NIGHT MISSIC)

NICGHT MISSICN

Book Written By

Craig G. Miller

Program Written By

Mike S. McCue
&
Craig G. Miller

Copyright 1985 by Millers Graphics

TABLE OF CONTENTS

Loading Night Mission into Your System ..

The Game Documentationecevscessvavscssnsssnnnsns

The Power of ANDvuivinecnnnscosanens rsssrssrarene

The Charactolrs ..sesevsuas sansvasssisnassessassssesasa

The Variablesvvvivncenennns tetesesua W e el :

The Program FlOWeevenevenrcorsennscansnns ceseae

10 = 210 Start & Title Screen Sneenine

220 = 290 Restart & Game OVeriieeeess s e

300 - 400 Rockets or Planes SCreenvsseesae

410 - 560 Enemy chopper SCIre€€n ...:seeseessccsns

570 = T30 Ship Sereen ...ccevevcectacsansnnea e

740 = 1120 Tank SCreen suvieeeessseses S

1130 = 1170 Laser Fire 'vieessees EEl e S e A

Call Peek and Call Load .ivecesnnnnsnnnennns i wiee b
APPENDIX - Program Listings

A =~ Cassette Joystick veiieiveviinnnns sersenansns

B -~ Disk "LOAD'er .e.icvenensrescnnsannans e

C - Diask Keyboardcicecedsscavivssssssonssss

D =~ Disk Joystick seuesevenensnnnnesscsnnnananns

E - 8 x 8 Character Diagramsceeeeeeaenn o

F = 16 x 16 Character Diagrams ,...eeeveeeeseenrs

20

21
23
33
35

b7
53
67

68

LOADING NIGHT MISSION INTO YOUR SYSTEM

The cassette that comes with the book contains 5 programs on it. Two on the
Cassette side for cassette based systems and three on the Diskette side for
disk based systems. The following pages will guide you through the steps
necessary to load the proper version in your system.

CASSETTE BASED - Joystick version

1.

3.
y.

CASSETTE BASED - Keyboard version

1.

The first program on the Cassette side of your cassette is the
Joystick version of Night Mission. Load the cassette so that the
Cassette side is ready to be played, type in ROUN "CS1* and press
ENTER.

Follow the instructions on your screen for loading the program.
The documentation for the game is in the next section of this book.

It is recommended that you run this program a few times to get
familiar with it before you read through the "PROGRAM FLOW" section.

The Keyboard version of Night Mission is the second program on the
Cassette side of your cassette. You must advance the tape past the
first program, which is the Joystick version, to the start (long
continues tone) of the Keyboard version. You may have to unplug the
PAUSE and EARFHONE jacks form your cassette before you press PLAY in
order to allow you to advance the tape and hear the tones.

After you have found the beginning of the Keyboard version (second
program) on the Cassette side plug your PAUSE and EARPHONE jacks back
into your recorder. Now type in RUN "CS1" and press ENTER.

DO NOT REWIND THE CASSETTE as it says on the screen Jjust press ENTER.
Now you can follow the rest of the instructions on the screen for
leoading the program.

Now would be a good time to record a backup copy of this program on &
blank cassette. By doing this you will not have to find the beginning
of the keyboard version each time you load it.

The documentation for the game is in the next section of this book.

It is recommended that you run this program a few times to get
familiar with it before you read through the "PROGRAM FLOW" section.

DISKETTE BASED - Loader, Joystick & Keyboard versions _

1-

2.

().

Install a blank, freshly initialized diskette into disk drive 1 in
your system and then select EXTENDED BASIC.

The Disk based versions of Night Mission are on the Diskette side of
the cassette tape., This program was too large to load infto a Disk
based system without Memory Expansion, so we divided it into sections
to allow it to fit into a 16K system. Even if you have Memory
Expansion the program would be in a INT/VAR254 file type instead of a
PROGRAM type and it would take longer to load. The first program on
the Diskette side is the Loader program. This program initializes the
characters and screen, displays the title screen and generates a
menu. The menu allows you to select the Joystick or Keyboard version
and then loads and runs that version. Load the cassette so that the
Diskette side is ready to be played, type in OLD CS1 and then press
ENTER.

