0. The binary value would be 11100010 (226 in

j^ decimal), which is E2 in hex.
Sprites with magnification of factor 4 need >E3 loaded

j into VDP register 1:

LI R0,>01E3
L* BLWP @>6034

The value written into VDP register 1 must have the two last
bits set, or 1. In binary, this is 11100011. That's 227 in deci
mal, or E3 in hexadecimal.

When you change the value in VDP's register 1, also
place the value in CPU RAM location >83DA. If you don't,
and execute a KSCAN, the register will be reset to its original
value. By writing the value into >83DA, the computer updates
the value in VDP register 1 whenever necessary by placing the
value found in >83DA into that register. (This wasn't done in
the sample programs here, because the KSCAN routine was
not used after the value of VDP register 1 had been changed.
If it was, it was reset to a new value after the KSCAN.)

Here's how to write a value into both VDP register 1 and
address >83DA:

LI R0,>01E1 (Value to be written into VDP register 1
[>E1])

BLWP @>6034 (Write >E1 to VDP register 1)
SWPB R0 (Place >E1 into the left byte of R0)
MOVB R0, @>83DA (Move the left byte of R0 [>E1] into ad

dress >83DA)

Static Sprite
Before we go on to see how a sprite can be moved, let's look

^ at a program which simply puts a sprite on the screen. The
program places a sprite with magnification 1 on the screen

**•>» and waits for you to press a key, which enlarges the sprite.

U Sprite—Magnification 1
The first step is to load the sprite definition into the Sprite

^m Descriptor Table:
7D00 LWPI >70B8 (Load memory area for registers)

^ 7D04 LI R0,>0400 (Use character 128 [>80] for the
sprite definition, so use the first

**•* entry in the table [>0400->0407])

las)
147

Chapter

tatfjjffii

bggpj

7D08 LI R1,DF (Load position in CPU RAM
f—iilwhere the definition will be, with

label DF)
"~1

7D0C LI R2,8 (Definition is eight bytes long) fejKife)

7D10 BLWP @>6028 (Write definition bytes to the
yggjtable)

Then <complete the Sprite Attribute List with the sprite data: lyas^i

7D14 LI R0,>0300 (Position in the Sprite Attribute
List where the sprite data will be
written. Use sprite 0, from >0300
to >0303)

7D18 LI R1,DT (Position in CPU RAM where the
sprite data can be found)

7D1C LI R2,5 (Five bytes to write; the first four
bytes describe the sprite. The fifth
byte will be >D0 and disables
sprites 1-31)

7D20 BLWP @>6028 (Write data to the Sprite Attribute
List)

The sprite is now displayed on the screen. Next you'll create a
loop to read the keyboard until any key is pressed. When this
happens, the sprite is enlarged by writing the new value into
VDP register 1. Then program execution is stopped.
7D24

7D28

7D2C

7D30

7D34

7D36

7D3A

7D3E

148

LP

CLR @>8374

COC @BT,R1

JNELP

LI R0,>01E1

BLWP @>6034

JMP$

(Clear byte at >8374. Standard
keyboard scan)

BLWP @>6020 (KSCAN loops start)
MOVB @>837C,R1 (Move status byte into Rl)

(Compare Corresponding Ones of
both bytes)
(If bytes are not equal, no key has
been pressed. Stay in loop)
(Key pressed. Change magnifica
tion factor to 2 by writing >E1
into VDP register 1)
(Write new value to VDP register
1)
(Sprite magnified. Stop program
with an endless loop)

(iMMgfll.

('"'liriifj

Lasmi

t^f^i

IsmMei

MajBti

l-i'atMiJ

Finally, add the necessary data:
7D40 BT DATA >2000 (Comparison value for the

KSCAN loop)
7D41 DF DATA >FF81,>8181,>8181,>81FF (Character definition

for the sprite)
7D4A DT DATA >6080/>8004/>D000 (Data for the Sprite

Attribute List. >60 [96] is the
sprite's row number. The next
>80 is the sprite's character defi
nition in the Sprite Descriptor Ta
ble [128]. >04 is the sprite color.
>D0 is the value used to disable
the remaining sprites.)

End the program and execute it with EASY BUG. A blue
square the size of a character will appear on the screen. Press
any key and the box will be magnified. The program then
stops.

(You didn't have to specify that the sprite should be in
magnification 1, since that's the default magnification mode.)

The next program does much the same thing, but the
sprite will be set initially to magnification 3. When a key is
pressed, the magnification mode will be 4. The sprite's defi
nition, then, has to be of four characters.

Sprite—Magnification 3
First of all, the program adds the sprite definition to the Sprite
Descriptor Table. The sprite's character definition uses charac
ters 132 through 135 (>84 through >87). The starting position
in the Sprite Descriptor Table for character >84 is address
>0420.

7D00 LWPI >70B8 (Load memory area for registers)
7D04 LI R0,>0420 (Starting position in the Sprite

Descriptor Table of the first of the
four characters to be defined)

7D08 LI R1,DF (The definition of the four charac
ters is in CPU RAM, starting at la
bel DF)

7D0C LI R2,32 (Number of bytes written. Each
definition is eight bytes.)

7D10 BLWP @>6028 (Write bytes to VDP table)

149

Chapter 9

Next you must add the sprite information to the Sprite
Attribute List. Sprite 0 is used, and its entry in the table is
from >0300 to >0303.

7D14 LI R0,>0300 (Position in the Sprite Attribute
List for sprite O's entry)

7D18 LI R1,DT (Position in CPU RAM where the
sprite data is)

7D1C LI R2,5 (Five-byte data: four bytes for
sprite description and one to dis
able the remaining sprites)

7D20 BLWP @>6028 (Write bytes to table)

Now add the sprite magnification (3 to start with):
7D24 LI R0,>01E2 (Write >E2 into VDP Rl to in

dicate magnification factor of 3)
7D28 BLWP <g»6034 (Write to VDP register)

The sprite is now on the screen. To make the program wait for
a key to be pressed and then enlarge the sprite to magnifica
tion 4, you need to enter:
7D2C CLR @>8374 (Standard keyboard scan)
7D30 LP BLWP @>6020 (Branch to KSCAN routine)
7D34 MOVB @>837C,R1'. (Move status byte into Rl)
7D38 COC @BT,R1 (Compare Ones Corresponding of

both bytes)
7D3C JNELP (If not equal, stay in the KSCAN

loop)
7D3E LI R0,>01E3 (Key pressed. To set magnification

factor 4, write >E3 into VDP reg
ister 1)

7D42 BLWP @>6034 (Write to VDP register)
7D46 JMP$ (Stop program execution with an

endless loop)

Finally, add the data values for sprite creation and the KSCAN
loop:
7D48 BT DATA >2000 (Comparison value for the

KSCAN loop)

150

i

toss!

kssa)

ksiiimfi

IssMml

L—>

7D4A DF

7D52

7D5A

7D62

7D6A DT

DATA >0300,>1020,>4040,>8080 (Sprite definition
[four characters]. Top left charac
ter defined first. Bottom left, top
right, and bottom right follow)

DATA >8080/>4040/>2010/>CC03

DATA >C030,>0804,>0202,>0101

DATA >0101,>0202,>0408,>30C0

DATA >6080,8401,>D000 (Same values as the previous
program, except the second word
includes >84, which signifies that
this version uses characters 132

onwards, and >01, to indicate
black color)

End the program and run it. The large unmagnified sprite ap
pears on the screen. Press any key and it's magnified.

Sprite Motion
You can move the sprites in two ways. The first, which you'll
see in this section, is to move the sprite pixel by pixel. All you
have to do, once you have set the sprite on the screen, is
change the row and/or column value of the sprite by writing
the new values into the Sprite Attribute List. The program be
low places a sprite on the screen and moves it to the right by
constantly increasing the column byte value in the Sprite
Attribute List.

Pixel by Pixel
First of all, the sprite definition is loaded into memory:
7D00 LWPI >70B8 (Load memory area for registers)
7D04 LI R0,>0400 (Use character >80 [128] for the

sprite, with entry at >0400 in the
Sprite Descriptor Table)

7D08 LI R1,DF (Sprite definition is in CPU RAM
address labeled DF)

7D0C LI R2,8 (Definition is eight bytes long)
7D10 BLWP @>6028 (Write definition to Sprite Descrip

tor Table)

151

Chapter 1
tise^ii

tm£S

1

Sprites with magnification 2 will be used:

7D14 LI R0,>01E1 (Load value of >E1 to write it to
VDP register 2 to select magnifica
tion 2)

feifej

7D18 BLWP @>6034 (Write new value for VDP register
1 with VWTR utility)

tjtB&a^i

The sprite's initial screen position is set by writing the
corresponding data to the Sprite Attribute List:

^jf^rH

7D1C LI R0,>0300 (Use sprite 0, position >0300 in
the table)

7D20 LI R1,DT (Load sprite data from CPU RAM
address labeled DT)

7D24 LI R2,5 (Five bytes to write to table)
7D28 BLWP @>6028 (Write bytes to table)

Increase the column value of the sprite, keeping track of it in a
register, in loops from 0 to 255, constantly updating the col
umn value in the Sprite Attribute List. Remember that the col
umn value for sprite 0 is found in VDP byte >0301.

(Load position of the sprite col
umn byte in the table)
(Prepare Rl to keep track of the
sprite's current column position)
(Move sprite column one position
[pixel] right)
(Write new column value to the
Sprite Attribute List)
(Has the last column been
reached?)
(If it has, jump to RS to reset col
umn value)
(Load value for delay loop)
(Decrease delay loop value)
(If not zero, jump to >7D44)
(Delay loop finished. Return to
loop)

7D2C LI R0,>0301

7D30 RS CLRR1

7D32 LP AI Rl,>0100

7D36 BLWP @>6024

7D3A CI R1,>FF00

7D3E JEQRS

7D40 LI R15,1000

7D44 DEC R15

7D46 JNE $-2
7D48 JMPLP

152

lisi&aaJ

I Finally, add the sprite definition and the data for the Sprite
Attribute List:

Li 7D4A DF DATA >FF81,>8181/>8181,>81FF (Sprite definition)
7D52 DT DATA >5000/>8001/>D000 (Sprite data. Put initial

Us sprite in row >50, column >00;
use character >80 for the sprite;

L and make the sprite black [>0lj.
Disable remaining sprites [>D0].)

End the program and run it. The sprite displays on the screen
and sails across it. If you want to change the speed of the
sprite, use AORG to get to the position in memory where the
delay loop was added (>7D40) and change the value loaded
in R15 to whatever number you wish. If you load a 1 into
R15, the sprite will move so quickly that you'll see what looks
like several sprites blinking on the screen. There's only one
sprite—it's just moving so fast that you get the illusion several
are slowly moving from right to left.

Though it was included in the program listing, you really
don't need to check whether the column value in the left byte
of Rl is equal to >FF to reset it. This happens automatically. If
a register is loaded with >FF (255) and you add 1, the value
rolls over to 0. Instructions in addresses >7D3A and >7D3E
could be left out of the program because of this.

Using the Sprite Motion Table
Another way to move sprites is to let the computer do it. In
order to use this feature, you must use the Sprite Motion
Table.

Before automatically moving sprites, interrupts must be
f enabled with the LIMI 2 instruction. Remember to disable

them again with the LIMI 0 instruction before accessing any
i VDP RAM. Accessing VDP RAM with the interrupts enabled

might bring you disastrous results, as values in VDP are
i^ changed. It's best to enable and disable interrupts quickly in a

frequently executed loop, like this:

LP LIMI 2

LIMIO

153

hjfflmw

fWl'tl

IMP LP 1

bmm4

If you do this, you don't need to worry whether you remem- ^J
bered to enable or disable interrupts at any point in the pro
gram. For more information, see Chapter 6.

Before accessing the Motion Table, you also must tell the
computer how many sprites will be moved. If sprites 3 and 7
are going to move, for instance, you'll have to allow move
ment of the first eight sprites, 0 through 7. To do this, you'd
place an 8 at address >837A:
LI R5,>0800
MOVB R5,@>837A

The above program segment writes a value of 8 into memory
address >837A, thus allowing the automatic motion of sprites
0 through 7. If you'd entered LI R5,>0600 instead, it would
have allowed the automatic motion of only sprites 0-5. (Note:
The number placed in >837A indicates the total number of
sprites that will be able to move automatically.)

Once you've allowed VDP interrupts and placed the num
ber of moving sprites in location >837A, you can add the
sprite data to the Motion Table.

The Motion Table starts at VDP address >0780, and each
sprite's entry takes four bytes.
Sprite 0: >0780 through >0783
Sprite 1: >0784 through >0787
Sprite 2: >0788 through >078B
Sprite 3 >078C through >078F ^
Sprite 4: >0790 through >0793
Sprite 5: >0794 through >0797 oJ
Sprite 6: >0798 through >079B
Sprite 7: >079C through >079F yj

In each sprite's entry, the first byte indicates the vertical mo
tion of the sprite and the second, the horizontal motion. The
third and fourth bytes are used by the computer and should
be zero.

154

tittM

r

Loading a value from >00 to >7F (0 to 127 decimal) in
either the first or second bytes gives a positive velocity. Values
from >FF to >80 (255 to 128 decimal) are negative velocities,
where

>FF = -1

>FE = -2

>80 = -127

In other words, a value from >00 to >7F in the first byte
moves the sprite down and a value from >FF to >80 moves it
up. A value from >00 to >7F in the second byte moves the
sprite to the right, and a value from >FF to >80 moves the
sprite left.

Once you've loaded this information into the Motion Ta
ble, your sprites will move automatically. You don't need to
worry about them again.

Automatic Sprites
The following program moves a sprite across the screen, just
like in the "Pixel by Pixel" program, except that the sprite
moves under computer control. The row and column values of
the moving sprites in the Sprite Attribute List will be updated
by the computer.

First of all, the program sets the sprite definition:
7D00 LWPI >70B8 (Load memory area for registers)
7D04 LI R0,>0400 (Position in the Sprite Descriptor

Table where sprite definition is
written)

7D08 LI R1,DF (Position in CPU RAM where the
definition will be loaded with la
bel DE)

7D0C LI R2,8 (Definition is eight bytes long)
7D10 BLWP @>6028 (Write definition to the table)

^ Next the sprite's magnification is set to 2:
7D14 LI R0,>01E1 (Prepare to write >E1 to VDP reg-

7D18 BLWP @>6034 (Write to VDP register 1)

IttamilJ
155

Chapter 9

Then the sprite attributes are set in the Sprite Attribute List: j
7D1C LI R0,>0300 (Place in table for sprite 0)
7D20 LI R1,DT (Position in CPU RAM where the J

sprite data will be loaded with la
bel DT) J

7D24 LI R2,5 (Five bytes to write)
7D28 BLWP @>6028 (Write data to table) J

The number of automatically moving sprites is placed at loca
tion >837A. To allow sprite 0 to move under computer con
trol, place a 1 in that address.
7D2C LI Rl,>0100 (Load left byte of Rl with value to

be written)
7D30 MOVB R1/@>837A (Move the left byte of Rl into

>837A)

And add the velocity data to the Motion Table:
7D34 LI R0,>0780 (Entry in table for sprite 0)
7D38 LI RLVD (Motion data is in CPU RAM, la

beled VD)
7D3C LI R2,4 (Four bytes of data to be written)
7D40 BLWP @>6028 (Write data to table)

The sprites will be moving as soon as interrupts are enabled.
Program execution is stopped with a loop.
7D44 LP LIMI 2 (Enable VDP interrupts to allow

automatic sprite motion)
7D48 LIMI 0 (Disable VDP interrupts)
7D4C JMP LP (Jump back to "end of program"

loop)

Finally, add the data values for the program:
7D4E DF DATA >FF81,>8181,>8181,>81FF (Sprite definition)
7D56 DT DATA >6000,>8001,>D000 (Sprite data. Initial sprite

location is row >60, column >00.
Character >80 is used, and the
sprite is black [>01]. Remaining
sprites are disabled [>D0])

156

iis&jjft.)

Ctapler

r 7D5C VD DATA >007F,>0000 (Motion data. Vertical motion
^ is zero [>00]. Horizontal motion is
I maximum positive [>7F], and the
*** two remaining bytes are left as
, zero)

l End and run the program. The sprite moves under computer
*** control until you press FCTN = (QUIT) to stop the program

(QUIT was enabled by the VDP interrupts). Note that with
automatic motion, sprites cannot be moved faster than with
Extended BASIC. The values of sprite velocity in both Ex
tended BASIC and assembly language range from -127 to
127.

Checking for Coincidences
To check for a coincidence between two sprites (another term
for the same thing is collision), you simply read the row and
column values of both sprites from the Sprite Attribute List
and compare them.

Don't expect to compare the value pairs and find them to
be equal. A sprite colliding with another would then be de
tected only if the two top left-hand side pixels coincide exactly.
The best way to detect collisions between sprites is to read the
row and column values of both sprites and subtract them, tak
ing the absolute value of the answer. This will tell you how
many pixels there are between each row and column co
ordinates. If both these values are less than nine pixels, a
crash has occurred. Otherwise, no collision happened.

The number of pixels between two points should always
be positive, so you take the absolute value to account for the
cases when the row of the first sprite is less than the row of

**•* the second sprite.
To read the row and column values of the sprites from

^ the Sprite Attribute List, you can use either the VSBR or
VMBR utilities.

Collisions
ia* This program sets two sprites moving in different directions

across the screen. The program continues until the sprites col-
La lide. The sprite motion and the program then stop.

157

Chapter 9

First of all, you need to load the character definitions for
both sprites into the Sprite Descriptor Table:
7D00 LWPI >70B8

7D04 LI R0,>0400

7D08 LI R1,DF

7D0C LI R2,16

7D10 BLWP @>6028

(Load memory area for registers)
(Location in the table to start writ
ing sprite definitions)
(Position of the definitions in CPU
memory)
(Each definition is eight bytes
long. Two definitions, or 16 bytes,
to be written)
(Write definitions to the table, de
fining characters >80 and >81)

Set a magnification factor of 2 for both sprites:
7D14 LI R0,>01E1 (Load VDP register number and

the value to be written to it in RO)
7D18 BLWP @>6034 (VDP Write to Register)

Add the number of moving sprites at location >837A:
7D1C LI R7,>0200 (Sprites 0 and 1 will move. Pre

pare to write a 2 in location
>837A)

7D20 MOVB R7,@>837A (Move number of moving sprites
to >837A)

Load the data for both sprites in the Sprite Attribute List:
7D24 LI R0,>0300
7D28 LI R1,DT

7D2C LI R2,9

7D30 BLWP @>6028

(Position for sprite 0 in the table)
(Position of sprite data in CPU
memory, label DT)
(Nine bytes to move: four bytes
for each sprite and one byte to
disable the remaining sprites)
(Write sprite data to the Sprite
Attribute List)

Place the data for both sprites in the Motion Table:
7D34 LI R0,>0780 (Position in the table for sprite 0)
7D38 LI R1,MD (Motion data is at CPU RAM ad

dress labeled MD)

158

J

rHIMIIH*

Chapter 9

y^^j

LissmSl

tiii^j^i
7D3C LI R2,8 (Eight bytes of motion data to be

written, four bytes for each sprite)

kkjimi
7D40 BLWP @>6028 (Write data to the table)

The sprites are now on the screen. Start a loop to enable and
disable VDP interrupts, read the row and column values of
both sprites, compare them and branch accordingly:
7D44 LP LIMI 2 (Enable VDP Interrupts)

7D48 LIMIO (Disable VDP Interrupts)

7D4C LI R0,>0300 (Load position of the row value of
sprite 0 in the Sprite Attribute List
in VDP RAM)

7D50 CLRR1 (Prepare Rl to receive the row
value of sprite 0)

7D52 CLRR2 (Prepare R2 to receive the value
read in Rl)

7D54 BLWP @>602C (Read the row value of sprite 0
into the left byte of Rl)

7D58 MOVB R1,R2 (Move it into the left byte of Rl)
7D5A SWPB R2 (Place the row value of sprite 0 in

the right byte of R2)
7D5C LI R0,>0304 (Load position of the row value of

sprite 1 in the Sprite Attribute
List)

7D60 BLWP @>602C (Read the row value of sprite 1
into the left byte of Rl)

7D64 SWPB Rl (Place it in the right byte of Rl)
7D66 S R1,R2 (Subtract the row values. The an

swer is placed in the right byte of
R2)

LaMl 7D68 ABSR2 (Make it the absolute value)
7D6A CI R2,>0008 (Compare it to eight)

1mm) 7D6E JGTLP (If the result is greater than eight,
there has been no crash. Return to

ksmm)

7D70 LI R0,>0301

loop LP)
(Possible crash. Now check the
sprite columns. Load position of
the column byte of sprite 0 in
VDP RAM)

1
7D74 CLRR1 (Prepare Rl to receive the column

value)

159

Chapter 9

7D76 CLRR2

7D78 BLWP @>602C

7D7C MOVB R1,R2
7D7E SWPB R2

7D80 LI R0,>0305

7D84 BLWP @>602C
7D88 SWPB Rl

7D8A S R1,R2
7D8C ABSR2

7D8E CI R2,>0008
7D92 JGTLP

7D94 LI R0,>0780

7D98 LI R1,MS

7D9C LI R2,8

7DA0 BLWP @>6028
7DA4 JMP $

(Prepare R2 to receive the value
ofRl)
(Read the column byte into the
left byte of Rl)
(Store it in the left byte of R2)
(Move it to the right byte of R2)
(Load position of the column byte
of sprite 1)
(Read the column value)
(Place it in the right byte of Rl)
(Subtract the column values)
(Make it the absolute value)
(Compare it to eight)
(If it's greater than eight, no crash
occurred. Return to loop LP)

When execution leaves the loop and continues past >7D92, it
means that the row and column values of each sprite are
within eight pixels of each other, and a collision has occurred.
The sprite motion is then stopped by writing zeros into the
Sprite Motion Table, and following that, the program itself
stops.

