Tutorial: building a multi-bank ROM image

Introduction

This tutorial describes the steps involved for buil ding a multi-bank
cartridge ROM image for the Texas Instruments TI-99 /4A Home Computer.
As an example we’ll build a Pitfall! cartridge ROM image; starting
from the assembly source. When done, we will have a 32K ROM image
containing four 8K (>6000->7FFF) banks. Burned on E PROM it can be
used with the new 16K/32K/64K cartridge PCBs I recently made

available by Jon Guidry.

Our target platform: the 16K/32K/64K cartridge PCB

Attn: 27512 - Use P2, P4

27256 - Use JPl
2764,27128 - Use JP1, 3;;

e

Brent

- - Sig Gnd
- 6 S e e e

2029 jdo .
wwuw. mainbyte.com
S Conner and M

= 64K (o)

D
o
@
[+
€
2

thanks to

© Picture courtesy of Jon Guidry

Note that all steps described in the tutorial will be done on a
windows based cross-development system. The main re ason is, that the
cross-assembler | use is only available for Windows

[1] http://www.hexbus.com

_ Tutorial: Building a multi-bank ROM image v0.2

Requirements

You will need a recent version of the windows based cross—assembler
winasm99 which is delivered as part of the win994A emulator package @ .

| used winasm99 v3.8

Of course you'll also need the Pitfall! source cod el and my deref
command-line utility ' The latter is mainly used for handling code-

realignment issues. More on that later.

[2] http://www.99er.net/win994a.shtml

[3] http://www.atariage.com/forums/topic/158467-pit fall-binaries-
and-source-code/

[4] http://www.atariage.com/forums/topic/153704-ti- 994a-development-
resources/

_ Tutorial: Building a multi-bank ROM image v0.2

A few hints

Pre-processor directives

| found out that winasm99 supports pre-processor di rectives, a
feature which | believe is not officially documente d (nor supported?).
Basically | created a main file for each bank and a dded the equates
below. Depending on the bank | then set the corresp onding equate to 1.

Fededededededededededdehdedededefdede NNl Nl de N deNdededdedddehdededededdededededededde At

* some build directives for building the 27 bank (BANK1)
********@*****@*********************@**************************
BANKO EQU 0

BANK1 EQU 1

BANK?2 EQU 0

BANK3 EQU 0

In the next example the source code between ‘IF BAN K1 and ‘ENDIF’ is
only assembled if the BANK1 equate equals 1. So | ¢ an include (COPY)
the same source file in multiple projects/main file s and control how
it gets assembled by setting the corresponding BANK equates to 1 or 0.

DRAWB] LI R1,0VLAY4

BL @SPRITE ; Put overlay sprite "yellow ground” on screen

BL @GVRAM
DATA VRETRN,RETADR, 2 ; Restore Return address ..
MOV @RETADR, RO

IF BANK1
CI RO, DRAWGL ; called from DRAWG ?
JEQ DRAWBZ ; Yes, then Return to DRAWG1
LI R1,>6002 ; Select BANK2
LI R2,PFRETN ; Jump-back to PFALL in BANK2
B @GOBANK ; Switch bank 2

ENDIF

DRAWBZ B *R0O ; ... and Return

Bank-switch trampoline code

What you see in the example, is a bank-switch from BANK 1 (2nd bank)
to BANK 2 (3rd bank). This is accomplished by calli ng the GOBANK
subroutine which in turn writes the bank-switch cod e to scratch-pad

memory and executes it.

* R1=>6006,>6004,>6002,>6000 ; BANKO, BANK1, BANK2, BANK3
* R2=Address in bank

SWBANK EQU >8300 ; Somewhere in scratchpad RAM
GOBANK LI RO,>04EQ ; CLR ...
MOV RO, @SWBANK
MOV R1,@SWBANK+2 ; ... CLR Rl -> Select BANKO ... BANK3
LI R0O,>0460 ; B A
MOV RO, @SWBANK+4
MOV R2 ,@SWBANK+6 ; ... B (adddress in R2)
B @SWBANK ; Now run generated code

_ Tutorial: Building a multi-bank ROM image v0.2

BANK 0 BANK 1 BANK 2 BANK 3

>6000->7FFF >6000->7FFF >6000->7FFF >6000->7FFF
Cartridge Cartridge Cartridge Cartridge
Header Header Header Header
write >6006 write >6004 write >6002 write >6000
ROMC.bin ROMD.bin ROME.bin ROMF.bin
ROMC.Ist ROMD.Ist ROME.Ist ROMF.Ist