Follow the instructions on your screen for loading the program.

After the program has been loaded, type in SAVE DSK1.LOAD and press
ENTER. You have now saved the first part of the disk based program.
By saving this part of the program under the name of LOAD it will
automatically be loaded and run whenever this diskette is placed into
drive 1 and you select EXTENDED BASIC.

Now we are ready to load the Joystick version of Night Mission. The
disk based version differs from the cassette based version in that
the character definitions have been removed from the main body of the
program and placed into the LOAD program. By doing this we were able
to free up a lot of RAM and keep the file in a PROGRAM format, which
allows it to be run without Expansion Memory. Type in OLD CS1 and
press ENTER.

DO NOT REWIND THE CASSETTE as it says on the screen just press ENTER.
Now you can follow the rest of the instructions on the screen for
loading the second part of the disk based progranm.

After this portion of the program has been loaded type in SAVE
DSK1.NMJOY and press ENTER. It is important that you save this
portion under the name of NMJOY because the LOAD program will search
for a program named NMJOY to load and run from drive 1 when you
nelect the Joystick version from the menu.

m

DISKETTE BASED = Continued

8.

10.

11.

12.

Now once again type in OLD CS1 and press ENTER to load the Keyboard
version. DO NOT REWIND THE CASSETTE as it says on your screen just
press ENTER. Now you can follow the rest of the instructions for
loading the third and final part of the disk based program.

After this portion of the program has been loaded type in SAVE
DSK1.NMEEY and press ENTER. It is important that you save this
portion under the name of NMKEY because the LOAD program will search
for a program named NMKEY to load and run from drive 1 when you
select the Keyboard version from the menu.

When everything is saved to disk you can type in RUN "DSK1.LOAD" to
start up the Night Mission Game. You could also type in BYE and then

select EXTENDED BASIC from the menu and Night Mission will
automatically load and run.

The documentation for the game is in the next section of this book.

1k ig recommended that you run this program a few times to get
familiar with it before you read through the "PROGRAM FLOW" section.

N

THE GAME DOCUMENTATION

YOUR MISSION:

To rescue as many men as possible from the hostile enemy territory
and bring them safely to the ship waiting offshore.

THE BAZARDS:

This is a covert action. You will be working entirely on your owmn.
If you should get caught we will disallow any knowledge of your
actions. The territory is fully protected by enemy tanks, rucke?s,
jet planes and choppers. Your chopper can only hold 5 mgn at a Flme
s0o you will have to make a number of trips to th-e ship. Thel first
trip will be fairly easy but on the following trips they will be
aware of your presence and they will try harder to stop you. Good

Luck.

TANK SCREEN:

This screen has an enemy tank rolling along the bottum-nf the sc?een
just above the closed missile silos. Your helicopter will ?nme into
play from the left hand edge of the screen, above the hills, on a

starry moonlit night.

When you land on the ground a man will come running out from the
left hand edge of the screen toward the helicopter. WheQ he Feaches
your chopper he will climb aboard and your chopper will 1ifTy off.
After you have picked up your fifth man you will move on to the next
acreen.

Watch out for the enemy's tank since it can shoot down your chopper,
but you can also shoot back to protect yourself and the man on the
ground. When your chopper has landed on the ground don't let it get
too close or it will destroy the chopper and the man.

On this screen, the keyboard version uses the arrows keys {EEDK)‘to
move your chopper in the appropriate direction and the ? key to fire
your lasers while you are in the air. The E or up key will also lift
your chopper off the ground after it has landed.

In Lho joystick version all four directlions are active on the nugber
ono Joystick and they will move your chopper in the appropriate
direction. The diagonals are also active but they react as a left or
r1phl motion. The fire button will fire your lasers while you are in
Lhe air.

