
1 Tutorial: Building a multi-bank ROM image v0.2

Tutorial: building a multi-bank ROM image

Introduction

This tutorial describes the steps involved for buil ding a multi-bank

cartridge ROM image for the Texas Instruments TI-99 /4A Home Computer.

As an example we’ll build a Pitfall! cartridge ROM image; starting

from the assembly source. When done, we will have a 32K ROM image

containing four 8K (>6000->7FFF) banks. Burned on E PROM it can be

used with the new 16K/32K/64K cartridge PCBs [1] recently made

available by Jon Guidry.

Our target platform: the 16K/32K/64K cartridge PCB

© Picture courtesy of Jon Guidry

Note that all steps described in the tutorial will be done on a

windows based cross-development system. The main re ason is, that the

cross-assembler I use is only available for Windows .

[1] http://www.hexbus.com

2 Tutorial: Building a multi-bank ROM image v0.2

Requirements

You will need a recent version of the windows based cross—assembler

winasm99 which is delivered as part of the win994A emulator package [2] .

I used winasm99 v3.8

Of course you’ll also need the Pitfall! source cod e[3] and my deref

command-line utility [4] . The latter is mainly used for handling code-

realignment issues. More on that later.

[2] http://www.99er.net/win994a.shtml

[3] http://www.atariage.com/forums/topic/158467-pit fall-binaries-
and-source-code/

[4] http://www.atariage.com/forums/topic/153704-ti- 994a-development-
resources/

3 Tutorial: Building a multi-bank ROM image v0.2

A few hints

Pre-processor directives

I found out that winasm99 supports pre-processor di rectives, a

feature which I believe is not officially documente d (nor supported?).

Basically I created a main file for each bank and a dded the equates

below. Depending on the bank I then set the corresp onding equate to 1.

* Some build directives for building the 2nd bank (BANK1)

********@*****@*********************@**************************

BANK0 EQU 0

BANK1 EQU 1

BANK2 EQU 0

BANK3 EQU 0

In the next example the source code between ‘IF BAN K1’ and ‘ENDIF’ is

only assembled if the BANK1 equate equals 1. So I c an include (COPY)

the same source file in multiple projects/main file s and control how

it gets assembled by setting the corresponding BANK equates to 1 or 0.

DRAWBJ LI R1,OVLAY4
 BL @SPRITE ; Put overlay sprite "yellow ground" on screen
 BL @GVRAM
 DATA VRETRN,RETADR,2 ; Restore Return address ...
 MOV @RETADR,R0
*..
 IF BANK1
 CI R0,DRAWG1 ; Called from DRAWG ?
 JEQ DRAWBZ ; Yes, then Return to DRAWG1
 LI R1,>6002 ; Select BANK2
 LI R2,PFRETN ; Jump-back to PFALL in BANK2
 B @GOBANK ; Switch bank 2
 ENDIF
*..
DRAWBZ B *R0 ; ... and Return

Bank-switch trampoline code

What you see in the example, is a bank-switch from BANK 1 (2nd bank)

to BANK 2 (3rd bank). This is accomplished by calli ng the GOBANK

subroutine which in turn writes the bank-switch cod e to scratch-pad

memory and executes it.

*--
* ROM BANK SELECTION ROUTINE (inversed method for 379 carts)
*--
* R1=>6006,>6004,>6002,>6000 ; BANK0, BANK1, BANK2, BANK3
* R2=Address in bank
*--
SWBANK EQU >8300 ; Somewhere in scratchpad RAM
GOBANK LI R0,>04E0 ; CLR ...
 MOV R0,@SWBANK
 MOV R1,@SWBANK+2 ; ... CLR R1 -> Select BANK0 ... BANK3
 LI R0,>0460 ; B ...
 MOV R0,@SWBANK+4
 MOV R2,@SWBANK+6 ; ... B (adddress in R2)
 B @SWBANK ; Now run generated code

4 Tutorial: Building a multi-bank ROM image v0.2

 BANK 0 BANK 1 BANK 2 BANK 3
 >6000->7FFF >6000->7FFF >6000->7FFF >6000->7FFF
Cartridge
Header