Cartridge header

Note that the cartridge header must be present in e ach bank, as the
TI-99/4A can fire up a random bank on reset. In eac h bank the
cartridge header points to a routine that switches to BANK 0 and
triggers the initialisation routine. Below is a mor e complete example,
it's part of the main file for BANK 1 (2 nd bank):

AORG >6000

SFIRST EQU $
SLOAD EQU

PR L L E

 Some bu11d d1rect1ves

* “@“““““@”**** el e ek dehdfdk n*@**************************
BANKO EQU 0

BANK1 EQU 1

BANK?2 EQU 0

BANK3 EQU 0

T R SOROROROROOROSORL

* Some equates with addresses of objects 1n other banks

e e ¥ ¥ % .-.-@-.-.-.-.-.@.;............\"."""‘H St DRORO) [ORORRONN Sededede et

copy '"D: \Pro;ekte\p1tfa11\tms9900\p1tfa11 bank equates a99"

dedededededededede el dede R dededede e de kT d ok

® Cartr1dge header

e de o e e e e Q% 3 3 e Qi e e o e e e 5o e e o e QU e e o e e S e R S e S e e
GRMHDR BYTE >AA,1,1, 0 0 0
DATA PROG

ByTE 0,0,0,0,0,0,0,0
PROG DATA O

DATA KICKBK

BYTE 8

TEXT

o oo oo e o % JORORORORORONON

PITFALL BANK 1

[OORORON -.@.u JORORORON

R@* o%
COPY "D: \PrOJekte\p1tfa11\tms9900\p1tfa11 a99"

R R RUTOOSROONS e e e e Yo e e Yo Yo e o

* K1ckstart BANKO

* “@“““““@”**** ***********@**************************
KICKBK LWPI WSSPC1 ; Load main workspace
LIMI O
LI R1,>6006 ; Select BANKO
LI R2,BOMAIN ; B @MAIN (skip cartridge header)
.B, @GOBANK ; Sw1tch bank 0
Ma1n program
ek -““““@”**** “**************@**************************

copy "D:\Projekte\pitfall\tms9900\pitfallla.a99"
copy "D:\Projekte\pitfall\tms9900\pitfalllc.a99"

Notice the inclusion of pitfall_bank_equates.a99 ? That is really

important, more on that in the next topic.

_ Tutorial: Building a multi-bank ROM image v0.2

Dependencies across banks
The biggest problem one faces during the implementa tion of a multi-
bank ROM image, is having to deal with broken depen dencies because of

code and data realignment issues.

Suppose you are in subroutine SUBC in BANK 2 and wa nt to jump to
subroutine SUBB in BANK 1. Normally the steps you w ould do are:

= Get the address of SUBB in BANK 1.
=>» Set this address in subroutine SUBC in BANK 2.
= Assemble BANK 2

So far so good. Your program runs ok and your bank- switching code

works just fine. You are a happy camper.

Then a few days later you need to fix a small bug i n subroutine SUBA
in BANK 1. You just had to add an “Al” statement an d reassemble BANK
1. All seems to be ok at first. But then your progr am crashes after
running subroutine SUBC in BANK 2. The problem is t hat your code
still jumps to >6030 in BANK 1 but subroutine SUBB is not longer

located there, it is now at >6034.

BANK 1 (BEFORE) BANK 1 (AFTER) BANK 2
>6014 SUBA >6014 SUBA >6014 SUBC
CLR RO CLR RO LI R1,>6002
MOV R1,R2 MOV R1,R2 LI R2,>6030
RT AI R1,5 B @GOBANK
>6030 SUBB RT
CLR RO >6034 SUBB
MOV R1,R2 CLR RO
MOV R1,R2
To resolve the problem BANK 2 needs to be reassembl ed after adjusting
the address in SUBC. Obviously these type of errors can easily result
in a debugging nightmare. Updating all the addresse s manually is

almost an impossible task.

_ Tutorial: Building a multi-bank ROM image v0.2

For handling this type of problem | wrote the comma nd-line utility

deref.exe

It basically scans the list files that get generate d by winasm99
during the assembly process. Next it processes the specified template
file, replacing the special tags with the correspon ding ROM addresses

and generate a matching assembly source file.

The command-line utility deref.exe

AWINDOWSA\system 3 2\cmd. exe

D:~Projektescartridge tools>deref.exe
Usage: deref.exe [OPTION]...

winasm?9 post—processor v@.1
(c22818 by retroclouds C(http:/swww.retroclouds.de

——symifileif=filenane Symhol template file to process

The template file is searched in the current directory
if no path is given. The file extension “.sym" will he
assumed if no extension is provided.

The script will automatically create a file with extension ".a%?9"
having all bank references replaced by the corresponding addresses.