(Load position in the table for
sprite 0)
(Load motion data [all 0's] to stop
sprite motion)
(Eight bytes of motion data to
write)

(Write the data to VDP RAM)
(Stop program execution with an
endless loop)

Finally, add the necessary data values:
7DA6 DF DATA >FF81,>8181,>8181,>81FF (Definition of

sprite 0)
7DAE DATA >1824,>4281/>8142/>2418 (Definition of

sprite 1)
7DB6 DT DATA >3030,>8001,>C8C8,>8101,>D000 (Data for

both sprites)

160

Oakum

\iifSfUA

Ifeatffi

kfe^

Mintort

7DC0 MD DATA >B050,>0000,>7030,>0000 (Data to set the
sprites moving)

7DC8 MS DATA 0,0,0,0 (Data to stop the sprites once
again)

End and run the program. Note that even if the sprites are
moving at a relatively high speed, the crash is detected ac
curately and the sprite motion is stopped immediately (be
cause VDP interrupts are disabled). Coincidence checking can
be quite tricky. In the program above, collisions are detected
only if the two top left-hand corners of the sprites are within
eight pixels of each other, in any direction.

Vanishing Sprites
You can even make sprites disappear and then later reappear.
This can be quite handy when programming games. To make
a sprite disappear, you can make it transparent or set it to the
same color as the screen. Or you can position it at the unused
memory area of the screen by assigning it a row coordinate
greater than >BE. The sprite will then be in the screen area
not visible; in other words, just off the bottom of the screen.

To make a sprite vanish, just change its row value (the
first byte of the sprite's entry in the Sprite Attribute List) to a
value a little greater than >BE, the bottom pixel of the visible
screen. You can use >C0, two bytes greater than >BE.

POOf!
This program puts a sprite on the screen and waits for you to
press a key. When the key is detected, the row value of the
sprite is changed to a position off the screen, creating the illu
sion that the sprite has vanished.

First of all, load the Sprite Descriptor Table:
7D00 LWPI >70B8 (Memory area for registers)
7D04 LI R0,>0400 (Position in the table where the

definition will be written)

7D08 LI R1,DF (Position of the sprite definition in
CPU RAM)

7D0C LI R2,8 (Definition is eight bytes long)
7D10 BLWP @>6028 (Write the definition to the table)

161

Write the sprite data to the Sprite Attribute List:
(Entry for sprite 0 in the Sprite
Attribute List)
(Sprite data in CPU memory ad
dress labeled DT)
(Five bytes of data)
(Write sprite data to the table)

The sprite is now on the screen. Start a loop to read the key
board and wait for a key to be pressed. When this happens,
the row number of the sprite is changed to >C0, and the
sprite seems to disappear:
7D24 CLR @>8374 (Standard keyboard scan)
7D28 LP BLWP @>6020 (Branch to read the keyboard)

L (Move status byte into Rl)
(COC of the byte at address BT
and the byte in Rl)
(If not equal, stay scanning the
keyboard)
(Key pressed. Load address of the
row byte in VDP RAM, to change
it)
(Load the new row value [>C0,
off the screen] into the left byte of
Rl)

(Write the new value in the table)
(Stop program execution with an
endless loop)

Add the DATA statements for the KSCAN loop and sprite
creation:

7D14 LI R0,>0300

7D18 LI R1,DT

7D1C LI R2,5

7D20 BLWP @>6028

7D2C

7D30

MOVB @>837<
COC @BT,R1

7D34 JNELP

7D36 LI R0,>0300

7D3A LI R1,>C000

7D3E

7D42

BLWP @>6024
JMP$

7D44 BT DATA >2000

7D46 DF DATA >FF81,>FF81,>FF81,>FF81
7D4E DT DATA >6080,>8001,>D000

162

(Comparison
value for the
KSCAN loop)
(Sprite pattern)
(Sprite data)

Deleting AH Sprites in Assembly Language
To make all the sprites displayed disappear at once, just as
done with the CALL DELSPRITE(ALL) statement in Extended
BASIC, all you have to do is disable sprite 0.

This will disable the other 31 sprites at the same time. To
disable sprite 0, write the value >D0 into the Sprite Attribute
List at the row position of the sprite:
LI R0,>0300
LI R1,>D000
BLWP @>6024

When these three instructions are executed, all sprites will
vanish from the screen. Easy, wasn't it?

Equivalents to BASIC
There are, of course, statements and commands in Extended
BASIC which access sprites. Those commands, and their
assembly language equivalents, are:

Assembly Language
Write the sprite definition into the Sprite
Descriptor Table to the appropriate
character.
Write the corresponding sprite data into
the Sprite Attribute List (does not include
automatic motion).
Enable interrupts, set number of moving
sprites in >837A, and write the motion
values into the motion table.
Change the third byte of the sprite entry
(the character code byte) in the Sprite
Attribute List to the new character with
the new definition.
Write the new row and column values
into bytes 1 and 2 of the sprite entry in
the Sprite Attribute List.
Write the new color for the sprite into the
right digit of the fourth byte of the sprite
entry in the Sprite Attribute List. Leave
zero in the left byte.
Read the row and column values of the
sprites from the Sprite Attribute List and
compare them accordingly.

Extended BASIC

CALL CHAR

CALL SPRITE

CALL MOTION

CALL PATTERN

hmmi
CALL LOCATE

lit^Ml

kg^

CALL COLOR

li'fiSaita

CALL COINC

"TiW

iilMf^i
163

Chapter 9

CALL DELSPRITE (#X) Change the row coordinate of the sprite to i
a value greater than the bottom visible
row of the screen.

CALL DELSPRITE (ALL) Write DO into the row position of sprite 0
in the Sprite Attribute List.

CALL MAGNIFY Set the magnification mode by changing
the value loaded in VDP register 1.

Calling from BASIC
All you've learned about sprites in assembly language can also
be applied when your program is called from BASIC. All the
sprite tables are in the same memory areas when your assem
bly language program is called from BASIC. The only thing
you have to be careful with is the character definitions. If you
write the definitions of the sprites starting with character 128
(>80), you'll also be redefining character 32. It's best to use
characters 129 and up, noting what characters are simulta
neously redefined in BASIC.

That's one of the reasons why it's usually best to write
programs which use sprites entirely in assembly language.

After All of This
You should be prepared for some possible strange effects
when you start experimenting with sprites. These effects will
most likely be caused by some missing value, or a value put in
the wrong memory address. Testpatterns, colors, coincidences,
and so on before you start to write a program using sprites;
this will help you avoid problems when you're actually writ
ing your own assembly language sprite programs.

164

• Chapter 1 0

Generating
unds

fl

a

a

a

a

a

a

lqm§\

, The TI-99/4A's sound capabilities are impressive. Like the
™* other features of your computer, sound can be set and used

through assembly language.
*•** The TI's sound chip can generate up to three tones and

one noise simultaneously. When accessed through assembly
language, the tones have the same frequencies as in the
BASIC CALL SOUND subroutine and extend up to 55938 Hz.
You must also set the volume and duration of the sound as
you normally do in BASIC.

Tables
To generate a sound, you create a table of data which must be
located in VDP RAM. A convenient location for the table is
address >1000. This data contains all necessary information
for the sounds to be played by the computer. The length of
this table depends on how many sounds will be played. Once
you've created the table, you can start sound generation.

At CPU address >83CC, you tell the computer where the
sound data can be found in VDP RAM. You then inform the
TI that the data is located in VDP RAM by setting the
rightmost bit (bit seven) of byte >83FD to 1. The sound is ac
tivated by placing a value of >01 at address >83CE.

Once the sound generation has begun, to allow the sound
to be heard you have to quickly enable and disable the VDP
interrupts with the usual instructions:
LIMI2

LIMIO

This can be done in a frequently executed loop or each
[^ time a sound is generated. Keep in mind that VDP interrupts

must be disabled with the LIMI 0 instruction when you're
i \ writing values to VDP RAM.

This procedure will generate one or more sounds, provid-
^ ing that the table of data describing the sound(s) is found in

VDP RAM. This table can be POKEd into memory from
|^ BASIC. It's simpler than using CPU RAM to write the data

lists and then move them to VDP RAM.

Creating Sound Data Tables
j^ When creating sound data tables, you'll use three bytes for a

single tone and two bytes for noise. At the beginning of each

MSMa,)

y^ml

167

Chapter 10

entry, specify how many bytes must be read to describe the
sound (for simultaneous tones and noise, add the bytes
needed to describe each tone and the noise), and at the end of
each entry, a byte to indicate the general duration of the
sound. The duration byte is not counted in the initial
"counter" byte.

Tones are played using three generators, numbered 1, 2,
and 3. Noises, strangely enough, are created by a noise gen
erator (also referred to as generator 4).

The first byte of each sound entry is loaded with the
number of bytes to be used to describe the sound (the dura
tion byte is not included). A tone requires three bytes; a noise,
two. For example, an entry to play a single tone could be:
DATA >038C,>1F91,>1E00

The first byte, >03, indicates that three bytes will be loaded
into the sound processor. Those bytes are >8C, >1F, and >91.
The first two specify the frequency and the third specifies the
volume. >1E is the last byte of the entry and is the duration
of the sound (remember, it's not counted in the counter byte).

Figuring out the values of the second, third, fourth, and
fifth bytes can be a lot of work. You'll be setting and resetting
bits and doing binary to hexadecimal conversions. The BASIC
program below translates the values used to create a sound in
TI BASIC to a hexadecimal DATA value. The program only
changes single tones or noises. To combine these tones and
noises, refer to the next section.

Creating DATA—A Utility Program
The following BASIC program asks you for the duration, fre
quency, and volume of a tone or noise, as well as the gen
erator number (1, 2, or 3 for tones; 4 for noise). It then
calculates the appropriate values in hexadecimal to be POKEd
into memory.
100 CALL CLEAR

110 PRINT " *SOUND DATA TABLE CREATOR* ":::::
120 Q$="0123456789ABCDEF"
130 INPUT "GENERATOR # ?":GN
140 INPUT 'DURATION ?":DUR

150 INPUT "FREQUENCY ?":FREQ
160 INPUT "VOLUME ?":VOL

170 PRINT :::

180 IF DUR >17 THEN 200

168

L>mm&

I 190DUR=17
u- 200 REM DURATION
I 210 DUR=INT((DUR*255)/4250)
•*-* 220 CONV=DUR

230 GOSUB 540

U 240 DUR$=SEG$(HX$,3,2)
250 IF FREQ >-l THEN 370

Im 260 REM NOISE FREQUENCY
270 FR=ABS(FREQ)-1
280 FR$="E"&STR$(FR)
290 REM NOISE VOLUME

300 VOL=INT(VOL/2)
310 CONV=VOL

320 GOSUB 540
330 VOL$="F"&SEG$(HX$,4,l)
340 PRINT "DATA > 02";FR$;'>";VOL$;DUR$:::
350 GOTO 470

360 REM TONE FREQUENCY
370 FR=INT((111860.8/FREQ)+.5)
380 CONV=FR

390 GOSUB 540

400FR$=SEG$(Q$/GN*2+7,1)&SEG$(HX$,4,1)&SEG$(HX$,2,2)
410 REM TONE VOLUME

420 VOL=INT(VOL/2)
430 CONV=VOL

440 GOSUB 540

450 VOL$=SEG$(Q$,GN*2+8,1)&SEG$(HX$,4,D
460 PRINT "DATA >03";SEG$(FR$,1,1)&SEG$(FR$,2,1);"/>";SEG$(

FR$/3,2);VOL$;",>";DUR$;"00":::
470 PRINT :::"ANOTHER SOUND ?(Y/N)"
480 CALL KEY(0,K,S)
490 IF K=89 THEN 100

500 IF K=78 THEN 520

i 510 GOTO 480

520 CALL CLEAR

530 END

540 REM DECIMAL TO HEX

I 550 AY=INT(CONV)/16
u* 560 BY=INT(AY)/16

570 CY=INT(BY)/16
I— 580 DY=INT(CY)/16

590 AP=(AY- INT(AY))*16
L. 600 BP=(BY- INT(BY))*16

610 CP=(CY - INT(CY))*16
I , 620 DP=(DY - INT(CY))*16

(.inyaagj^

{nummi

169

Chapter 10

630 HX$=SEG$(Q$,DP+1,1)&SEG$(Q$,CP+1,1)&SEG$(Q$,BP+1,1
)&SEG$(Q$,AP+1,1)

640 RETURN

Running the Program
Run the program. (You don't need the Mini Memory cartridge
plugged in.) You'll first be asked what generator the sound i
should play on. If you're creating several tones, enter 1, then
2, then 3, and repeat. To create a noise, enter 4. Next enter the
duration, or length, of the sound (0-4250). Then type in the
frequency (from 110 to 55938) in hertz, and the volume
(0-30). When you press ENTER, the DATA statement which
will create that sound appears. The program does not check
for bad values, so make sure you're typing in values within
the appropriate range at each prompt.

Let's take a look at an example. You want to create a sin
gle tone, two seconds long, with a frequency of 185 and a vol
ume of 4. You would then enter:

GENERATOR #? 1

DURATION ? 2000

FREQUENCY ? 185
VOLUME ? 4

and this line will appear on the screen:
DATA >038D,>2592,>7800

When these values are added with the DATA directive to an
assembly language program, the sound will execute.

How about another example? For a noise of frequency
—5, duration 1000, and volume 2, give these inputs:
GENERATOR #? 4

DURATION ? 1000

FREQUENCY ? -5
VOLUME ? 2

and the program will respond with:
DATA >02E4,>F13C J

To create several tones, or tones and noise together, find
the DATA values for each tone or noise separately and join ***
them. The only byte you'll have to change is the first byte, ~
specifying the number of bytes to be read. •**

1 *7r\ tiHusl

(jg^'ijp

^jiifei

CjSSsJ

UaSajSl

_ Multiple Tones
If you wanted to create two simultaneous tones and a noise,

[^ with a duration of three seconds—tone 1 of frequency 440,
and volume 4; tone 2 of frequency 880 and volume 8; and a

r noise of frequency —3 and volume 2—you'd enter:

GENERATOR #? 1
U, DURATION ? 3000

FREQUENCY ? 440
VOLUME ? 4

after which you'd see:
DATA >038E,>0F92,>B400
ANOTHER SOUND ? (Y/N)

Pressing the Y key would let you enter another sound.
GENERATOR #? 2
DURATION ? 3000
FREQUENCY ? 880
VOLUME ? 8

DATA >03AF,>07B4,>B400
ANOTHER SOUND ? (Y/N) Y

GENERATOR #? 4
DURATION ? 3000

FREQUENCY ? -3
VOLUME ? 2

and the final DATA would be:

DATA >02E2,>F1B4

Now you have to join the DATA values. The first byte (num
ber of bytes to be read) is found by adding the first bytes
of each sound to form a new counter byte. That would be >08

i (>03+>03+>02). This is done to load the sounds into
different generators, and thus allow the sounds to play

l_ simultaneously.
The frequency and volume bytes of each sound are writ-

| ten sequentially, but the duration byte is excluded. Remember
that each tone uses three bytes for frequency and sound, while

, noise uses only two. The appropriate bits, in order, are: >8E,
>0F, >92, >AF, >07, >B4, >E2, and >F1. Add a general dura-

i tion byte to the end of the entry. Use >B4 for this example,

171

J
Etapter 10

since it signifies a length of 3000. The complete DATA line for i
the two tones and noise would then be:

DATA >088E,>0F92,>AF07,>B4E2,>F1B4 J
If necessary, the duration byte can be padded with two

trailing zeros (>B4 becomes >B400, for instance) if the mem- mi
ory word is the last in the entry. Otherwise, just complete the
word with the first byte from the next entry. Don't leave zero ***
bytes (>00) in the middle of a sound entry. In other words,
you must not leave unused bytes between tones. For example,
in the DATA directives below, which play two sounds, one
after another:

DATA >038E,>0F92,>7800
DATA >038F,>0794,>3600

the >00 after the >78 is an unused byte, so the >03 of the
following entry can occupy that position. The above should
have been written as:

DATA >038E,>0F92,>7803
DATA >8F07,>9436 ... (and the sound list continues)

Volume Changes
You can also change the volume of a specified generator with
out changing the frequency. The volume of a generator is
specified by one byte. The left digit of the byte tells you what
generator the volume is describing:
>9—generator 1
>B—generator 2
>D—generator 3
>F—noise generator (4)

The right digit of the byte tells you the volume of that gen
erator. Zero (>0) is the maximum volume and >F the minimum *•**
volume, which turns off that generator. -,

Suppose the computer is playing a tone on generator 2. ^
The following DATA will change its volume:
DATA >01B6,>05 ... and so on

>01 specifies that only one byte (the volume byte) must be *&
read into the sound processor. >B6 shows the new volume (6)
of generator 2 (B). >05 is the duration, and the ellipsis in- yj
dicates that the sound list continues.

Once all the sounds have played, you have to stop them. md
All you have to do is specify the minimum volume for each of
1 rjr\ t^aife)

Etopteir W

|^ the generators you want to turn off, and a duration of 0. To
turn off generator 3 (>D), you would use:

La DATA >01DF,>00 ...

The DATA line shows that only one byte will be read, and
*** that generator 3's volume is set to minimum.

To turn off all four generators, minimum volume (>F) is
"* specified for each one. It would take four bytes and would

look like this:

DATA >049F,>BFDF,>FF00

If you don't turn off the sound this way, the last sound will
continue.

Loading the Sound DATA from BASIC
Sound tables can be loaded into VDP memory from BASIC
with the CALL POKEV subroutine. That saves CPU memory
for your own work. Sound lists can be loaded at any free VDP
RAM address, providing they don't interfere with other data in
memory. If your program works entirely in assembly language,
the sound list can be loaded starting at VDP RAM address
>1000.

Assume you wanted to load the data for one tone into
VDP RAM at address 800 and the DATA was the following:
DATA >038D,>2592,>7800

First you need to translate each hexadecimal byte into its deci
mal value:

>03 = 3
>8D = 141

>25 = 37

j >92 = 146
mm >78 = 120

i and then use CALL POKEV to POKE the decimal values into
^ VDP RAM starting at location 800
k CALL POKEV(800,3,141,37,146,120)

If your program runs entirely in assembly language, you can
U*> load the data table into VDP RAM by first writing it in CPU

RAM and then using the VMBW utility to write it to VDP
Mjam+J RAjM.

ii'inSM)

173

Eftapfler 10
ml

Supposing the sound list is at CPU RAM address labeled j
SD and that it will be written to VDP address >1000: l"*a

LIR0,>1000 ,]
LI R1,SD
LI R2,« (Where n is the number of bytes in the)

, •,. ,v J {mm
sound list)

BLWP @>6028

SD DATA (Sound data starts here)

Assembly Language Sound Routine
When the data table for the sound has been loaded into mem
ory, you're ready to create the sound.

First of all, we must place the address in VDP RAM of the
sound data at CPU address >83CC. If the data started at loca
tion >1000, you could use:
LI R9,>1000
MOV R9,@>83CC

Once >83CC is loaded with the data table location, place
a value of >01 in address >83CE for the sound generation to
begin. Finally, the right-hand bit of byte >83FD must be set to
indicate that the sound list is in VDP RAM. To set this bit
without disturbing the others in the byte, use the instruction
SOCB (Set Ones Corresponding, Byte), which sets those bits in
the second byte which are also set in the first byte. SOCB
does not disturb any bits already set in that second byte. To
set bit 7 of >83FD, then, you can use SOCB, comparing it to a
byte which has a value of >01. The right-hand bit in >83FD
will be set and the remaining bits left unchanged. Here's how
it would look in an assembly language program segment:

SOCB @CT,@>83FD

CT DATA>0100

The sound is then started by enabling VDP interrupts with the
LIMI 2 instruction. You must create a loop to wait for the
sound list to be played entirely. When this happens, the value
in >83CE is set to zero. You can then enter:

174

talMfWt

lammi

|i.ii»«*Mm|

CLRR7

LP LIMI2

LIMI 0
CB R7, @>83CE
JNELP

Chapter 10

(Program continues, sound has been played)

Playing Three Simultaneous Tones
The following program plays three tones simultaneously for
4.25 seconds at maximum volume and then stops. The sound
list was found by using the "Creating DATA" utility program
from this chapter. To stop the sound, the program places the
minimum volume in generators 1, 2, and 3 with a duration of
zero. No tones need to be specified when the sound is turned
off.

To specify minimum volume for generator 1, use byte
>9F. For generator 2, byte >BF and for generator 3, byte >DF.
(To make the noise generator silent, specify minimum volume
with byte >FF.) The program thus loads three volume bytes
with a duration byte of zero (>03,>9F,>BF,>DF,>00) after the
entry for the simultaneous tones in the sound list.