H

LEVELS:
The order in which the other screens come up is determined by the
number of successful trips you have made. Each time you
successfully deliver five men to the ship the level of difficulty
will increase. The difficulty is increased by adding more screens
for you to go through before reaching the ship and by increasing the
speed of the tank, planes, and rockets. The order of screens on each
level is as follows:
i1st Level -~ Tank screen - Ship screen
2nd Level - Tank screen - Enemy rockets or planes (randomly

chosen) - Ship screen
3rd and wp - Tank screen - Enemy rockets or planes -
Enemy choppers - Ship screen
SHIP SCREEN:

On this screen there is our offshore ship waiting for you to deliver
the men in your chopper. The ship will be moving at a random speed
from left to right. Your job is to GENTLY land your chopper on the
landing platform on the rear of the ship. If you land to hard or
land on any other part of the ship it will sink and all hands will
be lost and so will all the points you have accumulated for the men
you previously delivered. If you touch the water, your helicopter
will sink and you will not receive any points for a safe delivery.
Unlike the First screen in which you have one forward and one
reverse speed for your helicopter, on this screen you have three
forward and three reverse speeds.

(TIP: lower your chopper until it is about level with the landing
platform and then ease into the ship from the rear.)

In the keyboard version the arrow keys (ESDX) are active. E will

make you fly up and X will fly you down. S and D will change your
forward or reverse velocity.

In the Jjoystick version all four directions are active. The

diagonals are also active but they react as a left or right joystick
motion.

ENEMY PLANES:

On this screen a number of enemy planes will come on screen from the
right hand edge and travel from right to left at various speeds.
Your mission is to maneuver around the planes and fly your chopper
from the left hand edge of the screen to the right hand edge. If you
make it safely there you will move on to the next screen.

In the keyboard version the arrow keys (ESDX) are active. E will fly
you upwards and X will fly you down. D will increase your forward
motion slightly and S will bring you to a stop.

In the joystick version up and down will fly you in the appropriate
direction. Right will increase your forward motion slightly and left
will bring you to a stop.

ENEMY ROCKETS:

On this screen the rocket silos will open up and the enemy will
launch a continuous barrage of missiles into the air. Your mission
is to safely fly your chopper through this barrage from the right
hand edge of the screen to the left hand edge. If your mission is a
success you will move on to the next screen.

The keyboard and joysticks react the same as they do on the Enemy
planes screen.

ENEMY CHOPPERS:

On this screen your chopper will appear from the top left corner of
the screen and will move in a downward motion. The enemy chopper
will appear from either the top or bottom right hand corner of the
screen and will move to line up with you. Your mission is to destroy
an unknown number (3-=9) of the enemy choppers before they destroy
you. 1In this screen your chopper can move up, down or stay
stationary. You are not allowed to move forward or backwards.

In the keyboard version the arrow keys (ESDX) are active and the V
key will allow you to shoot at the enemy. The E key will f£ly you up
and the X key will fly you down. The S and D keys will stop your
motion.

Tn the joystick version all four directions are active. Pushing the
stick up or down will f1ly you in the appropriate direction. Pushing
the stick right or left will stop your motion. The fire button will
allow you to shoot at the enemy chopper.

POINTS:

MEN - Each man you safely deliver to the ship will add 500 points Lo your
score. Total of 2500 points each time you land on the ship.

TAHES - The points for destroying the enemy tanks is determined by your
height above the ground. You will receive 500 points for each Lunk
you destroy from the top of the screen and the points will diminliuh
the closer your chopper is to the ground.

ENEMY - You will receive 250 points for each enemy chopper you destroy.
CHOPPERS

BONUS (Pree Plays):

For.every 10,000 points you rack up you will receive cne extru
helicopter which will be awarded to you after you have lost your
first five choppers.

SCREEN SCORE DISPLAY:

A BBB ceceeeececeee DDD

Men in your helicopter.

Total men safely delivered to the ship.
Total points accumulated.

Remaining helicopters. (5 to start)

oW
[T TR 1]

Qood Luck. If you find the game to be too hard you could use Lhoe
information contained in "The Program Flow" to help you make it
easier.