—helpih Display this help and exit

——hanké |bB=value Listing file for bank @
——hankl ibl=value Listing file for bank 1

Zlhankis ihiS=value Listing file For hank 15

The listing file is searched in the current directory
if no path is given. The file extension ".1lst" will he
assumed if no extension is provided.

EXAMPLES
deref .pl —bB=ROMC —b1i=ROMD -h2=ROME -h3=ROMF —f=bank_template
deref .pl —hB=ROMC.lst —-bi=ROMD.lst -f=abc.sym —f=def.sym —f=ahc2.sym

FORMAT for bank reference tags in template files
<B<{@—-15>ilabel>

EXAMPLES
ZLOGO Equ <BA i ZLOGO > Address of ZLOGO in BANKB
DRAWE Equ <E1 iDRAVEB: Address of DRAWB in BANK1

jektescartridge tools>

The idea is that you manually run deref.exe command -line utility
after winasm99 has finished building a bank. It wil | generate a new
assembly source with the updated ROM addresses. You can then run

winasm99 for building the next bank.

This is a repetitive process that —depending on the source code
modifications- needs to be done multiple times unti | all pieces fit
together.

_ Tutorial: Building a multi-bank ROM image v0.2

A template file is basically a plain text file. The only difference
compared to normal assembly source files, are the s pecial tags in the
format <B?|label> where ? is the value of the bank number starting

with 0.

The template file “pitfall_bank equates.sym” used f or building the
Pitfalll ROM image

e CAWINDOWS\system 32cmd. exe -3 ﬂ
rF
' P D 00
B G
i i ¥ B i 0 i B
[} () ' n, () n 0 L] iy
[}
B ¥ Ml H 0 H M
RAUKE y B UKBSNI ; . RS NI AN
TPT.0 () TPLE g . T () =:
ZLOGO ; ZLOGO : 0 OGO AN}
ZRLO ¥ 2 1 LRLO H D i HM
7 ORE ¥ 2 17 CORP v D ORP ANK:
7RO G 2 ' ZCRO A 0 RO AMKS
7 ¥ 217 D R AMK:
v " 0 a1 [0 i AMK:
TROF ’ 2 | TROP v D ROE AMK:
7 ¥ 217 " - MK
L. ¥ 2 THMO H 0 1 AMHK:
PFA ¥ 2 1 PR \ 0 DT ANK:
ME] A | ME : : A i
ni: . ¥ ¥ f) v 0 :: y
2TMGH y 2 GR i C i ANK:
“::I’h ¥ 2 BSMD H 0 H [AMK:
¥ 0 R " - BAMNK:
[)
01 0 0 0 ' 0 R 0 GAQ 1 BAM
DR N ¥ N DR N 7 . i ' BAM
B1 P ¥ B P'A D HU o BAM
0 y : 0 - 0G1 BA N
[)
[} () ' n, () n 0 L] iy
[}
' P D 00 b
4 3

_ Tutorial: Building a multi-bank ROM image v0.2

The resulting “ pitfall_bank_equates.a99 " output file after running

the deref.exe command-line utility.

s C:\WINDOWS\system32\cmd.exe - o] x|
1 1 } ¥ Y GHD 0 i BA
B3N y g f 0 : B A
[}
110 " (4 D6 H 0 HM
BAUER G 7 A 0 BSMND AN
ZPL# ; g : of ZPLF AN
L LOGO ¥ H 0 QG0 AM
ZRLO q 1T A : 0 ANK:
Z ORFP] 0 H H 0 ORP AMK:
ZCRO ¥ G H 0 Hi AMK:
ri H ¥ G H 0 H AMK:
7 ' ¥ [v f 0 ' MK
ZROF] . H 0 ROP AMK:
7 ¥ 4D v D MK
L. ¥ b DDA H 0 0 H : .
PFi ' 671 A of PFA AMK:
M"H ¥ b H H 0 H AN
ZHALN ¥ HH i - i ANKS
2TMGR EQ : a i AMKE
B2UKES : . s i : BS NI E:
[)
B1 0 ¥ } ¥ 6EHEG H 0 GA O H Hily
DRALVE ¥ i [0 AL'B BAM
E1 P ¥ HEBAG H 0 ALS BAM
) ¥ 0 0 "ti BAN
[)
Bl M ; ’ g f 0 : B A
[}
' P 0 0D e
4 2
Building the multi-bank ROM image
Now let's get on with the fun part; building the mu Iti-bank ROM image.
Assuming you have already unzipped the Pitfall! sou rce directory to a
local drive/device, you have to do the below steps for successfully
creating the cartridge version.
Step 1: Open the files “pitfall_bank0.a99", “pitfall_bankl .a99”,
“pitfall_bank2.a99, “pitfall_bank3.a99” into your t ext editor and for
each file replace the paths in all COPY statements so that it matches
with your local source directory.
Your editors’ search & replace functionality will b e of great use.