Multiple Assembly Language Tones

7D00 LWIP >70B8

7D04 LI R0,>1000

7D08 LI R1,SL

7D0C LI R2,16

7D10 BLWP @>6028
7D14 MOV R0,@>83CC

7D18 MOVB @CV,@>83CE

7D1E SOCB @CV,@>83FD

7D24 CLR R7

(Load memory area for
registers)
(Sound list will be written to
VDP RAM >1000)
(Sound list is at SL in CPU
RAM)
(Sound list is 16 bytes long)
(Write data to VDP RAM)
(Load position of sound list
into >83CC)
(Load >83CE with value of
>01 to start sound generation)
(Set bit 7 of byte >83FD by
comparing it to the byte at CV
which has only bit 7 set)
(Clear R7 for later comparison)

175

Chapter 10

7D26

7D2A

7D2E

7D32

7D34

7D36

7D38

7D40

LP LIMI 2

LIMIO

CB R7,(g»83CE

JNELP
JMP$

CV DATA>0100

SL

(Enable VDP interrupts)
(Disable VDP interrupts)
(Is >83CE zero—sound list
finished?)
(Not yet, stay in loop)
(Sound finished. Stop program
with endless loop)
(Data to be used to prepare
sound generation)

DATA >0989,>3F90,>A92F/>B0CB (Sound list to be
executed)

DATA >23D0,>FF03,>9FBF,>DF00

When you run the program, you'll hear three tones together
for 4.25 seconds.

Generating a Noise
Noises are generated in the same way as tones. The program
below is exactly the same as that above; only the sound list
has to be changed.

This programgenerates a noise at frequency —3 for two
seconds and then stops. For explanations of the instructions,
see the program "Multiple Assembly Language Tones."

Noise

7D00

7D04

7D08

7D0C

7D10

7D14

7D18

7D1E

7D24

7D26

7D2A

7D2E

7D32

7D34

7D36

176

LP

CV

LWPI >70B8

LI R0,>1000
LI RLSD

LI R2,7

BLWP @>6028
MOV R0,@>83CC
MOVB @CV,@>83CE
SOCB @CV,@83FD
CLRR7

LIMI 2

LIMIO

CB R7,@>83CE
JNELP
JMP$

DATA >0100

(The sound list has seven bytes)

tipmsud

Chapter 10

7D38 SD DATA >02E2/>F078

7D3C DATA >01FF,>0000

The noise is stopped by specifying minimum volume of the
noise generator with byte >FF, added at the end of the list
(address 7D3C).

Three Continued Tones
You can even play several tones, one after the other. The
changes at the end of this section make the previous program
play three tones, one by one, and then stop. It's equivalent to
the BASIC program:
100 CALL SOUND(500,131,0)
110 CALL SOUND(800,330,5)
120 CALL SOUND(1200,220,2)

Since single tones are played, only sound generator 1 is used.
The data for each tone would be:

>0386,>3590/>lE00
>0383,>1592,>3000
>038C,>lF91/>4800

and the data to stop sound generator 1 is:
>019F,>0000

But the zero bytes (00) at the end of each DATA line must be
excluded. So the lines should look like this:

>0386,>3590,>1E03
>8315/>9230/>038C (18 bytes of sound data)
>1F91/>4801,>9F00

As the tones are played one after the other, the tone bytes are
loaded in groups into generator 1.

Use the last program, "Noise," to actually play the
sounds. The only values you have to change are the number
of bytes to write into VDP RAM and the sound list. The for
mer are loaded into R2 in address >7D0C:

7D0C LI R2,18

177

1
fcltgitifj

7D38 SD DATA >0386,>3590/>lE03,>8315
7D40 DATA >9230,>038C,>1F91,>4801,>9F00 **•

Simultaneous Sound and BASIC ^
On the TI, you can play a melody or other sounds and have]
your BASIC program working at the same time, since the
BASIC interpreter continues to process information while i
sound is generated. If you start playing a sound list and then
return to BASIC, your program will continue executing while
the sound plays.

The only problem that can crop up when using this tech
nique is that VDP interrupts must be enabled upon return to
BASIC to allow sound. If your BASIC program starts operating
on VDP RAM, strange things might happen. Really the only
way to use this method is to just experiment, looking for best
results.

Sound and BASIC
This program links a BASIC program and an assembly lan
guage program to start playing sound. Control then returns to
BASIC, which continues normally. Sound stops when the list
is finished or when you generate some other sound from
BASIC to interrupt the reading of the list.
7D00 LWPI >70B8 (Load memory area for registers)
7D04 LIMI 0 (Make sure VDP interrupts are

disabled while accessing VDP
RAM)

7D08 LI R0,>1000 (Position in memory where the
sound list will be placed)

7D0C LI R1,SL (Sound list is located in CPU
RAM at label SL) j

7D10 LI R2,158 (Number of bytes in the sound
list)

7D14 BLWP @>6028 (Write sound list to VDP RAM)
7D18 MOV R0,@>83CC (Load position of the sound list in

>83CC)
7D1C MOVB @CB,@>83CE (Start sound generation)
7D22 SOCB @CB,@>83FD (Sound list is in VDP RAM)

7D28 LIMI 2 (Enable interrupts for sound to be
generated)

178

l;stmml

UsmJ

7D30

7D32 CB

7D34 SL

7D3E

7D48

7D52

7D5C

7D66

7D70

7D7A

7D84

7D8E

7D98

7DA2

7DAC

7DB6

7DC0

7DCA

7DD2

701E

7020

7FE0

7FE6

7FE8

Chapter 10

B *R11 (Return to BASIC)
DATA >0100 (Comparison byte for sound

initialization)
DATA >038B,>2390,>1003,>8B1A,>9010 (Sound

list to be played)
DATA>038B,>1A90,>1003,>8C17,>9010
DATA >038C,>1790,>1003,>8315,>900A

DATA>038D,>1190,>0A03/>8315,>9Q0A
DATA>038B,>1A90,>1003,>8B23,>9010

DATA>038B,>1A90,>1003,>8B1A,>9010
DATA>038C,>1790,>1003,>8C17,>9010

DATA>0383,>1590,>2003,>8B1A,>9010
DATA>038B/>2390,>1003,>8B1A,>9010

DATA>038B,>1A90/>1003,>8C17,>9010

DATA>038C/>1790,>1003,>8315/>900A
DATA>038D,>1190,>0A03,>8315,>900A

DATA>038B,>1A90,>0703,>8B1A,>901D

DATA>038E,>0F90,>1E03,>8C17,>9010

DATA>0381/>1490/>1003,>8315,>901E
DATA >038B,>1A90,>16017>9F00

AORG >701E

DATA >7FE0

AORG >7FE0

TEXT 'SOUND

DATA >7D00

END

(Add name and position of the
program to the REF/DEF Table)

Once you've entered the program, press FCTN = (QUIT) and
select TI BASIC. In direct mode, type:
CALL LINKCSOUND")

The melody "Pop Goes the Weasel" will play at the same time
the BASIC interpreter is working. The cursor will appear in its
home position as soon as sound begins. You can write a pro
gram while the melody is playing, list a program in memory,
or whatever you wish.

Sound can be stopped with any CALL SOUND statement:
CALL SOUND(-1,-1,30)

179

Etepter 10

You can also check to see if the program has finished
playing the sound list by checking the value of the byte in ad
dress >83CE. Use CALL PEEK to do this; if the value returned
is zero, the sound list is finished.

The value >83CE in decimal is 33742. Remember,
though, that you have to subtract 65536 from any value
greater than 32767 to arrive at the correct value to use in a
CALL PEEK. 33742 minus 65536 equals -31794. That's the
value to use.

CALL PEEK(-31794,X)
IF X=0 THEN ... (sound list is finished)

The following BASIC program plays the sound list loaded
previously into memory over and over until a key is pressed:
100 CALL LINK("SOUND")
110 CALL KEY(0,K,S)
120 CALL PEEK(-31794,X)
130 IF X=0 THEN 100

140 IF S=0 THEN 110

150 CALL SOUND(-1,-1,30)
160 END

Endless Possibilities
The possibilities of using sound on your TI are almost endless.
But sound has really only been introduced in this chapter. Di
rect access of the sound and noise generators gives you greater
control on all sounds executed, and the fact that you can play
complete melodies at the same time your program is running
gives you even more flexibility. Don't be afraid to experiment
when creating sounds—you'll learn and have fun at the same
time.

180

tamm

m Chapter 1 1
Graphics Modes
on the TI

J.

a

j

_

.a

j

a

*0^^

Ism*)

Not only can your TI-99/4A display sprites and play sound
{m* and music, it's also an excellent graphics machine. Assembly
[language programming gives you even faster access to these
^ graphics capabilities, allowing you to do things quickly and

easily.
The TI has four different graphics modes: text, graphics,

multicolor, and bitmap. In this chapter, you'll learn about each
mode's features, as well as see examples of each. Most im
portantly, you'll see how the VDP write-only registers are
used.

The VDP Write-Only Registers
The Video Display Processor (VDP) chip in your computer
uses a set of 8 registers, different from the 16 registers you've
been using up to now. These 8 registers are called the VDP
write-only registers. They contain information about screen
color, current graphics mode, sprite magnification, and table
positions, among other things. Let's take a closer look at the
registers.

Changing Values
Each VDP register holds one byte of information. This byte
contains a lot of information, for each of its eight bits—
depending on whether each is set to a 1 or 0—can hold a dif
ferent piece of data. To change the value of a VDP register,
you must first determine which bits of the byte must be set
(contain a 1) and which reset (contain a 0).

Assume you want,VDP register 3 to have bits 3, 5, and 6
f set and the rest reset. The byte would look like this:
^ Bits: 01234567

Bit Value: 128 64 32 16 8 4 2 1
L* 00010110

I Thus the binary number to write into VDP register 3 would
be:

Lp 00010110

To arrive at the decimal value of the byte, simply add the val-
**•* ues of all bits that are set.

0 + 0 + 0 + 16+ 0 + 4 + 2 + 0 = 22 (decimal)

Ifffi^J

Chapter 11

Decimal 22 is the same as >16 (hexadecimal). To write the
new byte value (>16) into VDP register 3, use the VWTR
(VDP Write To Register) utility at address >6034. Your
workspace register 0 (RO) must have its left byte loaded with
the VDP register you want to change (>00->07, to indicate
the eight VDP registers), and the right byte loaded with the
new value you want to assign (in this case, >16). So you'd
enter:

LI R0,>0316 (Load RO with VDP register [>03] and the
value to write to it [>16])

BLWP @>6034 (Write the new value to VDP register 3)

VDP Registers Descriptions
VDP register 0. Bits 0-5 of this register are not used and

must be reset (a 0 in each). Bit 6 determines whether the com
puter is in bitmap mode. If the bit is set, the computer is in
bitmap mode. Bit 7 enables external video when set and dis
ables it when reset. This bit is reset (0) for most applications.

VDP register 1. It contains memory, screen, and graphics
mode information. When you change the value in this register,
the new value must also be placed at CPU RAM address
>83D4. If you don't, the register is reset to its original value
when a key is pressed. The computer writes the value at loca
tion >83D4 into VDP register 1 each time a key is pressed.
That's how the register is constantly updated. This process is
necessary only for this VDP register.

The eight bits of VDP register 1 tell you the following:
If bit 0 is set, it indicates you're executing a 16K RAM op

eration; if it is reset, a 4K RAM operation. Leave it set for your
applications.

If bit 1 is set, display on the screen is visible. If reset, any
thing on the screen is transparent and all you'll see is the
screen color. Set this bit in your applications.

Bit 2 allows VDP interrupts if it's set and does not if it's
reset.

Bit 3 puts the computer in text mode if the bit is set.
Bit 4 places the computer in multicolor mode if it's set.
Bit 5 is not used and you should leave it reset.
Bits 6 and 7 contain sprite information. If bit 6 is reset,

you're using normal-sized sprites; if it's set, enlarged (four
characters in area) sprites. If bit 7 is reset, you're using un-

184

Ltmm)

Chapter 11
(,affi

tamA

r

[

magnified sprites; if set, magnified sprites. This is explained in
more detail in Chapter 9.

1

Isanti

VDP Register 1

Bit

Number Effect When Set Effect When Reset
tsaamJ

0

1

2

3

4

5

6

7

16K RAM 4K RAM

Screen display visible Screen display transparent
Enable VDP interrupts Disable VDP interrupts
Text mode

Multicolor mode

(Should be left reset)
Enlarged sprites Normal-sized sprites
Magnified sprites Unmagnified sprites

VDP register 2. This register indicates the location of the
table describing the screen. As you've seen in previous chap
ters, to display something on the screen, you print it in any of
768 positions, 0 through 767. What you were actually doing
was writing that character to the Screen Image Table, which
starts at VDP address >00. Because this table represents the
screen, whatever you write to it is visible.

This table does not necessarily need to occupy the first
positions in VDP RAM and can be located in other areas,
according to the value which is found in this register. The de
fault value of >00 informs the computer that the table is lo
cated starting at location >00.

The table's starting address can be found by multiplying
the value in this register by >400 (1024 decimal). A value of
>00 here makes the table begin at >0000 (>00 X >0400),
while a value of >01 starts the table at >0400 (>01 X >0400).
For more information, see the section "Moving Tables."

VDP register 3. This register contains the starting location
of the Color Table. To calculate the table's starting address,
the value in this register is multiplied by >40. A value of >02
starts the Color Table at >80 (>02 x >40).

VDP register 4. This register holds the starting address of
the Pattern Descriptor Table. Multiply the value here by
>0800 to find the starting location. If >00 is here, the table
begins at >0000. A >01 indicates >0800 is the first address, a
>02 means the table begins at >1000, and so on.

185

Chapter

VDP register 5. Register 5 lets you move the Sprite
Attribute List in memory. To find where the table begins, mul
tiply the value in the register by >80. For the Sprite Attribute
List to start at >0100, for instance, a >02 would be loaded
into this register.

VDP register 6. It defines the starting address of the
Sprite Descriptor Table in VDP memory. The starting address
is the product of the value in the register and >800. For ex
ample, >02 in this register places the Sprite Descriptor Table
from address >1000 on.

(Note: The Sprite Motion Table cannot be moved in mem
ory, and always has a starting address of >0780.)

VDP register 7. This register contains the screen color
information. If the computer is set in text mode, the left digit
of the byte defines the color of all characters on the screen. In
any of the graphics modes, the right digit of the byte indicates
the background color, or the color of the screen. A value of
>A1, for instance, creates yellow characters on a black screen
in text mode, or makes the screen blank in any of the other
modes.

Moving Tables
Different information tables in VDP RAM can be moved
around simply by changing the value in a VDP register. For
many applications, moving the tables will be necessary, but
you should try to avoid doing so if possible. It just complicates
things.

A table you can safely move is the Screen Image Table,
which represents the screen. But why would you want to
move this particular table? Let's look at a good reason.

If you wish to instantly change from one screen to an
other, such as from one detailed graphics picture to the next,
you can draw the second screen in another memory area and
then just change the value in VDP register 2 to point to the
second picture. The first screen will be instantly replaced by
the second.

If you've never seen this done, the best way to explain it
is to show you an example. The next program displays THIS
IS SCREEN ONE on the visible screen (0-767), and places a
second message in a free memory area starting at >1000. The
second screen will not be visible. Once a key is pressed, the
pointer to the screen table in VDP register 2 changes to point

186

^jjjgjii)

i
hlmiiteA

i

[wSataal

l.-M^mi

^ffaftf

Chapter 11

to the memory area which contains the second message. The
first message is instantly replaced by the second.

The original message will still be in memory, just not vis
ible on the screen. Though you're only changing a screen mes
sage here, keep in mind that complete graphics scenes can be
placed in memory and the entire display changed by altering
the pointer value in VDP register 2. The process would be just
the same.

Screen Switching

7D00 LWPI >70B8

7D04 LI R0,>012C

7D08 LI R1,T1

7D0C LI R2,18

7D10 BLWP @>6028

7D14 LI R0,>112C

7D18 LI R1,T2

7D1C LI R2,9

7D20 BLWP @>6028

7D24 CLR @>8374
7D28 CLRR1

7D2A LP BLWP@>6020

7D2E MOVB @>837C,R1

7D32 COC @BT,R1

7D36 JNE LP

(Load the memory area for the
registers)
(Screen position [300] to display
text)
(Text at CPU address labeled Tl)
(Length of the text)
(Write multiple bytes to VDP
RAM)
(Position in VDP RAM where the
second message will be written)
(Position of the second text in
CPU RAM)
(Length of the second text)
(Write the second text to VDP
RAM. It won't be visible because
the Screen Image Table starts at
>00 and goes to >0300)
(Standard keyboard scan)
(Prepare Rl to receive the status
byte in the KSCAN loop)
(Branch to execute the KSCAN
routine)
(Move the status byte into the left
byte of Rl)
(Compare Ones Corresponding
with the value at BT)

(No key has been pressed. Return
to KSCAN loop)

187

Chapter 11

7D38 LI R0,>0204 (Key has been pressed. Prepare to
write >04 into VDP R2 because

>04 X >0400 = >1000. The
Screen Image Table will then be
gin at >1000)

7D3C BLWP <g»6034 (Write the value to the VDP
register)

7D40 JMP$ (Stop program with an endless
loop)

7D42 BT DATA >2000 (Comparison value for the
KSCAN loop)

7D44 Tl TEXT 'THIS IS SCREEN ONE' (First text to be
displayed)

7D56 T2 TEXT 'SCREEN #2' (Second message to be
displayed)

When you run the program, the message THIS IS SCREEN
ONE will appear on the screen. You can see the message be
cause the Screen Image Table is located from >00 to >0300
and the message prints from position >012C. The second mes
sage (SCREEN #2) is also placed in VDP RAM, but at >112C,
an area not on the screen. When you press any key, the
pointer to the Screen Image Table is changed to display the
bytes from >1000 to >1300. This makes the first message van
ish (though it's still in memory, where you wrote it initially)
and replaces it with the second message, now in a visible
memory area. You'll also see the words Line-by-Line Assembler
and © 1982 77, unless you've overwritten them with some
thing else.

Again, try to avoid moving the other tables unless they
have to be located at another area and the documentation tells
you where. If you don't need to move the tables, but you
want to relocate them, it's a good idea to experiment until
you're sure where the tables are, and you're certain they won't
interfere with each other, or with other data in VDP memory.

Graphics Mode
When the computer is in graphics mode, the screen is divided
into 32 columns by 24 lines. You can define and set the colors
of each of 255 characters, and you can use sprites. The graph
ics mode is the one used by BASIC and by most applications.

188

i^s)

{■♦Ml

CBiapter 11

Using the graphics mode has already been described in Chap
ter 8.

^ Text Mode
When the computer is in text mode, the screen is divided into

^** 40 columns by 24 lines. To set the computer in text mode, bit
, 3 of VDP register 1 must be set (contain a 1). The Pattern
™" Descriptor Table is the same as in graphics mode, but each

character has a 6 X 8 pixel definition. The Screen Image Table
also changes; it doesn't run from 0 to 767 as in graphics mode,
but from 0 to 959. Text mode has 960 screen positions.

You can't use sprites in text mode and you have only two
available colors: foreground and background. All characters
are the same color.

The color used in text mode is set in VDP register 7. The
left digit of the byte is the foreground color and the right digit
the background color. An example of a program working in
text mode is the Line-by-Line Assembler.

Remember that when you change the value of VDP reg
ister 1, to set the computer in text mode or for some other rea
son, you should copy the byte and place the value at CPU
address >83D4.

Setting Text Mode
The next program sets the computer in text mode, makes the
foreground color black (all text will be black) and the back
ground color light red (screen color). The computer automati
cally sets all predefined characters in a 6 X 8 pixel matrix for
use in text mode. Any key you press prints its character on the
screen, starting at screen position 0.

To set the computer in text mode, bit 3 of VDP register 1
I-* must be set. Bits 0, 1, and 2 are set (they are left set for most

applications). Bits 4, 5, 6, and 7 should be reset. The value to
I** be written in VDP register 1 would then be:

11110000 = 128 + 64 + 32 + 16 = 240 = >F0
Lmms\

7D00 LWPI >70B8 (Registers store values starting at
>70B8)

7D04 LI R0,>0719 (Prepare to set the screen and text
^ color. Write the color black [>1]

on light red [>9] into VDP register

U 7)

Chapter 11

7D08 BLWP @>6034

7D0C LI R0,>01F0

7D10

7D14

BLWP @>6034
SWPB RO

7D16 MOVB R0,@>83D4

7D1A

7D1E

CLR @>8374
CLRRO

7D20 CLRR1

7D22 LP

7D26

7D2A

BLWP @>6020
MOVB @>837C,R1
COC @BT,R1

7D2E JNELP

7D30 MOVB @>8375,R1

7D34

7D38

BLWP @>6024
INCRO

7D3A CI R0,961

7D3E

7D40

JLTLP

CLRRO

7D42 JMPLP

7D44 BT DATA >2000

(Write the color byte to the VDP
register)
(Prepare to write >F0 to VDP reg
ister 1 to set text mode)
(Write the value to the register)
(Place the new value written to
VDP register 1 in the left byte of
RO)
(Place it in >83D4 so the com
puter will reset the value of VDP
register 1 each time a key is
pressed)
(Standard keyboard scan)
(First character to be printed in
the first screen position)
(Prepare Rl to receive the status
byte)
(Branch to scan the keyboard)
(Move the status byte to Rl)
(Compare One Corresponding of
the comparison value of BT and
the left byte of Rl)
(If no key has been pressed, stay
in the KSCAN loop)
(Move the ASCII code of the key
pressed to the left byte of Rl)
(Write the byte on the screen)
(Increment the screen printing
position)
(Has the last screen position been
passed?)
(If not, return to the KSCAN loop)
(If it has, reset printing position to
the top-left corner)
(Return to the keyboard scanning
loop)
(Comparison value for the key
board scan)

When you end and run this program, the screen turns light
red and all text on the screen appears in black. Whatever key
you press will display its character on the screen.