THE POWER OF AND

One of the most powerful and versatile functions in Extended Basic and many
other languages is the logical expression of AND. Unfortunately it has also
been one of the least explained functions. In the TI Extended Basic manual
they devote all of two and a half confusing pages to the logical expressions
of AND, OR, XOR and NOT., This is also true for most of the other computer's
basic manuals.

So a few years back we decided to find out all we could on this mysterious
unexplained function. After much research and a number of books on Boolean
Algebra and Boolean Logic we ended up more confused than when we began since
most of the material did not deal with the subject on a computer level.

Well it was now time to tackle this subject on a purely experimental basis
with Extended Basic. After many weeks of testing, trying, discovering and
failing the answers finally became understandable and explainable in plain
english, So now we would like to share our understanding of the use of AND
on direct numbers with you.

You are all probably familiar with the use of AND with two relational
expressions such as: IF A=1 AND B=2 THEN...... so we will not discuss this
use. We will instead discuss the many uses of AND on direct numbers such as:
C=C+1 AND 7 or C=C AND 32767 or IF C AND 1 THEN...... Used in this form
AND works fast and usually reduces the amount of code, or bytes, in your
program.

To start with lets look at a few of the possible uses of AND in your
programs:

1. Very good for auto=reset counters that never increment beyond a
certain value.

2. It can be used to easily determine if a number is Odd or Even.

3. Excellent for small pseudo randem numbers when sprites are in motion
and your program uses CALL POSITION.

4, Very good for conserving on the total number of variables in your
program when you are using the variables as flags or condition
indicators.

5. It can be used to easily round off a floating point number into an
integer.

6. Easily converts Lower case to Upper case or visa versa.

Lets look at this function on a Binary level and then we will discuns e
rules and some examples for its use. When you use AND on direct numbor: Yol
are actually comparing bits at the binary level. If a certain bit 15 on (u I
and the same bit is on in C then, when you AND these two (PRINT B AND ()
that bit will be on in the result. If a certain bit is on in B bub off in ('
it will be off in the result. So the number one basie rule is:

ON Bits that match in the two numbers will be ON in the result.
and
OFF Bits in either of the two numbers will be off in the result.

It might help to think of the use of AND as a filter that only allows ON hLil;
that match up to pass through it for the result.

binary
Examples: 4 AND 7 4 = 00000100
T = 00000111

4 AND 7 Result 00000100 or 4

9 AND 7 9
7
9 AND T Result

00001001
Q0000111
00000001 or 1

inounon

From the above example we can see that when a number is ANDed to T the resull
can never be greater than 7 since the higher value bits are off (sxxxx111).
This is true for any possible ANDed value within the valid range. On the 7TI
in Extended Basic the Valid range is -32768 through 32767. Lets take a look
at the value of each bit in a 16 bit 2's compliment binary number.

Bit No. 15 14 13 12 11 0° 9 8 7 6 5 4% 3 2 1 0
Value sgn 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

T?ese values can also be thought of as Binary Powers. If you raise 2 to the
bit number the result is the Value displayed above.
20

Examples: = 1 21 -2 22 oy il & 212 4096 etec,

80 if bits 0,1 & 2 are on (00000111) then the decimal number is: 142+l or 7
If bits 0,2,3 & 5 are on (00101101) then it equals: 1+4+8+32 or 45

When Binary numbers are used in 2's compliment form like in Extended Basic
the highest order bit, or in this case bit 15, is used as the SIGN bit, This
bit tells the computer that the number is a positive value when it is off or
that it is a negative value when it is on. We will talk more about 2's
compliment Binary numbers a little later. So with these items in mind lets
look a little deeper into this subject,

\V/ I
)

As we saw earlier the decimal value of 7 is 00000111 in binary and this will
mask out any values higher than 7. This is also true for any other value in
the valid range but some value serve this purpose better than others. We have
found the values that best serve this purpose are the ones that are 1 less
than a Binary Power,

Examples: 8«1 = 7 1% -1 =15 sy wiate 4096 - 1 = 4095 etc.