_ Tutorial: Building a multi-bank ROM image v0.2

Step 2: After you have saved your modifications, start wina sm99 and
create a new project file with the settings seen in the next

screenshot and click “Start assembly”. We are build ing BANK 0.

#21 pitfall cart - drive D_apf - Asm994a Assembler
File Edit Wiew Help

—Input Project Assembly Source Files - —_
- Assembler Options
pitfall_banki 89 Add Source File I~ DefRegs (RO-R15)
I~ Use Your Fav EguiDefs
¥ Produce Listing File
W Produce HEX Obj File
I~ Compressed Obj
& ‘ v Produce Cart BIM File

 Listing File
] DoaProjektelpiral tms990MROMC 15t Brovwse I Edit I

I~ Copy Listing File To Tl Disk

~HEX Object File:
] DohemulatonTholassicNDSKNPITRALL Browse I Edit I

J DhemulatonTMAWind24.4 W3 00ADisksiste TIDisk Browse PITFALL

v Copy HEX Object File Ta Tl Disk

—Compressed Object File

—

I Copyit
— Cartridge Binary File

1 CrProjekteipitfalitms990MR OMC . bin Browse

— Run-Time Assembly Control

== Tl Object Started - 1227/08, 12:33:29 ~
StartAssembly | .. 1) opject Finished - 12/27/09, 12:33:37
== Cartridge Binary Started - 12727009, 12:33:37

== Cartridge Binary Finished - 12027409, 12:33:38

Output Errar Log ’1 == Proc nd Complete - 11 0, 1

Step 3: Check for assembly errors. If all is fine you can t hen run

the deref.exe command-line utility with the below p arameters:

deref.exe -b0=ROMC -b1=ROMD -b2=ROME -b3=ROMF -f=pitfall_bank_equates.sym

A new “pitfall_bank_equates.a99” will be generated.

_ Tutorial: Building a multi-bank ROM image v0.2

Step 4: Repeat the steps 2 & 3 for the other banks. The bes t way to

do this is to run 4 parallel sessions of winasm99, one for each bank.

Below are the required settings for winasm99

BANK Input Project Listing File Cart binary file
BANK 0 pitfall_bank0.a99 ROMC.Ist ROMC.bin
BANK 1 pitfall_bank1.a99 ROMD.lIst ROMD.bin
BANK 2 pitfall_bank2.a99 ROME.Ist ROME.bin
BANK 3 pitfall_bank3.a99 ROMF.Ist ROMF.bin
Important! When modifying the source code you'll ha ve to repeat the
cycle of building banks 0-3 at least 2 times in a r ow until

everything falls into place.

Best thing to do is monitor “pitfall_bank_equates.a 99" after each run

of the deref.pl script until there are no more chan ges from version

to version.

Step 5: We are almost done. Now concatenate the 4 binary fi les
ROMC.bin, ROMD.bin, ROME.bin, ROMF.bin for getting a single binary

file PITFALL.bin

This is real easy when using the windows command wi ndow just type the

below command:

Copy /B ROMC.bin+ROMD.b1in+ROME.bin+ROMF.bin PITFALL.bin

AWINDOWSA\system 3 2\cmd. exe

71 Dateifen? 2.681.612 Bytes
3 Uerzeichnis<(se?»,. 6.584.238.08808 Bytes frei

D:~Projektespitfall tms?988>dir *.bin
Uolume in Laufwerk D: hat keine Bezeichnung.
Uplumeseriennummer: 68D4-FIFC

Uerzeichnis von D:“Projektespitfall-tms79608

8.192 ROMC.bin
8.192 ROMD.bin
8.192 ROME.bin
H 8.192 ROMF.bin
4 Dateilen? 32.768 Bytes
B Verzeichnisd{se>, 6.584.238.6880 Bytes frei

1 Dateiden? kopiert.

D:sProjektespitfallstms?7883

Tutorial: Building a multi-bank ROM image v0.2

Step 6: Congratulations, you have now successfully built a 32K ROM

image. Enjoy!
Revision
Date Author Remark
10.01.2010 retroclouds Initial yersion created (vO. 1)
20.03.2010 retroclouds Removed PERL and cygwin stuff, we
now have an executable file (v0.2)

Tutorial: Building a multi-bank ROM image v0.2