190

Aj£g&&^

Chapter 11

If you execute the program with EASY BUG's E com
mand, as soon as you press ENTER, the ?E7D00 message
jumps up and to the right. That's because the graphics mode
screen position of the message is different from the corre
sponding position in the text screen. Text mode, remember,
has 192 more character positions on its screen than the graph
ics mode.

Defining Characters in Text Mode
Characters are defined in the same way in text mode as they
are in the graphics mode. Definitions are written into the
Character Table (see Chapter 8). The only difference is that
characters in text mode are defined in a 6 X 8 pixel grid, two
pixels narrower than the grid used in graphics mode. This is
really no problem; just define the character in an 8 X 8 pixel
grid without using the two right-hand columns. When writing
the character definition, imagine these pixels as being "off," as
illustrated in the figure below.

6X8 Pixels

Unused

"84844878487848FC"

Redefined Asterisk
This program defines character 42 (the asterisk) as a box and
then displays it on the screen.

(Memory area registers will use)
(Prepare colors for the text mode)
(Write the color byte to VDP reg
ister 7)
(Prepare to set the computer in
text mode)

191

, 7D00 LWPI >70B8
Ju.iipaaft

7D04 LI R0,>071F

l.pmWsH

7D08 BLWP @>6034

i 7D0C LI R0,>01F0

iyffift)

Chapter 11

7D10 BLWP <g»6034 (Write the value to VDP register
1)
(Prepare to write the value to7D14 SWPB RO

>83D4)
7D16 MOVB R0,@>83D4 (Place the left byte of RO in

>83D4)
7D1A LI R0,>0950 (Load the position of character 42

in the Pattern Descriptor Table)
7D1E LI R1,DF (Load the position of the defi

nition in CPU RAM)
7D22 LI R2,8 (Definition is eight bytes long)
7D26 BLWP @>6028 (Write the definition to the table)
7D2A LI R0,170 (Load character's print position)
7D2E LI R1,>2A00 (Load the character code)
7D32 BLWP @>6024 (Print the character on the screen)
7D36 JMP$ (Stop program execution)
7D38 DF DATA >FC84,>8484,>8484, >84FC (Character

definition)

Multicolor Mode
If your computer is set in multicolor mode, the screen displays
small, colored boxes. You can set the color of each of these
boxes. The screen itself is divided into 64 columns and 48
rows. Each of the 3072 positions is a 4 X 4 pixel box, as
signed with a color. Sprites may be used. The colors of every
two boxes are described by one byte; since the screen has
3072 boxes, you need 1536 bytes to describe the screen colors.
The Pattern Descriptor Table stores the bytes which define the
colors. The left digit of each byte holds the color of one box,
and the right digit the color of the box immediately to the
right of the first box.

So that each screen position can be identified, you have to
number the screen positions from 0 to 31 for the first four
rows. That takes care of one 128-byte segment. The next four
screen rows are numbered from 32 to 61. That's another 128-
byte segment. This numbering scheme continues to the last
128-byte segment, the last four screen rows, which hold num
bers 160 to 191. The following shows how the screen is
numbered:

192

liiijiriri'i

Chapter 11

Rows Screen Position Number
Numbers of Bytes

1-4 0 12 3 31 128
5-8 32 33 34 35 63 128
9-12 64 95 128
13-16 96 127 128
17-20 128 159 128
21-24 160 191 128

This program segment numbers the multicolor screen in the
above manner. Only the instructions and their explanations
are listed, not addresses for those instructions.

CLR RO (Start at screen position 0)
LI R7,6 (Screen is divided into six 128-byte

segments)
CLR R5 (Initial value of each 128-byte segment

[0, 32, 64, 96, 128, and 160] will be
kept in this register)

LI LI R3,4 (Each 128-byte segment is divided into
four 32-byte groups)

L2 LI R4,32 (Will write 32 bytes on each line)
MOVB R5,R1 (Move the value to be written on that

screen position into Rl for the VSBW
routine)

L3 BLWP @>6024 (Write the value to the Screen Image
Table)

INC R0 (Increment screen printing position)
AI Rl,>0100 (Add one to the value to be written on

the screen)
DEC R4 (Decrease number of bytes left to write

on that line; stay in loop L3)
JNE L3 (If there are still bytes left to write on

that line, stay in loop L3)
DEC R3 (Decrease number of 32-byte groups in

the 128-byte segment left to write)
JNE L2 (If the four 32-byte groups have still

not been written, stay in loop L2)
AI R5,>2000 (Finished with the 128-byte segment.

The numbering of the next segment
will start with a value 32 greater than
the previous segment)

193

Chapter 11

DEC R7 (Decrease number of 128-byte segments
left to write)

JNE LI (If there are segments left, stay in loop
LI)

To clear the screen when you select multicolor mode, you
must make all the squares transparent. As the Pattern Descrip
tor Table, which now stores colors, starts at >0800 and is 1536
bytes long (extends up to >0E00), the following instructions
write the value of >00 into each of the 1536 bytes of the
table:

LI R0,>0800 (Table starts at >0800)
CLR Rl (Value to be written to the table is 0)

LP BLWP @>6024 (Write >00 to VDP RAM)
INC RO (Increase the printing position in the

table)
CI R0,>0E00 (Has the end of the table been

reached?)
JNE LP (If not, stay in the loop)

To set the computer in multicolor mode, set bit 4 of VDP
register 1 by writing the value >E8 into it, as well as saving a
copy of that value in address >83D4. These instructions do
that:

LI R0,>01E8 (Prepare to write >E8 into VDP register
1)

BLWP @>6034 (Write the value to the VDP register)
SWPB RO (Move the value to the left byte of RO)
MOVB R0,@>83D4 (Write it to location >83D4)

An Immediate Example
You can easily see an example of multicolor mode. Since this
mode is set by writing >E8 to VDP register 1, and each time a
key is pressed the computer places a copy of the value at
>83D4 into that register, you can load the value of >E8 into
address >83D4 from BASIC, then press a key. The computer
will be in multicolor mode. Try this: With the Mini Memory
cartridge in place, select TI BASIC. Type in direct mode:
CALL LOAD(-31788,232)

(You loaded the value into -31788 because >83D4 is 33748
in decimal. Since 33748 is greater than 32767, you need to
subtract 65536 from it to arrive at the correct number.)

194

(paimifi

I

lfi^§S

Chapter 11

The value to select multicolor mode is >E8 (232 in deci
mal). When you've typed in the CALL LOAD statement, press
ENTER and then hit any key. Each character on the screen
will be instantly transformed into four small colored squares.
Whatever you type on the screen will appear in these colored
squares. To return the computer to normal, write the value of
>E0 (to reset bit 4) into >83D4. The computer will write that
value to VDP register 1 when a key is pressed. >E0 is 224 in
decimal, so blindly type (you'll see only colored squares,
remember):

CALL LOAD(-31788,224)

and press ENTER. When you hit another key, the computer
will be reset to graphics mode.

Finding the Correct Byte in the Table
Now that you've established a numbering system for the
multicolor screen, you have to be able to determine a particu
lar byte's position on that screen. The calculations aren't that
difficult. Here's how to find the location of the byte in the Pat
tern Descriptor Table which defines the color of a box.

Assume variable X contains the column (0-63) and Y the
row (0-47) of the square whose color you want to change. The
calculations to find the position in the table which corresponds
to that byte are:
XI = X/2
XF = INT(X/2)
Rl = XI-XF

Yl = Y/8
YF = INT(Y/8)
R2 = Yl-YF

^— Q = >0800+YF*256+XF*8+R2 (>0800 is the position where the
Pattern Descriptor Table begins

L* when the program has not been
called from BASIC)

**•* The value Q is the position in the table of the byte you want
to change. Once you've found the byte, you have to determine

^ which digit of that byte represents the box you want to alter.
Rl's value indicates this. If the value in Rl is 0, change the left

J-* digit. If it's 1, change the right digit.
Let's see an application of this procedure. "Box Draw,"

**" the program below, runs entirely in assembly language and

195

Chapter 11

lets you draw colored lines, four pixels wide, on the screen.
The arrow keys control the line's direction. In effect, it's an
electronic doodle pad. Pressing the 1 key changes the screen
color, pressing 2 alters the color of the lines (from that mo
ment on), and pressing the 3 key clears the screen. Pressing
"FCTN = (QUIT) returns you to the master screen.

Box Draw
The program listing has been divided into segments, each part
generally described, with a short explanation included beside
each instruction. Note that the computer is set into text mode
at the beginning of the program, and is left that way until the
screen initialization is finished. This is done so the user won't
see all the screen numbering and clearing processes taking
place.

The first section directs the computer to the correct place
in memory and sets the computer in text mode, with back
ground and foreground colors both black. The program uses
16 labels, so it starts at address >7D20 to leave room for 17.
Remember that the last is a null entry (see Chapter 4, the sec
tion named "Saving Memory: Fewer Labels," for more
details).

7D00 AORG >7D20 (Prepare to start program at ad
dress >7D20)

7D20 LWPI >70B8 (Load memory area for the
registers)

7D24 CLR @>8374 (Standard keyboard scan)
7D28 LI R0,>0711 (Prepare to make the screen black

on black)
7D2C BLWP @>6034 (Write the color byte to VDP reg

ister 7)

7D30 LI R0,>01F0 (Prepare to write >F0 to VDP reg
ister 1)

7D34 BLWP @>6034 (Set the computer in text mode)

Initialize the screen by numbering it in 128-byte segments as
earlier explained. The next three loops do this.
7D38 CLR RO (Start at screen position 0)
7D3A LI R7,6 (Six 128-byte segments to write)
7D3E CLR R5 (R5 will control the value to be

written to the screen)

196

(tfv%f<

fem%j

j.aafy^

7D40 LI LI R3,4

7D44 L2 LI R4,32

7D48 MOVB R5,R1

7D4A L3 BLWP@>6024
7D4E INC RO

7D54 DECR4

7D56 JNE L3

LD58 DECR3

7D5A JNEL2

7D5C AI R5,>2000

7D60 DECR7

7D62 JNE LI

Oiiapter 11

(Four lines in each 128-byte
segment)
(32 characters on each line)
(More values to be written to the
screen for the VSBW routine)
(Writes the value to the screen)
(Increase by one the value to be
written to the screen)
(Decrease number of bytes
remaining to be written on that
line)
(If the end of the line has not
been reached, stay in loop L3)
(Decrease number of lines remain
ing in the 128-byte segment)
(If there are still lines left in the
segment, stay in loop L2)
(The numbering of the next seg
ment will start at a value 32
greater than the previous one)
(Decrease number of 128-byte
segments left)
(If there are still segments left,
stay in loop LI)

The next step is to clear the Pattern Descriptor Table, where
the colors of the boxes on the screen are kept. The program
will first make all the boxes transparent.
7D64 CL LI R0,>0800

7D68 CLR Rl

7D6A LP BLWP@>6024
7D6E INC RO

7D70 CI R0,>0E00

7D74 JNE LP

(The Pattern Descriptor Table
starts at >0800)
(Color to be written is >00
[transparent])
(Write the color to the table)
(Increment position in the table)
(Has the end of the table been
reached?)
(If not, stay in the clearing loop)

Before the main execution loop begins, multicolor mode is set
by writing >E8 to VDP register 1 (the value is also stored at
CPU address >83D4). The initial column of the first block is

197

Chapter 11

set in R3, the initial row of the first block in R4, the initial
screen color in R5, and the initial block color in R14.

7D76 LI R0,>01E8 (Prepare to write >E8 to VDP reg
ister 1)

7D7A BLWP @>6034 (VDP Write to Register to set the
computer in multicolor mode)

7D7E SWPB RO (Prepare to write >E8 to address
>83D4)

7D80 MOVB R0,@>83D4 (Move the left byte of RO to
>83D4)

7D84 LI R3,32 (Column of the initial square)
7D88 LI R4,24 (Row of the initial square)
7D8C LI R5,>0001 (Black is initial screen color)
7D90 LI R14/>9000 (Initial block color)

Multicolor is set. The following section scans the keyboard
and branches to the corresponding routine, depending on the
key pressed.
7D94 LL LIMI 2 (Enable interrupts so the program

can be stopped with FCTN =
(QUIT))
(Disable VDP interrupts again)
(Delay loop)
(Decrease value in R13)
(If not zero, delay loop not
finished)
(Scan the keyboard)
(Prepare Rl to receive the ASCII
of the key pressed)
(Move the ASCII code of the key
pressed into the right byte of Rl)
(Has the S [left arrow] been
pressed?)
(If so, jump to label LT)
(Has the D [right arrow] been
pressed?)
(If it has, jump to label RT)
(Has the E [up arrow] been
pressed?)
(If it has, jump to label UP)

7D98

7D9C

7DA0

7DA2

LIMIO

LI R13,2000

DEC R13

JNE $-2

7DA4

7DA8

BLWP @>6020
CLRR1

7DAA MOV @>8375,R1

7DAE CI Rl,83

7DB2

7DB4

JEQLT
CI Rl,68

7DB8

7DBA

JEQRT
CI Rl,69

7DBE JEQUP

198

LqpmiA
Chapter 11

Lm^si

l^ij^J

faMffi

7DC0 CI Rl,88 (Has the X [down arrow] been
pressed?)

L^ssH
7DC4 JEQDN (If so, jump to label DN)
7DC6 CI Rl,49 (Has the 1 [change screen color]

f been pressed?)
L^mffi

7DCA JEQSC (If it has, jump to label SC)

kfmml
7DCC CI Rl,50 (Has the 2 [change block color]

been pressed?)
7DD0 JEQBC (If it has, jump to label BC)
7DD2 CI Rl,51 (Has the 3 [clear screen] been

pressed?)
7DD6 JEQCL (If so, jump to label CL)
7DD8 JMPLL (For any other key pressed, or no

key pressed at all, stay in the
KSCAN loop at LL)

Next enter the routines to increase or decrease the coordinates
of the block which changes the color as various arrow keys are
pressed.
7DDA LT DECR3 (Left arrow pressed. Decrease col

umn of block)
7DDC CI R3,-l (Has it passed column 0?—block

out of screen)
7DE0 JNEDR (If not, jump to color the block at

label DR)
7DE2 CLRR3 (Block out of screen. Reset its

position)
7DE4 JMPDR (Jump to color the block at DR)
7DE6 RT INCR3 (Right arrow pressed. Increase col

umn of the block)
7DE8 CI R3,64 (Has it passed the last onscreen

column [63]?)
7DEC JLTDR (If not, jump to color the block at

DR)
7DEE LI R3,63 (Block out of screen. Reset its

position)
7DF2 JMPDR (Jump to color the block at DR)
7DF4 UP DECR4 (Up-arrow key pressed. Decrease

block's row value)
7DF6 CI R4,-l (Is it past the top row, row 0?)

199

11

7DFA JNE DR

7DFC CLR R4

7DFE JMP DR
7E00 DN INCR4

7E02 CI R4,48

7E06 JLT DR

7E08 LI R4,47

7E0C JMP DR

(If not, jump to color the block at
DR)
(If it is, reset the row value of the
block)
(Jump to color the block at DR)
(Down-arrow key pressed. In
crease block's row value)
(Check to see whether it's within
the screen bottom)
(If it is, jump to color the block at
DR)

(If it's out of bounds, reset block's
row value)
(Position reset. Jump to color the
block at DR)

The following routine changes the color of the screen each
time the 1 key is pressed. In this routine, if the value of the
color code for the screen is >F, it's reset to >0 before in
crementing by one. The right byte of R5 will then be updated
to the new color. This value is moved to RO for the VWTR

routine. >0700 is added to RO, for this writes the value >07 to
the left byte of the register without disturbing the right byte.
The VWTR routine is executed; the updated color byte will
have been written to VDP register 7; and the screen color
changed. A delay loop insures that the screen doesn't change
colors too quickly.
7E0E SC CI R5,>000F (Last color, white [>0F]?)
7E12 JNE $+4 (If not, jump to the updating

instruction)
7E14 CLRR5 (Update the color of the screen to

>00)
7E16 INCR5 (Increment R5)
7E18 MOV R5,R0 (Move R5 to RO for the VWTR

routine)
7E1A AI R0,>0700 (Write >07 to the left byte of RO

so the color byte [right byte] of RO
will be written to VDP register 7)

7E1E BLWP @>6034 (Write the new screen color to
VDP register 7)

7E22 LI R13,20000 (Prepare for the delay loop)
7E26 DEC R13 (Decrease the value in R13)

200

mmm)

kemmit

7E28

7E2A

JNE $-2

JMPLL

Chapter 11

(If not zero, stay in the delay
loop)
(Screen color changed. Return to
the main KSCAN loop)

Add the routine to change the block color each time the 2 key
is pressed. Update the value of the block color controlled in
R14. The routine at label DR changes the color of the block
automatically. A delay loop is also added after each change so
that it can be more easily seen.

(Add 1 to the current color code.
If the old code is >F, it's auto
matically reset to >0)
(Prepare for the delay loop)
(Decrease the value in R13)
(If not zero, delay not finished, so
stay in loop. Otherwise, continue
execution with the DR routine to

change block color)

When the block has to be colored, the program calculates the
position of the byte in the Pattern Descriptor Table
corresponding to the block. (The following calculations were
presented in the previous section "Finding the Correct Byte in
the Table.")

7E38 DR LIR15,2

7E2C BC AIR14,>1000

7E30 LI R13,20000

7E34 DEC R13

7E36 JNE $-2

7E3C MOV R3,R7

7E3E CLRR6

7E40 DIV R15,R6

7E42 MOV R4,R9

7E44 CLRR8

7E46 LI R15,8

(Load 2 into R15. R3 has to be di
vided by two)
(Move the block's column to R7
for the division)
(Prepare R6 for the division. R6
and R7 [OOOOOOre, where xx is
the column value] will be divided
by the value in R15)
(Execute the division. The quo
tient is placed in R6 and the
remainder in R7)
(Prepare to divide the row value
by eight. Place the row value in
R9)
(Clear R8 for the division)
(Row of block will be divided by
eight)

201

^gMa&ji

Chapter 11

feUJyg}

t^ggj

7E4A DIV R15,R8 (Execute the division. The quo
t^iaa!tient will be placed in R8 and the

remainder in R9) "1

7E4C SLA R6,3 (Multiply the quotient of the first
division by eight by shifting every
bit in R6 three positions to the
left. See Chapter 6)

ImmA

7E4E SLA R8,8 (Multiply the quotient of the sec
ond division by 256 in the same
way)

taiSapi

7E50 A R6,R8 (Add the result of both
multiplications)

7E52 A R8,R9 (Add the remainder of the second
division. The answer will be

stored in R9)
7E54 AI R9,>0800 (Add the position in VDP memory

where the pattern table begins.
The position of the byte that con
trols the color of the block is
stored in R9)

7E58 MOV R9,R0 (Move the value to RO for the
VSBR routine)

7E5A CLRR1 (Value read from the table will be
placed in Rl)

7E5C BLWP @>602C (Read the color byte from the
table)

7E60 MOV R1,R10 (Store the color byte in RIO)

Now that the program's read the byte from the Pattern
Descriptor Table, it must decide whether to change the right
digit or the left digit of the byte. The program will consider
only the left byte of all memory words. The right byte will be
zero.

First of all, the unused digit, the digit to change, is cleared
using the ANDI instruction. (See Chapter 12 for details of this
instruction.) The new color digit is then written into the un
occupied location.

For example, suppose the color byte to change is >5300
(>53) and you want to exchange the 5 with a 1. First of all,
the 5 is changed to a 0, so the color byte will be >0300. This
is done with the logical instruction ANDI, comparing the color
byte to be changed with the byte >0F00. The bits which are

202

set in both bytes will be set in the new byte. All other bits will
be reset. It works like this:

>5300: 0101001100000000
>0F00: 0000111100000000

results in

ANDI: 0000001100000000

which is >0300.
In this way, the unnecessary digit of the color byte is

cleared. Now the value 1 is added to complete the process:
>1000 + >0F00 = >1F00 (updated color byte)

When the other digit of the color byte has to be changed,
the ANDI instruction is used with the old color byte and the
byte >F000. For example, if the color byte is >1300 and the 3
has to be changed to 2:

Bytes >1300 \ "*
>F000J ANDI >1000

>1000 \ "t
>0200 J AB >1200

In this way, you've been able to change one of two digits of a
byte without disturbing the other. (If the ANDI instruction is
still not clear, refer to Chapter 12 for a more detailed
explanation.)
7E62 CI R7,0 (Check the remainder of the first

division to determine which digit,
left or right, has to be changed)

7E66 JEQ LD (If the remainder is zero, the left
digit has to be changed. Jump to
label LD to do so)

7E68 ANDI R10,>F000 (Right digit has to be changed.
Clear the right digit, but store the
left digit unchanged by using the
ANDI instruction)

7E6C SRL R14,4 (The new color has to be written
in the second digit of R10. At
present it's stored in the first digit,
so shift all binary digits four po
sitions right, thus moving the
color digit to the second position
of R14)

203

Chapter 11

7E6E AB R14,R10

7E70 SLA R14,4

7E72 AL MOV R10,R1

7E74 BLWP @>6024

7E78 JMPLL

7E7A

7E7E

LD ANDI R10,>0F00

AB R14,R10

7E80 JMP AL

(Write the new color byte into the
right digit of the color byte in
RIO)
(Move the color digit back to its
usual position, the first digit of
R14)

(Move the new color byte into Rl
to write it to the Pattern Descrip
tor Table)
(Write it to the table. RO is still
loaded with the correct address of
the byte)
(Jump back to the KSCAN loop
for a new instruction)
(Change the left color digit. Using
ANDI, clear the left digit of the
color byte and leave the right digit
unchanged)
(Write the new color byte in R14
to RIO. It's not shifted first be
cause it's already in the left digit
of the left byte)
(Left color digit updated. Jump
back to write the new color byte
to the Pattern Descriptor Table)

All that remains is to add the name and position of the pro
gram to the REF/DEF Table. The following instructions do
that:

7E82 AORG >701E

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT 'MULTI'

7FE6 DATA >7D20

7FE8 END

(Add program name and starting
address to the REF/DEF Table.
The program, called MULTI, starts
at >7D20)

End the program and select the RUN option of Mini Memory.
Enter MULTI as the program name and press ENTER. The
screen will go black. When you press one of the arrow keys, a
small, light red 4 X 4 pixel box appears in the center of the

204

jiliMiiiMjj/

Chapter 11

I~ screen. Control the movement of this box, and its resulting
trail, with the arrow keys. Pressing the 1 key changes the

I color of the screen. Continue pressing it until the screen is the
color you want. Hitting the 2 key changes the color of the line

i you're drawing. Press it until the block has the desired color.
Pressing the 3 key erases the drawing on the screen and lets

r you start over. (This is done by sending program control back
to >7D64, where the Color Table is made transparent and the
initial positions of the block and colors are set.) If you want to
draw the blocks slower or faster, change the value in the delay
loop, loaded at address >7D9C, to another value.