Cartridge
Header

Cartridge
Header

Cartridge
Header

write >6006

write >6004

write >6002

write >6000

 ROMC.bin ROMD.bin ROME.bin ROMF.bin
 ROMC.lst ROMD.lst ROME.lst ROMF.lst

Cartridge header

Note that the cartridge header must be present in e ach bank, as the

TI-99/4A can fire up a random bank on reset. In eac h bank the

cartridge header points to a routine that switches to BANK 0 and

triggers the initialisation routine. Below is a mor e complete example,

it’s part of the main file for BANK 1 (2 nd bank):

 AORG >6000
SFIRST EQU $
SLOAD EQU $

* Some build directives
********@*****@*********************@**************************
BANK0 EQU 0
BANK1 EQU 1
BANK2 EQU 0
BANK3 EQU 0

* Some equates with addresses of objects in other banks
********@*****@*********************@**************************
 COPY "D:\Projekte\pitfall\tms9900\pitfall_bank_equates.a99"

* Cartridge header
********@*****@*********************@**************************
GRMHDR BYTE >AA,1,1,0,0,0
 DATA PROG
 BYTE 0,0,0,0,0,0,0,0
PROG DATA 0
 DATA KICKBK
 BYTE 8
 TEXT 'PITFALL!'

* PITFALL BANK 1
********@*****@*********************@**************************
 COPY "D:\Projekte\pitfall\tms9900\pitfall.a99"

* Kickstart BANK0
********@*****@*********************@**************************
KICKBK LWPI WSSPC1 ; Load main workspace
 LIMI 0
 LI R1,>6006 ; Select BANK0
 LI R2,B0MAIN ; B @MAIN (skip cartridge header)
 B @GOBANK ; Switch bank 0

* Main program
********@*****@*********************@**************************
 ...
*--
* Include required files
*--
 COPY "D:\Projekte\pitfall\tms9900\pitfall1a.a99"
 COPY "D:\Projekte\pitfall\tms9900\pitfall1c.a99"
 ...

Notice the inclusion of pitfall_bank_equates.a99 ? That is really

important, more on that in the next topic.

5 Tutorial: Building a multi-bank ROM image v0.2

Dependencies across banks

The biggest problem one faces during the implementa tion of a multi-

bank ROM image, is having to deal with broken depen dencies because of

code and data realignment issues.

Suppose you are in subroutine SUBC in BANK 2 and wa nt to jump to

subroutine SUBB in BANK 1. Normally the steps you w ould do are:

� Get the address of SUBB in BANK 1.

� Set this address in subroutine SUBC in BANK 2.

� Assemble BANK 2

So far so good. Your program runs ok and your bank- switching code

works just fine. You are a happy camper.

Then a few days later you need to fix a small bug i n subroutine SUBA

in BANK 1. You just had to add an “AI” statement an d reassemble BANK

1. All seems to be ok at first. But then your progr am crashes after

running subroutine SUBC in BANK 2. The problem is t hat your code

still jumps to >6030 in BANK 1 but subroutine SUBB is not longer

located there, it is now at >6034.

BANK 1 (BEFORE) BANK 1 (AFTER) BANK 2

>6014 SUBA

 CLR R0

 MOV R1,R2

 RT

>6030>6030>6030>6030 SUBB

 CLR R0

 MOV R1,R2

 ...

>6014 SUBA

 CLR R0

 MOV R1,R2

 AI R1,5AI R1,5AI R1,5AI R1,5

 RT

>603>603>603>6034444 SUBB

 CLR R0

 MOV R1,R2

 ...

>6014 SUBC

 LI R1,>6002

 LI R2,>6030LI R2,>6030LI R2,>6030LI R2,>6030

 B @GOBANK

 ...

To resolve the problem BANK 2 needs to be reassembl ed after adjusting

the address in SUBC. Obviously these type of errors can easily result

in a debugging nightmare. Updating all the addresse s manually is

almost an impossible task.

6 Tutorial: Building a multi-bank ROM image v0.2

For handling this type of problem I wrote the comma nd-line utility

deref.exe

It basically scans the list files that get generate d by winasm99

during the assembly process. Next it processes the specified template

file, replacing the special tags with the correspon ding ROM addresses

and generate a matching assembly source file.