You can stop the program by pressing FCTN = (QUIT),
which has been enabled.

Using the Bitmap Graphics Mode
When the computer is set to display in bitmap graphics mode,
each pixel row of a character can have its own foreground and
background color, and you can define each of the screen's 768
characters independently. Sprites can be used in this mode,
but you cannot use automatic sprite motion. The bitmap mode
can be used only on the TI-99/4A computer, not the earlier
TI-99/4.

Three tables are used to describe the bitmap graphics
screen. One is the Screen Image Table, which is 768 bytes
long. Each byte contains the number of the pattern in the Pat
tern Descriptor Table to be placed at that location. Since the
maximum value that can be represented by a byte is 255 and
the screen is formed by 768 bytes, it's divided into three sec
tions of 256 bytes each (0-255). Thus, the first 256 bytes in
the Screen Image Table represent the first 256 entries in the

r - Pattern Descriptor Table, the second 256 bytes represent the
Ubi second 256 entries, and the third 256 bytes on the screen
\—, represent the third group of 256 bytes in the Pattern Image
u- Table

In other words, the patterns of each of the screen's 768
positions are stored in the Pattern Descriptor Table. Keeping

, in mind the fact that each screen location's character definition
^ is eight bytes long, the Pattern Descriptor Table takes up 6144
I bytes (768 X 8).
u"' The third table in bitmap mode is the Color Table, which
, keeps track of the colors of each of the 768 characters on

the screen. We mentioned before that each pixel row of a

UsmA ones

|*ej&j

Chapter 11

character can have its own foreground and background color. i
This means that eight bytes are needed to describe the color of
one eight-pixel row. The left digit of the byte tells you the -?
foreground color of the pixel row, and the right digit the back-
ground color. This table, as the previous two, is divided into i
three groups of 256 entries each. The first 256 entries repre-
sent the colors of the first 256 characters on the screen, the i
second group the next 256 bytes, and so on.

Locating the Tables
As you might have already noticed, the bitmap graphics mode
consumes a lot of VDP memory. When you're preparing to
use this mode, you must place all data tables in convenient
memory areas so that they won't overlap. The best starting
location for the Screen Image Table is at address >1800. The
following lines put it there (again, just the instructions are
listed below, not the addresses to place them at):
LI R0,>0206
BLWP @>6034

The Pattern Descriptor Table is usually placed so that it starts
at address >0000 by entering the following lines. (Note: If you
have the Editor/Assembler manual, the values recommended
for write-only registers 3 and 4 have been changed in the
Addendum.)

LI R0,>0403
BLWP @6034

The Color Table can be located starting at address >2000
with:

LI R0,>03FF
BLWP @>6034

The Sprite Attribute List should also be moved to another
memory address so that it won't interfere with the bitmap ^
graphics screen. Do this by changing the value in VDP register
5. You can load the Sprite Attribute List at address >1B00, ^
right after the Screen Image Table, by loading VDP register 5
with the value of >36. ^j
LI R0,>0536
BLWP @>6034 'J
When you correctly place these VDP tables, they'll appear in 1
memory like this. **&

9Q6 toa^J

hwM#i

VDP Tables

>0

Pattern Descriptor Table

>1800

Screen Image Table

>1B00

Sprite Attribute List

>2000

Color Table

Chapter 11

6144 bytes

768 bytes

1280 bytes

6144 bytes

Finally, you should disable sprites which you won't be using.
Write the value >D0 to the first address of the Sprite Attribute
List to disable all sprites. Otherwise, write it to the first byte of
the entry of the first unused sprite. If you've already moved
the list, it will begin at address >1B00.

To disable all sprites, you would then use:
LI R0,>1B00
LI R1,>D000
BLWP @>6024

Set the Bitmap Graphics Screen
Here, then, are the steps you need to go through when you
set the bitmap graphics mode. It's a good idea to actually go
through this by entering the instructions on the computer,
even though the addresses are not listed below. It'll be good
practice.

Step 1. Set bit 6 of VDP register 0 by writing the value
>02 to it:

LI R0,>0002
BLWP @>6034

207

Chapter

Step 2. Move the Screen Image Table to the starting ad- i
dress >1800 by loading VDP register 2 with the value >06:
LI R0,>0206 1
BLWP @>6034 "

Step 3. Move the Color Table so that it starts at >2000 by <J
loading VDP register 3 with the value >FF:
LI JKU/^03x*r te«l

BLWP @>6034

Step 4. Move the Pattern Descriptor Table to starting ad
dress >0000 by loading >03 into VDP register 4:
LI R0,>0403
BLWP @>6034

Step 5. Move the Sprite Attribute List to another memory
area, such as after the Screen Image Table at >1B00, by load
ing VDP register 5 with >36:
LI R0,>0536
BLWP @>6034

Step 6. Disable the unused sprites. If all sprites are to be
disabled, enter:

LI R0,>1B00
LI R1,>D000
BLWP @>6024

Step 7. Initialize the Screen Image Table by writing the
values 0-255 three times, with the following instructions
(remember that the Screen Image Table starts at >1800):

LI R0,>1800 (Start writing at >1800)
CLR R2 (R2 will keep track of the number of

times the 256-byte segment has been
XT_ ^Jiyij written) J
NQ CLR Rl (Start writing a zero on the screen)
LP BLWP @>6024 (Write the value to the Screen Image l

Table)
INC R0 (Increase screen position to be written) j
AI Rl,>0100 (Increase the value to be written on the ^

screen by one)
CI R1,>0000 (Past >FF, meaning that the last

character has been written?)
JNE LP (If not, stay in the printing loop)
INC R2 (Increase the number of256-byte seg

ments written)

208

Chapter n

| CI R2,3 (Have all three 256-byte groups been
written?)

JNE NQ (If not, repeat the printing loop)

Step 8. Clear the Pattern Descriptor Table and the Color
£_, Table before using the bitmap graphics screen. This is done by

making the colors of the Color Table transparent (>00) and all
j_a character definitions zero with the VSBW utility. Both tables

are >1800 bytes long. The Pattern Descriptor Table starts at
>0000 and the Color Table at >2000. You can then enter

CLRRO

CLRR1

LP BLWP @>6024
INCRO

CI R0,>1800
JNE LP

to clear the Pattern Descriptor Table. A similar loop to clear
the Color Table, which starts at >2000 and extends to >3800
(excluded), would look like this:

LI R0,>2000
CLRR1

L2 BLWP @>6024
INCRO

CI R0,>3800
JNE L2

Creating High-Resolution Graphics
To draw on the bitmap screen once it's been initialized, you
must find the byte in the Pattern Descriptor Table which holds
the pixel you want to set, the bit in that byte you have to set,
and the position of the color byte for that pixel in the Color

iaHi iaDie.

Here's the method to find the correct position in the Pat-
'U& tern Descriptor Table and Color Table of the bytes which have

to be updated: Assume that the variable X contains the col-
U«j umn position of the pixel and Y contains the row position.

First of all, divide the row and column values by eight. Imag-
Lm ine QX as the result and RX the remainder of the division of

X, and QY and RY as the result and remainder of the division
Lssim&i VSJ. X .

The value of variable QY tells you how many complete
L- 32-character rows there are before the line which contains the

(aiaai

209

Chapter 11

character you want to change. The value of QX indicates how
many complete 8X8 pixel characters come before the charac
ter you want to alter.

The location of the character byte in the Pattern Descrip
tor Table is thus given by the formula:
BT = 32*QY+QX+RY

where BT is the byte's location. RY is added in the formula
because it tells you how many pixel rows (or bytes) exist
before the pixel row holding the character you're going to
change.

For example, if the bit to be changed is in row 11 and col
umn 12 of the screen, QX and RX would be 1 and 4 respec
tively (12-^8 gives a result of 1 with remainder of 4). QY and
RY would be 1 and 3 (Hh-8 gives a result of 1 with a remain
der of 3). The formula would then be:
BT = 32*1 + 1+3

The result is 36. Take a look at the figure below for an
illustration of exactly where the pixel is located, and how the
values of QX, RX, QY, and RY locate the byte.

Pixel Location

One complete(
row of 32

characters

before row

with desired

pixel (QY). [
Row 11

One character

(8 X 8) before
character with

desired pixel
(QX).

210

Column 12

Three pixel rows
before the row
with the desired
pixel (RY).

IWfllr

turned

Chapter 11

I RX (the remainder of the division of the column number by
eight) determines the bit of the byte to turn on. Since there are
eight bits, this number ranges from 0 to 7. If the remainder is
0, the leftmost pixel of the eight-pixel row must be set by set
ting the leftmost bit. If the remainder is 7, the rightmost bit
must be set. The bits to set for each possible value of RX are:
Remainder (RX) Bit to be set Byte value
0 10000000 >80

1 01000000 >40

2

3

4

5

6

7

To determine what byte value to use, you can add all eight
possible values in memory starting at a labeled address:
TX DATA >8040,>2010,>0804,>0201

Then, if you load R7, for instance, with the starting position of
this data, and add the value of the remainder previously
loaded in another register (R5, for example), youTl have the
correct byte.

If R5 is 0, byte >80 is arrived at; if the remainder is 1,
value >40; and so on. Then, by using the SOCB instruction,
you can set the corresponding byte read from the table. The
byte with the new pixel set is rewritten to the Pattern Descrip
tor Table.

Once the bit has been set, you must add the color of the
byte which contains the modified bit in the Color Table. Of
course, you have to locate the byte in the Color Table which
stores the color of the changed byte. Because the starting ad
dress of the Color Table is exactly >2000 bytes greater than
the Pattern Descriptor Table, all you have to do is add >2000
to the Pattern Descriptor Table entry address to arrive at the
correct position in the Color Table.

The color for each eight-pixel row is assigned by a hexa
decimal byte. The byte's left digit assigns the color of the
pixels that are set and the right digit sets the color of reset
pixels. Write this byte to the Color Table and the pixel row is
assigned a color.

211

HJHff

00100000 >20

00010000 >10

00001000 >08

00000100 >04

00000010 >02

00000001 >01

Chapter 111

A short assembly language routine on page 336 of the j
Editor/Assembler manual allows you to calculate the byte to be
changed in the Pattern Descriptor Table. The routine is a short j
method to perform the calculations mentioned before, without
having to use the DIV instruction. RO must be loaded with the |
column value of the pixel to be set, and Rl with the row
value. At the end of the routine, R4 is loaded with the po- i
sition in the Pattern Descriptor Table of the byte, and R5 with
the remainder of the division of the column number.

This is the routine, reproduced courtesy of Texas In
struments, Incorporated.
MOV R1,R4
SLA R4,5
SOC R1,R4
ANDI R4,>FF07
MOV R0,R5
ANDI R5,7
A R0,R4
S R5,R4

The corresponding position in the Color Table is found by
adding >2000 to the value in R4. To set R7 with the correct
bit, use the following instructions, as earlier explained:

LI R7,TX
A R5,R7
SOCB *R7,R1 (Where Rl is the old value byte read

from the Pattern Descriptor Table)

TX DATA >8040/>2010/>0804/>0201

Hi-Res Bouncer
This bitmap mode program draws a diagonal line on the - j
screen. When the line encounters a screen edge, it changes
direction. The line continues, eventually creating a pattern on • j
the screen. Each dot position is calculated by adding 1 or —1 ""*
to the row and column positions of the pixel, according to the i
direction of the line. J

The first part of the program sets the VDP tables in the •: j
appropriate memory areas. ***

21 2 ""tfiip

WaBtel

EBsapter 111

bjMiil

f

7D00 LWPI >70B8 (Load memory area for the
tammis? registers)

luSaaaid
7D04 LI R0,>0002 (Load VDP register 0 with >02 to

select bitmap mode)

fcffi^^t)

7D08 BLWP @>6034 (VDP Write To Register)
7D0C LI R0,>0206 (Screen Image Table placed start

l;-mitmi

ing at >1800)
7D10 BLWP @>6034 (VDP Write To Register)
7D14 LI R0,>03FF (Prepare to place the Color Table

starting at >2000)
7D18 BLWP @>6034 (VDP Write To Register)
7D1C LI R0,>0403 (Prepare to move the Pattern

Descriptor Table to start at >0000)
7D20 BLWP@>6034 (VDP Write To Register)
7D24 LI R0,>0536 (Prepare to move the Sprite

Attribute List to the memory area
beginning at >1B00)

7D2C LI R0,>0701 (Screen will be black)
7D30 BLWP @>6034 (VDP Write To Register)

The Screen Image Table is initialized by numbering it three
times (0-255).
7D34 LI R0,>1800

7D38 CLRR2

7D3A LI CLRR1

7D3C L2 BLWP @>6024
(fcW^ 7D40 INCRO

7D42 AI Rl,>0100
I^MjJIjJIj)

7D46 CI R1,0
IjMflifl

7D4A JNEL2
LammA 7D4C INCR2

lii^Ma.1 7D4E CI R2,3

, 7D52 JNE LI

w

(Screen Image Table starts at
>1800)
(R2 will keep track of the times
the screen has been numbered

0-255)
(Value to be written to the screen
address)
(Print the character on the screen)
(Increase screen printing position)
(Increase code of character to be
printed)
(Have the 256 characters been
printed?)
(If not, stay in loop L2)
(Increase number of 256-byte seg
ments that have been printed)
(All three groups printed?)
(If not, stay in the initializing
loop)

213

Ctapfler n

Then the Pattern Descriptor
7D54 CLR RO

7D56 CLRR1

7D58 L3 BLWP @>6024

7D5C

7D5E

INCRO

CI R0,>1800

7D62

7D64

JNEL3
LI R0,>2000

7D68 CLRR1

7D6A

7D6E

7D70

L4 BLWP @>6024
INCRO

CI R0,>3800

7D74 JNEL4

Table and Color Table are cleared.

(Pattern Descriptor Table starts at
position 0)
(Code of character to be printed is
zero)

(Write the character to the Pattern
Descriptor Table)
(Increase the position in the table)
(Has the last table position been
reached?)
(If not, stay in loop L3)
(Color Table begins at address
>2000)
(Value to be written to the table is
zero)
(Print the value to the table)
(Increase table position)
(Has the last position of the table
been reached?)
(If not, stay in loop L4)

Sprites are then disabled and the initial register values are set
to indicate initial position and initial direction.
7D76 LI R0,>1B00 (Sprite Attribute List starts at ad

dress >1B00)
7D7A LI R1,>D000 (Value to be written to disable

sprites is >D0)
7D7E BLWP @>6024 (Write the value to the Sprite

Attribute List)
7D82 LI R8,128 (Load column of the initial pixel)
7D86 LI R9,95 (Load row of initial pixel)
7D8A LI R14,l (Horizontal motion: right)
7D8E LI R15,l (Vertical motion: down)

The main execution loop, which computes the position of the
new pixel to be set, is then added.
7D92 LP A R14,R8 (Move printing position one pixel

left or right, according to the
value of R14)

214

J

L^mt

Ooapier 11

imnggg)

i«immA

(7D94 A R15,R9 (Move printing position one pixel
down or up, according to the
value of R15)

i

7D96 CI R8,256 (Has the right-hand column been
reached?)

kmm&) 7D9A JLT$+4 (If not, jump to the next check)

LawJiHWt

7D9C NEG R14 (It has. Invert the horizontal
direction)

7D9E CI R8,0 (Has the leftmost column been
reached?)

7DA2 JGT $+4 (If not, jump to the third check)
7DA4 NEGR14 (Invert the horizontal movement

direction)
7DA6 CI R9,191 (Has the bottom pixel row been

reached?)
7DAA JLT $+4 (If not, jump to the fourth and last

check)
7DAC NEG R15 (Invert vertical movement

direction)
7DAE CI R9,0 (Has the top pixel row been

reached?)
7DB2 JGT $+4 (If not, skip the following up

dating instruction)
7DB4 NEG R15 (Invert vertical movement

direction)

The next segment calculates the byte in the Pattern Descriptor
Table to be changed and indicates the bit which must be set in
that byte.

(Copy the row value of the pixel
inR4)
(Multiply this value by 32 by
shifting every bit five positions
left)
(Set the bits in R4 which are also
set in R9)

(Keep the left byte of R4 and the
three right bits of the right byte of
R4)
(Copy the column value of the
pixel in R5)

7DB6 MOV R9,R4
1

7DB8 SLA R4,5

(igg^jgjjg)

LsMjd

7DBA SOC R9,R4

l,i»»ip&$

7DBC ANDI R4,>FF07

r:iifw? 7DC0 MOV R8,R5

l.ii'Ssapl

i^Mt
215

Chapter 11

7DC2 ANDI R5,7

7DC6 A R8,R4

7DC8 S R5,R4

(Keep the three right bits of the
word. R5 holds the remainder of

the division by eight)
(Add the column value of the
pixel to be set to the value in R4)
(Subtract the value in R5 from the
value in R4. The byte's position in
the Pattern Descriptor Table is
stored in R4 and the remainder of

the division is stored in R5)

The byte to be changed from the Pattern Descriptor Table has
to be read next. The SOCB instruction is used to set the bit

representing the pixel in the byte read from the table. Once
this bit has been set, the program writes the updated byte
back to the Pattern Descriptor Table.
7DCA MOV R4,R0

7DCC BLWP @>602C
7DD0 LI R7,TX

7DD4 A R5,R7

7DD6 SOCB *R7,R1

7DD8 BLWP @>6024

7DDC AI R0,>2000

7DE0 LI R1,>A000

7DE4 BLWP @>6024

7DE8 JMP LP

216

(Move position of the byte to be
read to RO for the VSBR utility)
(Read the byte from the table)
(Eight value bytes are located
starting at label TX. One of them
represents the byte with the de
sired bit set)
(Add the remainder. This locates
the correct value byte)
(Set the bit of this value byte, lo
cated at the address stored in R7,
in the byte read from the Pattern
Descriptor Table)
(Write the byte back to the Pat
tern Descriptor Table to the same
address it was read from)
(Find the corresponding position
in the Color Table, >2000 bytes
ahead)
(Load the color byte to be written
to that address: dark yellow [>A]
on transparent [>0])
(Write the byte to the Color
Table)
(Jump back to the main control
loop)

a«teii

Yitasjft)

kmna$

j The last section of the program adds the DATA containing the
eight value bytes. The name and position of the program are

I also added to the REF/DEF Table.
7DEA TX DATA >8040,>2010,>0804,>0201

ka^tfri

7DF2 AORG >701E

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT 'BOUNCE'

7FE6 DATA >7D00

7FE8 END

Now you can use the RUN option of the Mini Memory car
tridge to run the program. Just type in BOUNCE and press
ENTER. You'll see the screen initialization taking place, the
screen cleared, and the program begin. (The next program,
"Hi-Res Draw," sets the computer in text mode while the
screen initialization takes place, so it's not visible. There's usu
ally more than one way to create a program.)

Artist's Sketchpad
This next program, Hi-Res Draw, allows you to draw high-
resolution pictures on the bitmap graphics screen. The lines
can be drawn in any of eight directions, screen color and
drawing colors can be changed, and drawing speed can be set
slow or fast. A frame can even be drawn to surround your
graphics if you wish. The keys used to control the program's
features are:

Key Function

S Left

L. D Right
X Down

t'liatty)
E Up
R Up and right

i
W Up and left
Z Down and left

(

C Down and right

|
1 Changes the screen color each time it is pressed

li'.a'its^ml 2 Changes pixel color each time it is pressed

llji'.'.HttiaM,)

3 Slow drawing speed

iiisitpmi
217

Chapter 11

4

K

F

Fast drawing speed
Clears screen, resets initial position and initial colors
Draws a frame around the screen

This is a long program, one of the longest in this book. Enter
each segment carefully. An error may mean having to retype
the whole program. Make sure to frequently recheck the mem
ory address shown on the screen with the address in the pro
gram listing.

As you're entering this program, you'll suddenly return to
the Line-by-Line Assembler title screen and previous instruc
tions you've written will appear. Ignore these and continue
entering Hi-Res Draw. (See the section "The Screen Buffer" in
Chapter 12 for more information on this phenomenon.)

Hi-Res Draw
The first section places you in the correct area of memory to
begin the program, leaving plenty of space for the labels used,
sets the screen to black, and puts the computer in text mode
so the bitmap mode initialization cannot be seen. Once the
bitmap mode has been set, the text screen is canceled.

7D00 AORG >7D30 (Program will start at >7D30)
7D30 LWPI >70B8 (Load memory area for the

registers)
7D34 CLR @>8374 (A standard keyboard scan will be

executed later in the program, so
clear address >8374)

7D38 LI R0,>0711 (Prepare to write >11 to VDP reg
ister 7)

7D3C BLWP @>6034 (VWTR : screen color set to black)
7D40 LI R0,>01F0 (Prepare to write <F0 to VDP reg

ister 1)
7D44 BLWP @>6034 (VWTR : text mode selection)

Locate the tables correctly for bitmap mode and disable the
sprites.

7D48 LI R0,>0206 (Prepare to write >06 to VDP reg
ister 2)

7D4C BLWP @>6034 (VWTR: Screen Image Table lo
cated at >1800)

218

^BHj^

132ggjjtt^
7D50 LI R0,>03FF

b^ffifflSi
7D54 BLWP @>6034

\;sifi^f
7D58 LI R0,>0403

[:imsm^
7D5C BLWP @>6034

7D60 LI R0,>0536

7D64 BLWP @>6034

7D68 LI R0,>1B00

7D6C LI R1,>D000

7D70 BLWP @>6024

Ctapter 11

(Prepare to write >FF to VDP
register 3)
(VWTR: Color Table located start
ing at >2000)
(Prepare to write >03 to VDP reg
ister 4)
(VWTR: Pattern Descriptor Table
located starting at >0000)
(>36 will be written to VDP reg
ister 5)
(Sprite Attribute List located
beginning at >1B00)
(To disable sprites, write >D0 to
>1B00)
(Value to be written is >D0)
(Write the value to the specified
address)

The next step is to initialize the Screen Image Table, which is
located starting at >1800, by writing the values 0-255 three
times on it.

7D74 LI R0,>1800 (Screen Image Table starts at
>1800)

7D78 CLRR2 (R2 will keep count of the number
of 255-byte segments already
written on the screen)

7D7A NQ CLRR1 (Initial value to be written is >00)
7D7C LI BLWP @>6024 (Print the value to the table)
7D80 INCRO (Increase screen printing position)
7D82 AI Rl,>0100 (Increase value to be written)

iffia&ffiffiA 7D86 CI R1,>0000 (Have the 256 values been
printed?)

lial^ 7D8A JNE LI (If not, stay in loop LI)
7D8C INCR2 (Increase number of 255-byte seg

|..:;Mt#»J ments written)
7D8E CI R2,3 (Have all three segments been

l-'^ayj written?)
7D92 JNENQ (If not, return to repeat the print

1 ing sequence)

ts^sm^

1

219

Chapter 11

(mfsJ

'lamyiii

Now the Pattern Descriptor Table and Color Table will be
(jHjgj

cleared by writing >00 to all locations. Both tables are >1800
bytes ilong and are located at >0000 and >2000 respectively.

ttagfea&J

7D94 CS CLRRO (Pattern Descriptor Table begins at
address >0000)

^jjjMMtaa

7D96 CLRR1 (Zero to be written to all
addresses) Jj^Sjj

7D98 L2 BLWP @>6024 (Write the value to the table)
7D9C INCRO (Increase position in the table)
7D9E CI R0,>1800 (Has the end of the table been

reached?)
7DA2 JNEL2 (Ifnot, stay in the clearing loop)
7DA4 LI R0,>2000 (Color Table starts at >2000)
7DA8 L3 BLWP @>6024 (Write >00 to the Color Table

address)
7DAC INCRO (Increase table position)
7DAE CI R0,>3800 (Has the last position been

passed?)
7DB2 JNEL3 (If not, table still not completely

cleared. Stay in loop L3)

Now that the VDP tables have been located and initialized,
the computer is set in bitmap mode and the text screen mode
is canceled. The coordinates of the initial pixel will be set, to
gether with the initial drawing and screen color. The delay
loop value for the drawing speed will be set, and the program
then branches to the pixel drawing routine to display the ini
tial pixel on the screen.

(Prepare to write >02 to VDP reg
ister 0)
(VWTR: select bitmap mode)
(Prepare to write >E0 to VDP reg
ister 1)
(VWTR: cancel text mode)
(Column value of the initial pixel)
(Row value of the initial pixel)
(Initial screen color is black [>01])
(Initial pixel color is dark yellow
on transparent [>A0])

7DB4 LI R0,>0002

7DB8 BLWP @>6034
7DBC LI R0,>01E0

7DC0 BLWP @>6034
7DC4 LI R3,128

7DC8 LI R4,96

7DCC LI R5,>0001

7DD0 LI R6,>A000

220

i

kmn4

Chapter 11

7DD4 LI R15,5000 (Initial delay loop value [drawing
speed] is 5000)

7DD8 BL @DR (Branch to the DR subroutine to
set the initial pixel)

All the initial conditions have been set. The next segment en
ables and disables VDP interrupts so the program can be
stopped with FCTN = (QUIT), executes the delay loop to set
the pixel drawing speed, and scans the keyboard, moving the
ASCII code of the key pressed to Rl for the corresponding
checks.

(Enable VDP interrupts to allow
FCTN =(QUIT))
(Disable VDP interrupts)
(Move the delay value to R2)
(Decrease delay value)
(If not zero, stay in delay loop)
(Branch to scan the keyboard)
(Prepare Rl to receive the ASCII
code of the key pressed)
(Move the ASCII code of the key
pressed to the right byte of Rl)

Once the ASCII code of the key pressed has been moved to
Rl, the program checks and updates the values accordingly. It
first checks to see if one of the four arrow keys (up, down,
right, or left) was pressed, and if one was, updates the pixel
coordinates.

7DF4

7DDC LP LIMI2

7DE0 LIMIO

7DE4 MOV R15,R2

7DE6 DECR2

7DE8 JNE $-2
7DBA BLWP @>6020
7DEE CLRR1

7DF0 MOV @>8375,R1

7DF8

7DFA

7DFC

7DFE

CI Rl,69

JNE $+6

DECR4

JMPCK

CI Rl,88

(Was the up-arrow key [E]
pressed?)
(If not, jump six bytes ahead to
the next check)
(Decrease the row number of the
pixel)
(Jump to the checking routine at
CK. There the pixel value is
checked to see if it's in screen

limits)
(Was the down arrow [X]
pressed?)

221

ftMiifil

Chapter 11

7E02 JNE $+6 (Ifnot, jump six bytes ahead to i
the next check) *•*

7E04 INC R4 (Increase the row number of the j
pixel) <**
(Jump to the screen limits check) i
(Was the right arrow [D] pressed?)
(If not, jump to the next check) J
(Increase column coordinate of the
pixel)
(Jump to the screen limits check)
(Was the left arrow [S] pressed?)
(If not, jump to the next check, six
bytes ahead)

7E18 DEC R3 (Decrease column value of the
pixel)

7E1A JMP CK (Jump to check if the pixel is in
screen limits)

-->

Now the comparisons for the four diagonal directions will be
coded:

7E06 JMPCK
7E08 CI Rl,68
7E0C JNE $+6
7E0E INCR3

7E10 JMPCK
7E12 CI Rl,83
7E16 JNE $+6

7E1C CI Rl,82 (Was the R [up and right] key
pressed?)

7E20 JNE $+8 (If not, jump to the next compari
son, eight bytes ahead)

7E22 DECR4 (Decrease the row value of the
pixel)

7E24 INCR3 (Increase the column value of the
pixel)

7E26 JMPCK (Jump to check if the pixel is still
within screen limits)

7E28 CI Rl,87 (Was the W [up and left] key
pressed?)

7E2C JNE $+8 (If not, jump to the next check)
7E2E DECR4 (Decrease row value of the pixel)
7E30 DECR3 (Decrease column value of the

pixel)
7E32 JMPCK 0ump to screen limit check)
7E34 CI Rl,90 (Was the Z [down and left] key

pressed?)
7E38 JNE $+8 (If not, jump to the next check)
7E3A INCR4 (Increase row value of the pixel)

222

jfemBHfl

ijjmim'}
7E3C DECR3

\IHMiHt\
7E3E JMPCK

j/fliiti^mflft
7E40 CI Rl,67

liia^
7E44 JNE $+8

7E46 INCR4

7E48 INCR3

r';auja>

fySsmuH

Itti&jifflUt

7E52 CI Rl,49

7E56 JEQSC

7E58 CI Rl,50

7E5C JEQLC

7E5E CI Rl,51

7E62 JEQDS

7E64 CI Rl,52

7E68 JEQDF

Chapter 11

(Decrease column value of the
pixel)
(Jump to check if the pixel is in
screen limits)
(Was the C [down and right] key
pressed?)
(Jump eight bytes to the next
check if not)
(Increase row value of the pixel)
(Increase column value of the
pixel)

7E4A JMP CK (Jump to screen limit check)

The keys which change color and speed, clear the screen, or
draw the frame have to be checked.

7E4C CI Rl,75 (Was the K pressed to clear the
screen?)

7E50 JEQ CS (If it was, jump back to the color
initialization routine [clearing the
Pattern Descriptor Table and the
Color Table] in the beginning of
the program)
(Was the 1 key [change screen
color] pressed?)
(If it was, jump to the routine at
SC, where the screen color will be
changed)
(Was the 2 key [change pixel
color] pressed?)
(If it was, jump to routine at label
LC, where the pixel color will be
updated)

,__ (Was the 3 key [slow drawing
^ speed] pressed?)

(If it was, jump to label DS, where
the speed will be set to slow by
changing the delay loop value)
(Was the 4 key [fast drawing
speed] pressed?)
(If it was, jump to DF where the
speed is increased by changing

Lsj the value of the delay loop)

223

Chapter 11

7E6A CI Rl,70

7E6E JEQ FR

7E70 JMP LP

(Was the F key [draw frame]
pressed?)

(If it was, jump to the routine to
draw the frame at FR)
(Ignore any other key by return
ing to the KSCAN loop)

The next segment is the routine to change the screen color
each time the 1 key is pressed.
7E72 SC CI R5,>000F
7E76 JNE $+4

7E78 CLR R5

7E7A INC R5

7E7C MOV R5,R0

7E7E AI R0,>0700

7E82 BLWP @>6034

7E86 LI R2,20000

7E8A DEC R2

7E8C JNE $-2

7E8E JMP LP

(At the last screen color—white?)
(If not, skip the instruction to re
set the screen color to black)
(Make screen color transparent.
When the screen color is next up
dated, it will be black)
(Update screen color by adding
one to the color code)
(Move the color byte for the
VWTR utility)
(Write >07 to the left byte of RO,
where the color is set. >07 is used
because the screen color byte has
to be written to VDP register 7)
(VWTR utility: screen color is
changed)
(Delay value so the color change
can be seen)
(Decrease value of the delay loop
inR2)
(If the delay is not over, stay in
the loop)
(Screen color changed. Return to
the main loop)

The pixel color is changed when the 2 key is pressed by the
following segment.
7E90 LC AI R6,>1000

7E94 LI R2,20000

7E98 DEC R2

224

(Update pixel color by adding one
to the current color)
(Delay to give the user time to re
lease the key, so the pixel color
will not change too quickly)
(Decrease delay value in R2)

ygi

{/•MM})
7E9A

7E9C

JNE $-2

JMPDR

(If not zero, stay in the delay
loop)
(Jump to the drawing routine,
where the pixel color will be
updated)

The routines to set the pixel's drawing speed are included in
the next section.

7E9E DS

7EA2

7EA4 DF

7EA8

LI R15,5000

JMP LP

LI R15,600

JMP LP

This routine draws a frame
loops are used to draw the
7EAA FR MOVR3,R9

7EAC MOV R4,R10

7EAE CLRR3

7EB0 CLRR4

7EB2 Fl BL@DR

7EB6 INCR3

C^flliliad 7EB8 CI R3,256

fk'Btigiil 7EBC JLTF1

li^mimi 7EBE DECR3

7EC0 F2 BL@DR
mSfcptty

7EC4 INCR4

tia&iaail 7EC6 CI R4,192
_ 7ECA JLTF2

limiaMaMt)

la-teal)

(For slow speed, load a delay
value of 5000 in R15)
(Slow speed set. Return to main
control loop, LP)
(For fast speed, load a delay value
of 600 in R15)
(Fast speed set. Return to main
control loop, LP)

when the F key is pressed. Four
four edges.

(Store the current pixel column in
R9 while the frame is being
drawn)
(Store current pixel row in R10
while the frame is being drawn)
(Start drawing the frame at col
umn 0)
(Start drawing the frame at row 0)
(Loop to draw the top edge.
Branch to set the pixel)
(Increase column value)
(Has the right side of the screen
been reached—top edge finished?)
(If still not finished drawing the
top edge, stay in loop LI)
(Right edge drawn in column 255)
(Set the pixel by branching to the
subroutine DR)
(Increase the row of the pixel)
(Has the last row been reached?)
(If not, stay in the drawing loop
F2)

225

Chapter 11

7ECC DEC R4

7ECE F3 BL @DR

7ED2 DEC R3

7ED4 JGT F3

7ED6 F4 BL @DR

7EDA DECR4

7EDC JGTF4

7EDE MOV R9,R3

7EE0 MOV R10,R4

7EE2 B@LP

7EE6 CK CIR3/256

7EEA JLT$+6

7EEC LI R3,255

7EF0 CI R3,0

7EF4 JGT $+6

7EF6 LI R3,l

7EFA CI R4,192

226

(Set R4 ready, to start drawing the
bottom edge)
(Branch to DR and set the pixel
on the screen)
(Decrease the column value of the
pixel)
(Stay in the drawing loop of the
bottom edge as long as column 0
is not reached)
(Start the fourth loop, to draw the
left edge)
(Decrease row value of the pixel)
(If not zero, stay in drawing loop
L4)
(Frame finished. Move position of
the drawing pixel, stored in R9,
back to R3)
(Move the current pixel row back
toR4)
(Return to main control loop. The
B instruction is used because the
address where the main loop be
gins is too far away to be reached
by a jump-style instruction)

The program next checks whether the pixel to be drawn is in
screen limits. If it's not, the row and column values of the
pixel are adjusted.

(Compare the column value to the
maximum column value)
(If it's lower, no updating needed.
Jump to the next check)
(Update column value to maxi
mum column value)
(Compare the pixel column to the
minimum column value)
(If it's greater, no updating
needed. Jump to the next check)
(Update column value)
(Compare pixel row to maximum
row value)

^^e!

IliyMgl

\s^i

7FFE JLT $+6

7F00 LI R4,191

7F04 CI R4,0

7F08 JGT $+6

7F0A LI R4,l

7F0E BL@DR

7F12 B@LP

(CBiapter 11

(If pixel is in screen limits, skip
the updating instruction)
(Pixel off the bottom of the
screen. Reset its position)
(Check if pixel is out the top of
the screen)
(If updating not necessary, skip
the next instruction)
(Update the row value of the
pixel)
(Branch to execute the subroutine
to set the pixel on the screen and
assign it a color)
(Pixel on the screen. Return to
loop LP)

Now the program's ready to calculate the byte from the Pat
tern Descriptor Table which has to be changed, and the value
which will decide which bit of the byte has to be set.

(Move the value in R4 to R12)
(Multiply the value by 32)
(Set the bits in R12 that are also
set in R4)
(Set the bits set in both R12 and
>FF07 in a new word, stored in
R12)
(Move the value in R3 to R13)
(Store only the right three bits of
the word in R13)
(Add the value in R3 to the value
in R12)
(Subtract the value in R13 from
the value in R12)

This gives the position of the byte to be changed in the Pat
tern Descriptor Table (in R12) and the value to indicate which
bit to set (in R13). Now the bit is set, as well as the color of
the pixel.
7F2A MOV R12,R0 (Move the position in VDP RAM

from which to read a value to RO
for the VSBR routine)

7F16 DR MOVR4,R12

7F18 SLA R12,5

7F1A SOC R4,R12

7F1C ANDI R12,>FF07

7F20 MOV R3,R13

7F22 ANDI R13,7

7F26 A R3,R12

7F28 S R13,R12

227

Chapter 11

7F2C BLWP @>602C

7F2E LI R7,TX

7F34 A R13,R7

7F36 SOCB *R7,R1

7F38 BLWP @>6024

7F3C AI R0,>2000

7F40 MOV R6,R1

7F42

7F46

BLWP @>6024
B*R11

(Read the old byte from the Pat
tern Descriptor Table)
(Load R7 with the initial position
in memory of the eight bytes with
the possible set bit combinations)
(Add the value in R13. Indicates
which byte to use)
(Set the bits in the left byte of Rl
which are also set in the left byte
of the word in R7. The new set
pixel will be written to the old
byte read from the Pattern
Descriptor Table)
(Write the updated byte back to
the Pattern Descriptor Table)
(Add >2000 to the value in RO to
get the correct address of the byte
to change in the Color Table)
(Move the color byte to Rl for the
VSBW utility)
(Write the color byte to the table)
(Return from the subroutine)

Finally, DATA is added to the program and the name and po
sition of the program are placed in the REF/DEF Table.
7F48 TX DATA >8040,>2010,>0804,>0201 (The eight value

bytes, with the eight possible

7F50 AORG >701E

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT 'BITMAP'

7FE6 DATA >7D00

7FE8 END

pixel combinations)

Run the program, called BITMAP. The screen will be set to
black. Wait for a few seconds and a dot will light up in the
center of the screen. Use the directional keys to draw lines.
When you select F to frame the screen, it's drawn in the cur
rent color. To change the frame color, alter the color you're
using and hit the F key again. To make the frame disappear,
redraw it with transparent color (the first color after white).

228

j

j

i. '

ygpl

Chapter

You can also make it the screen color, but if you later change
the screen, the frame will again be visible.

Though the program starts off with a black screen, draw
ing on a black screen causes some problems with the colors
(vertical lines tend to differ in color). A good combination to
try is black lines on a white screen.

You can leave the program pressing FCTN = (QUIT).

Resetting the Graphics Mode
When you change the graphics mode on the computer and
want to return to the normal graphics mode used by BASIC,
bit 6 of VDP register 0 and bits 3 and 4 of VDP register 1
must be reset. This can be done with the following lines. (Use
the appropriate instructions according to the VDP register you
want to reset.)

LI R0,>0000
BLWP @>6034 (Reset bitmap mode)
LI R0,>01E0
BLWP @>6034 (Reset text and multicolor mode)

Also, any tables you've moved in memory, particularly if
you've been using the bitmap mode, should be returned to
their normal memory areas.

The following example program displays the message
HELLO on the screen and then writes the value of >02 to reg
ister 0 to set the computer in bitmap mode. When this is done,
no text will be visible on the screen. The keyboard will be
scanned. When a key is detected, byte >00 is written to VDP
register 0, thus returning the computer to graphics mode and
making the text readable on the screen.

Bitmap Back to Graphics

7D00 LWPI >70B8 (Load memory area so program
can be run with EASY BUG)

7D04 LI R0,300 (Screen position where the text
must be displayed)

7D08 LI R1,TX (Position in memory of the text to
be displayed)

7D0C LI R2,5 (Length of the text)
7D10 BLWP @>6028 (Display the text on the screen)
7D14 LI R0,>0002 (Prepare to write >02 to VDP reg

ister 0)

229

Chapter 11

7D18 BLWP @>6034

7D1C CLR @>8374

7D20

7D24

LP BLWP @>6020
MOV @>8375,R1

7D28 CI Rl,255

7D2C JEQLP

7D2E LI R0,>0000

7D32 BLWP @>6034

7D36 JMP$

7D38 TX TEXT HELLO'

(VWTR: set the computer in
bitmap mode)
(Standard keyboard scan to be
executed)
(Branch to scan the keyboard)
(Move the ASCII code of the key
pressed to the right byte of Rl)
(Compare the code to >FF [255]:
no key pressed)
(If no key was pressed, stay in the
KSCAN loop)
(Key pressed. Prepare to reset the
computer to graphics mode)
(Write >00 to VDP register 0.
Graphics mode selection)
(Stop the program with an endless
loop)
(Text to be displayed)

Type END and then run the program from EASY BUG. After
you type E7D00, barely touch the ENTER key. If you press it
too long, the mode switching effect will be obscured.

One More Chapter
After countless examples and illustrations, you've learned how
to program in assembly language. You've created simple
routines and you've created complex programs that turn your
TI into a artist's hi-res sketchpad.

Chapter 12, the next (and last) chapter in this book, offers
a wide selection of hints and tips you'll find extremely useful
as you program in assembly language. From using the limited
and valuable memory of the Mini Memory cartridge to display
ing the value in a register, this section includes numerous
techniques that will help you develop your programming
skills.

230

feifBMif

U

171

• Chapter 12 •
m Assembly•

Lan uage
Programming
Techni ues

J

J

jj

J

a

a

j

a

at

a

Programming in assembly language is easy once you learn
«* how to handle the instructions, directives, and general syntax

and operation of the assembler you're using. Until you have
^ this well in hand, it's best to stay with short and simple

assembly language routines. Try to avoid long and com
plicated programs at first.

An easy way to become more comfortable with assembly
language, and to work towards your goal of creating more
complex programs is to experiment and test the subroutines in
your collection. That's the primary purpose of the examples in
this book. Once you've mastered them, they can easily be in
serted in a larger program.

When you feel ready to tackle a large program, it will
help if you can divide it into segments and test each one in
dividually. Locating errors won't be as difficult. And remem
ber: If your program is long and uses several labels, leave
enough memory for the Symbol Table.