The command-line utility deref.exe

The idea is that you manually run deref.exe command -line utility

after winasm99 has finished building a bank. It wil l generate a new

assembly source with the updated ROM addresses. You can then run

winasm99 for building the next bank.

This is a repetitive process that –depending on the source code

modifications- needs to be done multiple times unti l all pieces fit

together.

7 Tutorial: Building a multi-bank ROM image v0.2

A template file is basically a plain text file. The only difference

compared to normal assembly source files, are the s pecial tags in the

format <B?|label> where ? is the value of the bank number starting

with 0.

The template file “pitfall_bank_equates.sym” used f or building the

Pitfall! ROM image .

8 Tutorial: Building a multi-bank ROM image v0.2

The resulting “ pitfall_bank_equates.a99 ” output file after running

the deref.exe command-line utility.

Building the multi-bank ROM image

Now let’s get on with the fun part; building the mu lti-bank ROM image.

Assuming you have already unzipped the Pitfall! sou rce directory to a

local drive/device, you have to do the below steps for successfully

creating the cartridge version.

Step 1: Open the files “pitfall_bank0.a99”, “pitfall_bank1 .a99”,

“pitfall_bank2.a99, “pitfall_bank3.a99” into your t ext editor and for

each file replace the paths in all COPY statements so that it matches

with your local source directory.

Your editors’ search & replace functionality will b e of great use.

9 Tutorial: Building a multi-bank ROM image v0.2

Step 2: After you have saved your modifications, start wina sm99 and

create a new project file with the settings seen in the next

screenshot and click “Start assembly”. We are build ing BANK 0.

Step 3: Check for assembly errors. If all is fine you can t hen run

the deref.exe command-line utility with the below p arameters:

deref.exederef.exederef.exederef.exe ----b0=ROMC b0=ROMC b0=ROMC b0=ROMC ----b1=ROMD b1=ROMD b1=ROMD b1=ROMD ----b2=ROME b2=ROME b2=ROME b2=ROME ----b3=ROMF b3=ROMF b3=ROMF b3=ROMF ----f=pitfall_bank_equates.symf=pitfall_bank_equates.symf=pitfall_bank_equates.symf=pitfall_bank_equates.sym

A new “pitfall_bank_equates.a99” will be generated.

10 Tutorial: Building a multi-bank ROM image v0.2

Step 4: Repeat the steps 2 & 3 for the other banks. The bes t way to

do this is to run 4 parallel sessions of winasm99, one for each bank.

Below are the required settings for winasm99

BANK Input Project Listing File Cart binary file

BANK 0 pitfall_bank0.a99 ROMC.lst ROMC.bin

BANK 1 pitfall_bank1.a99 ROMD.lst ROMD.bin

BANK 2 pitfall_bank2.a99 ROME.lst ROME.bin

BANK 3 pitfall_bank3.a99 ROMF.lst ROMF.bin

Important! When modifying the source code you’ll ha ve to repeat the

cycle of building banks 0-3 at least 2 times in a r ow until

everything falls into place.

Best thing to do is monitor “pitfall_bank_equates.a 99” after each run

of the deref.pl script until there are no more chan ges from version

to version.

Step 5: We are almost done. Now concatenate the 4 binary fi les

ROMC.bin, ROMD.bin, ROME.bin, ROMF.bin for getting a single binary

file PITFALL.bin

This is real easy when using the windows command wi ndow just type the

below command:

Copy /B ROMC.bin+ROMD.bin+Copy /B ROMC.bin+ROMD.bin+Copy /B ROMC.bin+ROMD.bin+Copy /B ROMC.bin+ROMD.bin+ROMEROMEROMEROME.bin+ROMF.bin .bin+ROMF.bin .bin+ROMF.bin .bin+ROMF.bin PITFALL.binPITFALL.binPITFALL.binPITFALL.bin

11 Tutorial: Building a multi-bank ROM image v0.2

Step 6: Congratulations, you have now successfully built a 32K ROM

image. Enjoy!

Revision

Date Author Remark
10.01.2010 retroclouds Initial version created (v0. 1)
20.03.2010 retroclouds Removed PERL and cygwin stuff, we

now have an executable file (v0.2)