Debugging
If your program does not work as you expected, and you need
to know what values are loaded in each of your registers, you
can use the EASY BUG M command. Select EASY BUG.
Assuming that the memory area for the work registers was
loaded beginning at >70B8, you'd type:
M70B8

immediately after the ? prompt, and then press ENTER. The
values stored in >70B8 and >70B9 are the contents of RO. The
values in >70BA and >70BB are the contents of Rl, and so
on. Remember that using EASY BUG changes the values of
some of the registers.

With EASY BUG, you can check and even change any
value in CPU RAM. To check or modify a value in VDP RAM,
such as values in data tables, use the V command from EASY
BUG.

By the way, you don't need to include the R to indicate
you're using a register while programming. In other words,
LI R3,5 and LI 3,5

233

Issemllf Language
Programming Tecliines

Chapter 12

mean the same thing to the computer. It knows when a value
is meant as a number or when it's meant as a register. The uJ
registers in the example programs in this book have all been
specified with the Rsimply to avoid confusion. nJ

Saving Memory J
When you want to write an assembly language program and
feel you won't have enough memory for it, the best solution is *J
to create all the sections which don't directly affect the pro
gram's execution speed (character definitions, colors, title, and
options) in BASIC, and then link them to the assembly lan
guage program. This will save a considerable amount of
memory.

Loading Your Program from BASIC
An assembly language program can be loaded into the Mini
Memory module or the memory expansion entirely from
BASIC. You can use BASIC'S LOAD subroutine to load sec

tions of the assembly language program to CPU RAM and BA
SIC'S POKEV subroutine to load the values to be written to
VDP RAM. Letting BASIC POKE the assembly language pro
gram into memory allows a BASIC and assembly language
program to be loaded directly with the normal BASIC proce
dure. You won't need EASY BUG's L command to load the
assembly language program separately.

The BASIC program POKEs the machine language pro
gram to memory. But how is it done?

An assembly language program, once it's assembled, is a
list of binary values which are displayed in hexadecimal nota
tion. These instructions can be POKEd directly into memory
from BASIC. For example, in assembly language, the instruc
tion B *R11 is translated to hexadecimal as: ^J
>045B

But >04 is 4in decimal and >5B is 91. If you load the mem- ^
ory address where you want the instruction to be written with i
the values 4 and 91, you would, in reality, be entering B *R11:
CALL LOAD (xxxxxA,91) (Places the instruction B *R11 at the mem- J

ory address xxxxx)

A BASIC program that places an assembly language program J
in memory is called a BASIC loader.

234

Chapter 12

To load a complete assembly language program into
memory from BASIC, you must load its decimal equivalents
one byte at a time. Once the program has been loaded into
memory, you must update the LFAM (Last Free Address of the
Module) at >701E (updating >701C is unnecessary as long as
you're sure that your program does not overwrite the entry
point of the REF/DEF Table). Load the program name and
starting address to the REF/DEF Table just as you've loaded
the program to memory so that the program can be called
with the LINK subroutine from BASIC.

Let's look at an example. First of all, let's enter an assem
bly language program using the Line-by-Line Assembler:
7D00 LI R0,300 (Position onscreen to display text)
7D04 LI R1,TX (Position of text in CPU RAM)
7D08 LI R2,4 (Length of the text to be

displayed)
7D0C BLWP @>6028 (Display the text on the screen)
7D10 CLR @>837C (Clear the status byte to avoid

false errors upon return to BASIC)
7D14 B*R11 (Return to BASIC)

7D16 TX DATA >B4A5,>B3B4 (Text to be displayed. It's
added with the DATA directive

because the screen bias of >60
has to be added to the ASCII code
of each character)

7D1A AORG >701E

701E DATA >7FE0

7020 AORG >7FE0

7FE0 TEXT TRYOUT' (Add the name and address of the
program to the REF/DEF Table)

7FE6 DATA >7D00

7FE8 END

The things you'll have to load into memory are:
1. The program itself, from >7D00 to >7D19 (32000 to 32025)
2. The updating of the LFAM at >701E->701F (28702 and

28703)

235

Chapter 12

3. The name and position of the program at the REF/DEF J
Table (>7FE0 ->7FE7 (32736-32743))

Now that you know where in memory the corresponding ^J
values have to be loaded, the following BASIC program will
read the decimal values (which later will be POKEd into mem- ^J
ory), and then print them.
100 CALL CLEAR J
110 FOR A=32000 TO 32025
120 CALL PEEK (A,DECVAL)
130 PRINT DECVAL;
140 NEXT A

Running this BASIC program would print the values:
2 0 1 44 2 1 125 22
2 2 0 4 4 32 96 40
4 224 131 124 4 91

180 165 179 180

These decimal values are your assembly language program.
To find the values to load in the address of the LFAM,

read the contents of addresses >701E and >701F with:

100 CALL PEEK(28702,A,B)
110 PRINT A;B

These two lines will print the values 127 and 224. These are
the values to load in the address of the LFAM (location
>7FE0).

Finally, to find the values to load the name and position
of the program to the REF/DEF Table, you'd use the BASIC
lines:

100 CALL PEEK(32736,A,B,C/D,E/F,G,H)
110 PRINT A;B;C;D;E;F;G;H

which will return *"J

84 82 89 79 85 84 125
0

These are the values for the name and position of the pro- ^J
gram, since:

82 = R

79 = O

85 = u . ;

(^aSsl

236

iiwe*

Chapter 12

84 = T

125 = >7D
0 = >00

Once you have all the values at hand, you can type NEW and
enter the BASIC program which loads the assembly language
program into memory and links it if desired.

First of all, you need to create a loop to read the decimal
values from a DATA statement and load them into memory at
the correct addresses. That part of the BASIC loader could be:
100 CALL INIT

110 CALL CLEAR
120 FOR A=32000 TO 32025
130 READ DECVAL
140 CALL LOAD(A,DECVAL)
150 NEXT A
160 DATA 2,0,1,44,2,1,125,22,2,2,0,4,4,32
165 DATA 96,40,4,224,131,124,4,91,180,165,179,180

The next line loads the LFAM:

170 CALL LOAD(28702,127,224)

And the name and position of the program is loaded to the
REF/DEF Table with this line:
180 CALL LOAD(32736,84,82,89,79,85,84,125,0)

To link the BASIC program to the assembly language program
at any point, these two lines are needed:
190 CALL LINKC'TRYOUT")
200 END

When you run this program, even if the Mini Memory cartridge
has been reinitialized and has a blank memory, the program
will directly load the assembly language program, the LFAM,
and the REF/DEF Table entry, and then link to it. The mes
sage TEST displays and the program ends.

You've just loaded an assembly language program com
pletely from BASIC.

Using Mini Memory's 4K
When you're working on an assembly language program, you
have only about 760 bytes of the module's 3800 bytes to work
with. This is because the Assembleruses up most of the car
tridge's available memory.

237

Chapter 12

Ma

Fortunately, an assembly language program doesn't need «J
the Assembler once it's ready to run. You can use the 4K RAM
of the module for your program if you want. All you have to ^
do is divide your program into segments, each of which fits in
the 760 bytes available, and then load these segments, one at »J
a time, from BASIC to any location in the module's RAM.

First, create one segment of the program in the usual J
memory area starting at >7D00. When it's completed, trans
late it into its decimal equivalent, just as you saw in the last
section. Do this for each segment. Beginning at >7200, for ex
ample, load the segments, one after the other. Load each so
that it's located immediately after the previous segment. If one
ends at >7940, the next should be loaded at the next available
address, probably >7942 (it depends on the last instruction
used in the first segment).

When all the parts have been loaded, update the LFAM to
the address where the REF/DEF Table begins. The entry ad
dress and name should point to the first segment. Just run it in
the usual manner.

With this technique, you can use the memory occupied by
the Assembler. However, once you've changed the values of
addresses normally used by the Assembler, the Assembler won't
work correctly unless you reload it from tape.

Logical Instructions
Logical instructions come in handy when bits in a byte or
word need to be changed. Depending on the circumstances
(change some bits but not others, or change all bits), you can
select an appropriate instruction. Some of these logical instruc
tions you've already seen. They are:
Instruction Function mJ

CLR CLeaR Resets all the bits in a word.
SRL Shift Right Logi- J

cal Moves all the bits in a word a
specified number of positions ^J
right. Vacant bits are replaced by
zeros. i

SLA Shift Left ^
Arithmetic Moves all the bits in a word a

specified number of positions left. *•"
Vacant bits are replaced by zeros.

238

i

Mapter 12

Lw There are other logical instructions, of course. Here they are,
along with explanations and short examples of how they can

Lu be used.
ORI (OR Immediate). This instruction is used with a reg-

L* ister as first operand and an immediate value as second op
erand. The result of the operation is placed in the register. ORI

\^m causes the bits set in either of the operands to also be set in
the new memory word. For example, if the following words
are compared:

0100101110010110

1001010110101111

the resulting value after ORI is:
ORI 1101111110111111

How about another example? The instruction:
ORI R7,>FF00

lets you know that—whatever the value in R7—the result of
the ORI will have the eight left bits set (because >FF is a byte
will all its bits set). If R7 is loaded with >1803, for instance,
then:

>1803 = 0001100000000011
>FF00 = 1111111100000000

ORI = 1111111100000011

The value now in R7 is >FF03 (65283 decimal).
ANDI (AND Immediate). The ANDI instruction is used

in the same way as ORI, but only the bits set in both words
will be set in the new word. All other bits will be reset.

1011011100010011
0111000110010101

L» ANDI 0011000100010001

The instruction ANDI R7,>000F keeps the right four bits of
^ the word in R7 unchanged. All other bits are reset. IfR7 is
I loaded with >FF05, then

>FF05 1111111100000101
I >000F 0000000000001111
^ ANDI 0000000000000101
U, The new value in R7 is >0005.

XOR (exclusive OR). This instruction is used with a reg-
j^ ister or memory address as first operand and a register as sec

ond operand. The result of the operation is placed in the

239

Chapter 12

second operand (the register). XOR compares the bits of the J
word in the first operand to the bits of the word in the second
operand. The bits which are reset (0) in both words are left re- _j
set. Bits set in both words are reset in the new word. Finally,
the bits set in one word, but reset in the other, are left set in
the resulting word. Sounds complicated, but it's really quite
simple. Just look at the example below.

1010001110111011

1100011101100111

XOR: 0110010011011100

INV (INVert). INV inverts the condition of each bit in a
word. If the bit was reset, it's then set. If it was set, then it's
reset. With the memory word below:

1011011000010101

INV will change it to:
0100100111101010

For example, the instructions
INVR7

INV @>7F00

would change the condition of every bit in the memory word
at R7 and the word at location >7F00.

SETO (SET to One). This causes all the bits of the op
erand to be set. The instructions

SETO R9

SETO @NM

would leave the words at R9 and at label NM with the value
of >FFFF.

SOC (Set Ones Corresponding). SOC sets the bits in the
second operand which are set in the first operand. Set bits in
the second operand which correspond to reset bits in the first
operand remain set. In other words, if a bit is set in either of
the two operands, it ends up set in the result. Consider the
following two memory words:

0100110100011110

0011010100101101

The SOC instruction would result in:

0111110100111111

240

fespter12
Lissmfj

La The instruction uses registers or memory addresses as
operands, and the result is left in the second operand.

I— SOC R7,@>7FE8
j The above instruction, for instance, compares the value at R7
^ with the value at address >7FE8. If the value at R7 is >7A18
j (31256 decimal) and the value at address >7FE8 is >00E8 (232
^ decimal), and the two are compared with SOC, the result

placed in location >7FE8 would be calculated by:
0111101000011000 (>7A18)
0000000011101000 (>00E8)

SOC 0111101011111000

The result is >7AF8 (31480 decimal).
SOCB (Set Ones Corresponding, Byte). It has exactly the

same effect as the SOC instruction, except that the right bytes
of each word are left unchanged.
SOCB R7,R8

The instruction above sets bits in the left byte of R8 which
correspond with bits set in the left byte of R7. Bits set in the
left byte of R8 which correspond to reset bits in the left byte
of R7 remain set. The right bytes of both words remain
unchanged.

If R7 held >7A18 and R8 held >00E8,

0111101000011000 (>7A18)
0000000011101000 (>00E8)

SOCB 0111101011101000

then the result placed in R8 would be >7AE8.
SZC (Set Zeros Corresponding). This instruction resets

bits in the second operand which correspond to set bits in the
first operand. Bits set in the second operand which correspond
to bits reset in the first operand remain set.

1001001101110111 (>9377)
0110100110001001 (>6989)

SZC 0110100010001000

places >6888 in R8.
SZCB (Set Zeros Corresponding, Byte). This has the

same effect as SZC, but only operates with the left bytes of the
two words.

SRA (Shift Right Arithmetic). SRA moves every bit of
the word in the first operand a specified number of positions

241

Chapter 12

Ms

to the right. The vacant bits, instead of being set to zero as Jj
with SRL, are set equal to the sign bit, which is the leftmost
bit of the word to be operated with. If the word value is pos- ^J
itive, the vacant positions are reset. If the value is negative,
the vacant positions are set. (Remember that any value which J
has a decimal equivalent greater than 32767 becomes a neg
ative number.) The instruction operates with a register as first J
operand (where the result of the operation is placed) and an
immediate value as second operand.

The second operand can be 0. If that's the case, the word
in the first operand is shifted right the number of bits equal to
the value of the four least significant bits held in RO. In hexa
decimal, that would be the rightmost digit of the value in RO.
If the value is 0, the bits are shifted 16 positions.

The instruction

SRA Rl,4

would shift the word in Rl four bits to the right. If Rl
contained

1000100100001111

the instruction would result in

1111100010010000

because the bits are all shifted four to the right. The vacant
bits are filled with l's, since that's the sign bit (note that a 1 is
the leftmost bit of the memory word held in Rl).

SRC (Shift Right Circular). This instruction moves every
bit of the word in the source operand a specified number of
positions to the right. The vacant bits are replaced by the bits
which have moved out, so to speak, from the right side of the
word. It's as if the bits wrap around. This instruction also op- ~n
erates with a register as first operand (where the result of the
operation is placed) and an immediate value as second i
operand. *•*

If, for instance, you used the instruction: i
SRC Rl,4

and Rl contained this word: *J

0111000101010001

the SRC instruction would place this word in Rl:
0001011100010101 J

242

Notice that the four rightmost bits (0001) were pushed off the
U word and wrapped around to the left side.

U Displaying the Value in a Register
In many programs you'll want to display the value stored in a

L« register. You'll probably want it shown in decimal.
The following method lets you do so. The hexadecimal

Lp» value is first divided by ten. If you call Q the answer and R
the remainder, then R is the unit digit of the decimal
equivalent.

In general, if X is the hexadecimal value (between >0000
and >FFFF), then the decimal equivalent is found by:

X/10 = Ql, with remainder Rl
Ql/10 = Q2, with remainder R2
Q2/10 = Q3, with remainder R3
Q3/10 = Q4, with remainder R4
Q4/10 = Q5, with remainder R5

The decimal number is then formed by the digits R5-R4-R3-
R2-R1.

The following assembly language program assumes that
the value you want to display is found in R3. This value is
then divided by ten and the remainder placed on the screen
(48 is added to the remainder—this gives the ASCII code of
the digit which is the remainder). The screen displaying po
sition is then decreased for the next digit, and the procedure is
repeated five times (the maximum decimal number that can be
represented in hexadecimal by one memory word is only five
digits long).

Hex to Decimal
The following example demonstrates this technique. It clears

La R3 and then displays the value on the screen. The value in R3
is incremented by one and displayed again. This goes on until

U^ the value in R3 is >FFFR The sequence then repeats.

hsxmjpA

7D00 LWPI >70B8 (Memory area for registers)
7D04 CLR R3 (Value to be displayed in R3. Start

with zero)
7D06 LP BL @DP (Branch to the displaying

subroutine)

7D0A INC R3 (Increase value to be displayed by
one)

243

Chapter 12

7D0C JMP LP
7D0E DP LIR0,305

7D12 MOV R3,R7

7B14 ST LI Rl,10

7D18 CLRR2

7D1A DIV R1,R2

7D1C

7D1E

MOV R3,R1

AI Rl,48

7D22 SWPB Rl

7D24

7D28

BLWP @>6024
DECRO

7D2A CI R0,300

7D2E JNENF
7D30 MOV R7,R3

7D32 B*R11

7D34 NF MOVR2,R3

7D36 JMP ST

(Return to the displaying loop)
(Start the subroutine to display
the value in the register. The last
digit of the number will be dis
played at screen position 305)
(Move the value to be displayed
toR7)
(Start the loop to display the dig
its. Load the value to divide with
inRl)
(Clear R2, the left word of the
two-word value which will be di
vided by ten)
(Divide the value by ten. The
remainder of the division, the
value to be displayed, will be left
inR3)
(Move the remainder to Rl)
(Add 48 to get to the correspond
ing ASCII code of the remainder)
(Place it in the left byte of Rl for
the VSBW utility)
(Display the digit)
(Decrease screen position for the
next digit)
(Has position 300 been reached?
That would mean the five digits
have been printed on the screen)
(If not, jump to NF)
(Move the value from where it
had been stored [R7] back to R3)
(Return from the subroutine to the
main control loop)
(Prepare for the next digit to be
displayed. Move the integer result
of the division from R2 to R3 for
the next division)
(Jump back to divide the new
value)

For negative values, you can check the leftmost bit of the
word value. If it's set (1), the number is negative and you
must print a minus sign before the number. You can calculate

244

. the decimal value as you did earlier. Remember that in this
«•* case, the values that can be represented by a memory word

range from -32768 to 32767.
!**• Using this short routine, you can display scores of games,

answers to calculations, and almost any other number stored
^ in a workspace register.

W The Screen Duffer
While you're writing your assembly language programs, you
can review what you have written by using the up- and down-
arrow keys (E and X keys respectively). You can do this be
cause whatever is written to the screen is stored by the
computer in a memory area which has space for nine complete
screens of text. Once the end of the reserved area is reached,
new screens of text are stored at its beginning. What this
means is that when you're writing long programs, you'll sud
denly find the Line-by-Line Assembler title screen reappearing.
If you check the memory address you're at, you'll find that
you're still in the correct place. Part of what you wrote when
you started out your program will appear. Write your new
instructions over it, just as if it weren't there. Be careful, since
it's easy to get confused when the new instructions become
mixed with the old.

Random Numbers
Here are two methods you can use to create random numbers
in your program. If your assembly language program will be
called from BASIC and you need only a relatively short list of
values to be used just once, you can generate the values in
BASIC and POKE them into memory. If ten random numbers
have to be used in the assembly language program, for ex-

Ugj ample, and these values have to be between 0 and 12, you
can, from BASIC, create these and POKE them to a free mem-

Lm ory area. The following program does that, and loads the val
ues to CPU RAM starting at address >7F00 (32512 decimal).

^— 100 MEM=32512
110 RANDOMIZE

l*> 120 FOR A=l TO 10
13 X=INT(RND*12)+1
140 CALL LOAD(MEM,X)
150 MEM=MEM+1

160 NEXT A

245

Chapter 12

This program loads ten random numbers between 0 and 12
into memory addresses >7F00 through >7F09.

This method is useful when an assembly language pro
gram uses only a few values, and then uses them only once.
When you constantly need to generate random numbers and
your program runs entirely in assembly language, you can use
the random number in address >83C0. This location contains
a different word value each time the computer is reset (with
FCTN = (QUIT), or by turning the computer off).

Try the following: Insert the Mini Memory cartridge and
select EASY BUG. Skip the title screen and type M83C0 to see
the contents of address >83C0. Look at the contents of the

address's least significant byte(>83Cl), too, by pressing EN
TER. Make a note of the word value. Then press FCTN =
(QUIT) and repeat the procedure. Each time you do this, the
word value at >83C0 is different. Now let's see how this can
help, since you can't be expected to constantly reset the com
puter each time you need a random number.

Imagine the value placed at >83C0 as being a memory
address. The value stored at that memory address will be your
first random number (between >0000 and >FFFF). For the
next random number, add any number (>1254, for instance) to
the memory address. This gives you a new address. The value
there will be your new random number, and so on. As you
have no way of knowing your initial memory address, the
numbers generated will be random.

This procedure creates numbers between >0000 and
>FFFF. For smaller values, shift the value in the register with
the SRL instruction, which fills vacant positions with zeros.
With a comparison instruction, you can ignore values you
don't want to accept, sending control back to look for a new
random number. See the following table for a list of the ran
dom values you can expect when you use various SLA
instructions.

Instruction Random Value Range
No shifting 0-65535
SRL RX,1 0-32767
SRL RX,2 0-16385
SRL RX,3 0-8191
SRL RX,4 0-4095
SRL RX,5 0-2047
SRL RX,6 0-1023

246

J

^li:;^aa^

BiMiri

''ilff*

SRL RX,7
SRL RX,8
SRL RX,9
SRL RX,10
SRLRX,11
SRL RX,12
SRL RX,13
SRL RX,14
SRL RX,15

0-511

0-255

0-127

0-63

0-31

0-15

0-7

0-3

0-1

Chapter 12

The following program calculates a random number be
tween 0 and 767 (one number for each possible screen po
sition) and prints an asterisk at that address. This will continue
until 300 asterisks have been printed (the entire screen won't
be filled). The program then stops.

(Load memory area for the
registers)
(Move random initial value to R3)
(Clear R15, which keeps track of
the asterisks printed)
(Move the value stored at the ad
dress in R3 to R5)
(Make it a random value between
0 and 1023. Screen goes up to 767
and starts at 0)
(Check whether the random num
ber is between 0 and 767)
(If it's greater, jump to CT, where
the program gets ready to choose
a new random number)
(Jump to print the asterisk)
(Change the address to select a
new number)
(Jump back to select a new ran
dom number)
(Move the asterisk's screen po
sition to R0 for the VSBW utility)
(Load the code for the asterisk in
Rl)
(Print the asterisk on the screen)
(Increase the number of asterisks
printed)
(Have 300 asterisks been printed?)

7D00 LWPI >70B8

7D04

7D08

MOV @>83C0,R3
CLR R15

7D0A RN MOV *R3,R5

7D0C SRL R5,6

7D0E CI R5,768

7D12 JGTCT

7D14

7D16 GT

JMP PR
AI R3,>1218

7D1A JMPRN

7D1C PR MOV R5,R0

7D1E LI R1,>2A00

7D22

7D26

BLWP @>6024
INC R15

7D28 CI R15,300

247

Stapte 12

7D2C JNE CT (If not, return for a new random
screen position)

7D2E JMP $ (Stop the program with an endless
loop)

Now run the program and see how quickly the asterisks are
printed.

Your New Language
Assembly language programming on the TI isn't as mysterious
as you might have thought, is it? With patience, some time,
and the right guide, you can explore this language's potential.
That's what you've been doing all through this book.

You've seen just some of the possibilities of assembly lan
guage programming, though. More complex programs can be
created. Experiment, test, and toy with short routines, grad
ually developing them until you're ready to splice them to
gether. Before you realize it, you'll be designing and writing
longer programs which take full advantage of your computer's
capabilities.

Like any new language, assembly language takes time to
learn. You get better at it with practice. Fortunately, with this
guide in hand, you've got a strong foundation.

248

fonfUfll

ftppenii

C,.aj#a^

[feSOll IM SO ME

Character

NUL

Decimal ASCII

Code

0

Hejcadecimal ASCII
Coke v
oo •

SOH

STX

1

2

01

02*

ETX 3 03

EOT 4 ;i)4
• 05

. 06

ENQ
ACK

5

6

BEL

8

V 07

! 08
HT Hoe.,e«)-rAt. "n»a 9 ' 09
LF li*o& F&a-v 10 V 0A
VT oeATtt-w. *"*»«
pp fT>c/»^ Fsano

CR C«*j*«*«r A*0*-**

11

12

13

0B

0C

o5
SO

SI

DLE

14

15

16

0E

OF1, f
10

DCl

DC2

17

18

11

12*

DC3 19 13

DC4 20 14

i **" NAK 21 ' 15
*'*ffffij SYN 22 16

y^j
ETB

CAN 24 v
j 17
j 18

{•**)>)
EM

SUB

25

26

; 19

i 1A

li^y^at^ ESC

FS

27

28

IB

(hfgttgjg) GS

RS (cursor)
US (edge)
Space

29

30

31

325

IE

11

IF

20
4

249

Decimal ASCII Hexadecimal ASCII

Character Code Code

! f-li 21
//

34 22

. J IS 23

$ ^ 1 $6 24

% 37 " 25

& » 3i 26
* i9> 27

(15 28

) 411 29
* 42 2A

+ 43 > 2 2B

/ 44 2C

— 45 2D

. 46J 2E

/ 47 ., 2F

0 It 30

1 f49 31

2 50 32

3 3 I 51 33

4 52 . 34

5 53 35

6 ^54 36

7 3S 37

8 56 38

9 571 39

: 58 3A

/ 59 I A 3B

< 60 3C

= 61 3D

> 62 4 3E

? 63 3F

@ rw 40

A 65 41

B S i 66 42

C 67 43

D (6» 44

250

Cafcttf

Character

E

F

G

H

I

J
K

L

M

N

O

P

Q
R

S

T

U

V

w

X

Y

Z

[

]

a

b

c

d

e

f

Decimal ASCII

Code

11

Hexadecimal ASCII

Code

45

46

47

48

49

4A

4B

4C

4D

4E,
4E

50

51'

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

251

Character

g
h

J
k

1

m

n

o

P

q
r

s

t

u

V

w

X

y
z

DEL

252

n

Decimal ASCII Hexadecimal ASCII

Code Code

IM 67

104

105 s

106

9-1
69

6A

107

108
y/0

6B

6C

109 6D

110 -
111
if2

6E

6F

70

113
i„

71

114 72

115

116

23

74
117

118

75 -A

79

119, 77

120

121 "
7.8
79

122 7A

123

124
>ll f 7B

7C

125
r*.

7D

126 J 7E

127 1
i

7F

l^jfiiit

Si Haeipap DoDiGraiiiii
This list includes all the instructions which you can use with

U»» the Line-by-Line Assembler. The first column indicates the
instruction's mnemonic, the four-character (or less) word which

Ua» represents the instruction. The second column specifies the
instruction's name, and the third column shows the format to

U0 which it belongs.
Mnemonic Instruction Format

A Add words I

AB Add Bytes I
ABS ABSolute value VI

AI Add Immediate VIII

ANDI AND Immediate VIII

B Branch VI

B *R11 Same as ReTurn (RT) VI
BL Branch and Link VI

BLWP Branch and Load Workspace Pointer VI
C Compare words I
CB Compare Bytes I
CI Compare Immediate VIII
CKOF ClocK OFf VII

CKON ClocK ON VII

CLR CLeaR VI

COC Compare Ones Corresponding III
CZC Compare Zeros Corresponding III
DEC DECrement VI

DECT DECrement by Two VI
DIV DIVide IX

Ll» IDLE IDLE VII
INC INCrement VI

U* INCT INCrement by Two VI
, INV INVert VI
— JEQ Jump if EQual II
I JGT Jump if Greater Than II
"•* JH Jump if logical High II

JHE Jump if High or Equal II
JL Jump if logical Low II
JLE Jump if Low or Equal II

253

^(••"'Y

Mnemonic Instruction Format
imkiiim

JLT Jump if Less Than II

JMP Unconditional JuMP II \isimm

JNC Jump if No Carry II
Ip^pJNE Jump if Not Equal II

JNO Jump if No Overflow II
fc^tfJOC Jump On Carry II

JOP Jump if Odd Parity II

LDCR LoaD CRU IV

LI Load Immediate VIII

LIMI Load Interrupt Mask Immediate VIII

LREX Load or Restart Execution VII

LWPI Load Workspace Pointer Immediate VIII

MOV MOVe word I

MOVB MOVe Byte I

MPY MultiPlY IX

NEG NEGate VI

NOP No OPeration II

ORI OR Immediate VIII

RSET ReSET VII

RTWP ReTurn with Workspace Pointer VII

S Subtract words I

SB Subtract Bytes I

SBO Set CRU Bit to One II

SBZ Set CRU Bit to Zero II

SETO SET to One VI

SLA Shift Left Arithmetic V

SOC Set Ones Corresponding I "**]
SOCB Set Ones Corresponding, Byte I ItiMilli

SRA Shift Right Arithmetic V "J
SRC Shift Right Circular V

feiai-hi'i

SRL Shift Right Logical V ™>

STCR STore CRU IV
(ap^)

STST STore STatus VIII , i
STWP STore Workspace Pointer VIII

Iwatd

SWPB SWaP Bytes VI
i^ffiifei

SZC Set Zeros Corresponding I

254

i'lin'itM^

1

Mnemonic Instruction Format

SZCB Set Zeros Corresponding, Byte I

TB Test Bit II

X EXecute VI

XOP Extended OPeration IX

XOR Exclusive OR III

Courtesy of Texas Instruments, Incorporated

inMBd 255

OUttOPH daBwall

Here's a list of all the instructions you can use with the Line-
by-Line Assembler, together with the operands each instruction
requires.

When only one operand is used, a dash (—) is placed in
the third column. A dash can also indicate that the instruction
does not place a result in an operand, such as in the compari
son instructions. If no operands are required, a dash is also
placed in the second column. Determine the operands to use
according to the following table:

R = Register
Decimal or hexadecimal number
A general address (register, memory address, etc.)
A memory address (a decimal or hexadecimal number, a
label, etc.)
A CRU (Control Register Unit) bit address
The decimal number is between 0 and 15

N

GA

MA

CA

(*)

Mnemonic

A

AB

ABS
AI

ANDI

B

BL

BLWP

C
CB

CI
CKOF

CKON
CLR

COC
CZC

DEC

DECT

DIV

IDLE

INC
INCT

INV

256

Operands

GA,GA
GA,GA
GA

R,N
R,N
GA

GA

GA

GA,GA
GA,GA
R,N

GA

GA,R
GA,R
GA

GA

GA,R

GA

GA

GA

Operand Where the
Result Is Placed

Second

Second

First

First

Second

total

fecial

IppemdiM C

ig^ygl

\ltlfnJfgf

hmM
Mnemonic Operands Operand Where the

Result Is Placed

minmi JEQ MA —

JGT MA —

mmiami JH MA —

JHE MA —

i&i''1 JL MA —

JLE MA —

JLT MA —

JMP MA —

JNC MA —

JNE MA —

JNO MA —

JOC MA —

JOP MA —

LDCR GA,N (*) —

LI R,N First

LIMI N —

LREX — —

LWPI N —

MOV GA,GA Second

MOVB GA,GA Second

MPY GA,R Second

NEG GA —

NOP — —

ORI R,N First

RSET — —

RTWP — —

S GA,GA Second

SB GA,GA Second

SBO CA —

SBZ CA —

\~~ SETO GA —

l':M%)
SLA R,N (*) First

j "' SOC GA,GA Second
topkMl SOCB GA,GA Second
, SRA R,N (*) First
IWM SRC R,N (*) First

SRL R,N (*) First

IteMWi STCR GA,N (*) First

STST R —

i":i)V"M
STWP R —

SWPB GA —

L. SZC GA,GA Second
limyl

SZCB GA,GA Second

257

Appendix 0

Mnemonic

TB

X

XOP

XOR

Operands

CA

GA

GA,N (*)
GA,R

Operand Where the
Result Is Placed

Second

Courtesy of Texas Instruments, Incorporated

Appendix 0

Hexadecimal Color Codes

Code

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

258

Color

Transparent
Black

Medium Green
Light Green
Dark Blue

Light Blue
Dark Red
Cyan
Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta
Gray
White

imidb

tau$p

UMifel

A (Add words) instruction 32-33
AB (Add Bytes) instruction 33-34
ABS (ABSolute value) instruction 91-92
absolute values 91-92
ACCEPT AT BASIC instruction 65
"Accept Tone" routine 86-87
adding 32-34
adding program name 59
adding program position 59
AI (Add Immediate) instruction 32
ANDI (AND Immediate) instruction

202-3, 239
AORG (Absolute ORiGin) directive 13,

59-60, 153
ASCII code 68, 70, 74, 127-30, 249-52
"Assembly Language Input" routine

70-72

"Assembly Language Square Root" rou
tine 123-24

assembly, language statements 4
"Automatic Sprites" program 155-57
B (Branch) instruction 38, 51, 52
BASIC v, 15, 21, 31, 36, 41, 65, 92, 103,

104-5, 106, 112-14, 115, 119-20, 130,
133, 145, 163, 164, 167, 173, 178-80,
194-95, 234-37

bit 66-67

bitmap mode 183, 184, 205-30
bitmap screen, setting up 207-9

drawing on 209-12
resetting 229-30

BL (Branch and Link) instruction 51-52
BLWP (Branch and Load Workspace

Pointer) instruction 21, 65, 85, 135
border character 127

"Bouncing Ball" program 135-39
"Box Draw" program 196-204
branching after a comparison 38
BSS (Block Starting with Symbol) direc

tive 18-19

BYTE 7, 66-67
byte instructions 7
C (Compare words) instruction 36
CALL CHAR BASIC instruction 163

CALL CLEAR BASIC instruction 31, 41,
237

CALL COLOR BASIC instruction 163
CALL DELSPRITE BASIC instruction 164
CALL INIT BASIC instruction 106, 237
CALL JOYST BASIC instruction 65
CALL KEY BASIC instruction 65

CALL LINK BASIC instruction 58, 103,
106-16, 130, 179-80, 237

CALL LOAD BASIC instruction 103-4,
105, 194-95, 237

CALL LOCATE BASIC instruction 163

CALL MAGNIFY BASIC instruction 145,
164

CALL PATTERN BASIC instruction 163

CALL PEEK BASIC instruction 105-6, 236
CALL POKEV BASIC instruction 103,

104-5, 133, 173
CALL SOUND BASIC instruction 167
CALL SPRITE BASIC instruction 163

calling assembly language programs from
BASIC 106-10

CB (Compare Bytes) instruction 36
changing screen color 134-35
changing text colors 131-34
character definition 127-31, 191-92
CI (Compare Immediate) instruction 35
clearing the screen 40-41
CLR (CLeaR) instruction 41, 65, 238
COC (Compare Ones Corresponding)

instruction 66-67

"Collisions" program 157-60
color 17, 131, 134-35, 185, 189, 205
"Color Changing" routine 133-34
color codes 258

color table 131, 185, 205-7
comment field 4, 6
comparing values 35-36
comparison 38
"Computer Typewriter" routine 68-70
CPU RAM x

cursor 127, 129-30
custom characters 17

DATA directive 16-18, 60, 85, 87
debugging 233-34
DEC (DECrement) instruction 31
decreasing a value 31-32
DECT (DECrement by Two) instruction

31-32

delay loop 39-40, 78
deleting sprites 163
destination operand 45
detecting a keypress 66-68
diagonals, joystick 76-81
directives 9, 13-27
DISPLAY AT BASIC statement 92

displaying a single character 20-22
"Displaying Strings" routine 121-23
DIV (DIVide) instruction 88, 89
division 89

DSRLNK (LiNK to Device Service
Routines) utility 85

259

EASY BUG assembler option 3, 22-23,
58, 233, 246

Editor/Assembler package, described
vii-x

END (end program) directive 13-14, 58
EQU (equate) directive 16, 56
ERR (ERRor reporting) utility 120
♦ERROR* message 6-7
error messages, generating 120-21
executing an assembly language program

58-59

extended utilities 85-88

FFAM (First Free Address of Module)
59,60

fields 4

floating-point values 88, 111-12
Format I instructions 34

Format II instructions 34

Format III instructions 35

Format VI instructions 35
Format VIII instructions 35

Format IX instructions 35
frequency 168
general addressing modes 45-48
GOSUB BASIC statement 21
GOTO BASIC statement 15, 36
graphics x, 85, 123, 183-230
graphics mode 183, 184, 189-92, 205-30
GROM x, 85, 123
GROM routines 85-87

hex-to-decimal conversion 243-44
"Hi-Res Bouncer" program 212-17
"Hi-Res Draw" program 217-28
high-resolution graphics. See graphics
INC (INCrement) instruction 31
increasing a value 31-32
INCT (INCrement by Two) instruction 31
indexed memory addressing 47-48
initializing memory 106
INPUT BASIC instruction 65
instruction 5, 7, 9, 255-57
instruction field 4, 5
instruction formats 34-35

integer values 88, 111-12
interrupts 153
INV (INVert) instruction 240
JEQ (Jump if EQual) instruction 36
JGT (Jump if Greater Than) instruction

36

JHE (Jump if High or Equal) instruction
37

JLE (Jump if Low or Equal) instruction 37
JLT (Jump if Less Than) instruction 37,

38

JMP (JuMP) instruction 14-15, 22, 34, 36,
37

260

JNE (Jump if Not Equal) instruction
37-38, 39

joysticks 65, 75-81
joystick values 76
jumping according to a result 36-38
keyboard 65-75
"Key Detector" routine 68
KSCAN (Keyboard SCAN) utility 65-78,

162

label field 4, 5
labels 5, 14-15, 55-58
LFAM (Last Free Address of Module)

59-60

LI (Load Immediate) instruction 8, 9, 21,
65, 135

LIMI (Load Interrupt Mask Immediate)
instruction 85-86, 153, 167

Line-by-Line Assembler program v,
vii-x, 51
options 3

lines, program 3-4
loading from BASIC 234-37
logical instructions 238-43
LWPI (Load Workspace Pointer Immedi

ate) instruction 8, 22
mathematics in assembly language 88-92
memory conservation 51-52, 55-58
Mini Memory Cartridge vii, 3

free memory in 237-38
mixing BASIC and assembly language

103-24

MOV (MOVe word) instruction 54
MOVB (MOVe Byte) 54-55, 65-67
moving characters onscreen 41-43
"Moving Cross" joystick routine 77-79
"Moving Cross—Reading Diagonals"

joystick routine 79-81
"Moving Plus—Repeating Keys" routine

74-75

"Moving Plus—Single Keystroke" rou
tine 73-74

MPY (MultiPlY) instruction 88-89
multicolor mode 183, 184, 192-202
"Multiple Assembly Language Tones"

program 175-76
multiple characters onscreen 23-24
multiple tones 171-72
multiplication 88-89, 90-91
nested loops 40
noise 167-68, 176-77
NOP (No OPeration) instruction 53-54
NUMASG (NUMeric ASsiGnment) utility

114

NUMREF utility 112
opcode. See also instruction
operand 5-6, 256-58

immsd

few

operand field 4, 5-6
ORI (OR Immediate) instruction 239
passing

data 110-11

numbers from BASIC to assembly lan
guage 112-14

strings 116-20
values to BASIC 114-15

pattern descriptor table 185, 192,
194-204, 205-15

"Pixel by Pixel" sprite motion routine
151-53

planning an assembly language program
51-61

POKE BASIC command 234

"Poof!" program 161-62
power-up simulation routine 87
program interrupts 85
programming techniques, assembly lan

guage 233-48
RAMx

random numbers 245-48

reading joystick 75-81
"Redefined Character" routine 130
REF/DEF table 58, 60, 61, 106
register 7-9, 45-46, 90-91, 146-47, 148,

183-205, 207
REM statement 6

repeating keys 72-75
R-ERROR message 6, 7, 37-38, 53, 54
resolved references 14-15
ROM x, 85
ROM routines 87-88

RUN Mini Memory option 3
S (Subtract words) instruction 32-33
saving memory 234
saving to tape 26-27
SB (Subtract Bytes) instruction 33-34
screen 23-24, 40-41
screen bias 108, 116, 121
screen buffer 245

screen color 134-35, 183, 186, 189
screen display 184
screen image table 205-17
screen switching 186-88
screen table location 185

"Scroll Down" routine 94-96

"Scroll Right" routine 96-99
"Scroll Up" routine 93-94
scrolling 92-99
SETO (SET to One) instruction 240
simultaneous sound and BASIC 178-80
SLA (Shift Left Arithmetic) instruction

90-91, 238
slowing down action 39
SOC (Set Ones Corresponding) instruc

tion 240-41

sound 167-80

"Sound and BASIC" program 178-80
sound data table 167-68, 173-74
"Sound Data Table Creator" utility

168-73

source code x

source operand 45
space bar 4
sprite attribute list 143-45, 148, 152, 155,

157, 158, 162, 186, 207
sprite coincidence. See sprite collision
sprite collision 157-61
sprite definition 147-48
sprite descriptor table 143, 145, 186
sprite magnification 145-51
"Sprite—Magnification 1" routine

147-49

"Sprite—Magnification 3" routine
149-51

sprite motion 151-57
sprite motion table 143, 153-55, 158,

160, 186
sprites 17, 143-64, 184-85, 205
square design 44-45
SRA (Shift Right Arithmetic) instruction

241-42

SRC (Shift Right Circular) instruction 42
SRL (Shift Right Logical) instruction 91,

238

starting address, default 3
status byte 65-67
STRASG (STRing ASsiGnment) utility

119

string constant initialization 19-20
STRREF Utility 116
subroutines 9

subtracting 32-34
SWPB (SWaP Bytes) instruction 7, 9
SYM (Symbol Table Display) directive

14-16

symbolic memory addressing 47
symbol table 233
syntax errors, assembler 6-7
SZC (Set Zeros Corresponding) instruc

tion 241

SZCB (Set Zeros Corresponding, Byte)
instruction 241

text color 189

text directive 19-20, 23, 60
text mode 183, 184, 189-92
TMS9900 microprocessor vii
TMS9918 Video Display Processor vii
tone 167-68

undefined label 15

unresolved references 14-15

User's Reference Guide 76
utilities 85-88

261

m i

t^fv

vanishing sprites 161 VWTR (VDP Write to Register) system 1
VDP interrupt 159, 161, 178, 184 utilityroutine 20, 134, 146, 200 "
VDP RAM x, 20-26, 127, 129, 131, 134, word 7 ^

144, 145, 153, 167 word initialization 1-18 ^
VDP registers 146-47, 148, 183-205, 207 word instructions 7
VDP tables, locating 206-7 workspace register addressing 45-46 ' ->
VMBR (VDP Multiple Byte Read) system workspace register indirect auto- w»

utility routine 20, 24-26, 92 increment addressing 46
VMBW (VDP Multiple Byte Write) sys- write-only registers 183 "]|

tern utility routine 20, 23-24, 72, 92, XMLLNK (LiNK toroutines in ROM) ^*
116-17, 128, 132, 144 routine 85, 87

volume 168, 172-73 XOR (exclusive OR) instruction 239
VSBR (VDP Single Byte Read) system X-return (joystick) 76

utility routine 20, 24-26, 96 Y-return (joystick) 76
VSBW (VDP Single Byte Write) system

utility routine 20, 21

fe&life^

262

	front-cover
	Binder1
	content000
	content001
	content002
	content003
	content004
	content005
	content006
	content007
	content008
	content009
	content010
	content011
	content011b
	content011c
	content012
	content012b

	back-cover