0000000000000111
0000111111111111

7 15 = 0000000000001111

L095

As you can see when you subtract 1 from a Binary power ALL of the lower bits
are turned ON. This allows any value up to this number to pass through the
filter but never a larger number. With this in mind lets look at a few
examples:

1. Very good for auto-reset counters that never increment beyond a
certain value,

Many times in an Extended Basic program you may need a counter that counts up
to a certain value and resets itself. In normal Extended Basic code this may
look like this:

B=B+1 :: IF B=8 THEN B=0C

By using AND with a number that is 1 less than a Binary Power we can reduce
the code and speed up the program by using:

B=B+1 AND 7
Since 7 is one less than a Binary Power and since we are using AND in this
statement it will only allew the counter to count to 7. When B+1 becomes 8
the AND function will automatically reset B back to 0 because higher values
are filtered or masked out. This type of counter can be used with any Binary
Power minus 1 (ie: 1,3,7,15,31 16383 or 32767) and it will never count
past your AND value.
2. It can be used to easily determine if a number is Odd or Even.
Using this same principal we can use AND to determine if a number is 0dd or
Even. An 0Odd number will ALWAYS have Binary bit 0 set and an Even number will
never have bit 0 set since the bits represent powers of 2, With this in mind
we could replace the fellowing Extended Basic code of:
IF B/2-INT(B/2) THEN the number is odd
with
IF B AND 1 THEN the number is odd

Note: The statement IF B AND 1 returns the same true false condition as

IF B AND 1<>0. This is also the same for IF C or IF C-1 ete. This
type of statement is TRUE whenever the result of the test or variable

IS NOT ZERC.

L 4 (e T e T T T T

3. Excellent for small pseudo random numbers when sprites are in mollion
and your program uses CALL POSITION,

Whenever you have sprites in motion and your program uses CALL POSITION you
can use AND to rapidly generate small pseudo random numbers especially 1f' Lhe
player has control over the sprites movement. Since sprites are only allowaod

to have row and column positions from 1 through 256 you can easily AND tLhair

position with any value less than 255 to obtain a pseudo random numbor.

Example: CALL POSITION(#1,X,Y):: IF Y AND 1 THEN By trying differoni

AND values you can get a variety of random numbers or decisions from a

sprites position. Here is a little Extended Basic program that displays Lho

different possible combinations and alsc shows you some of the value pattoernn

generated by AND:

100 CALL CLEAR :: INPUT "Sta
rt at what AND value ":V ::
INPUT "Loop from zero throug
h ™:L

110 FOR V=V TO 255 :: PRINT
P ¥V=";V :: FOR I=0 TO L
: PRINT USING "##4# AND ###
= ###7:1,V,I AND V

120 CALL KEY(0,X,S):: IF S T
HEN GOSUB 140

130 NEXT I :: NEXT V :: END

140 CALL KEY(0,K,S):: IF S=1
THEN RETURN ELSE 140

After running this program for a little while you should notice that Even
numbers and 0dd numbers that are 1 less than a Binary Power generate niceo
regular patterns. Other Odd numbers also have set patterns within a group of
numbers but they are not as regular and they do not automatically increase ao
the value increases.

So by using a value of 1 for AND you can get a random 1 or 0 for any sprite
position. If you use a value of 3 you can get random values of 0,1,2 or 3. A
value of 6 will return random numbers of 0,2,4 or 6 for any sprite position.
The value of 8 returns 0 when the sprite is located in an 0dd numbered
Graphics column (1-32) and 8 when the sprite is in an Even numbered Graphics
column. This method of generating small pseudo random numbers in Extended
Basic is much faster than the RND function.

Note: After playing with AND in the above program change the two references

to AND in line 110 to XOR and then change them to OR to see how these
logical expressions work with direct numbers.

N A

4, Very good for conserving on the total number of variables in your
program when you are using the variables as flags or condition
indicators.

When you use variables as Flags or Condition indicators in your program you
can easily replace up to 15 variables with Jjust one Flag variable. A Flag is
a fancy term for a variable or bit that tells the program a certain condition
exists or doesn't exist (on or off). For example, this condition could be
anything from OUTPUT TO PRINTER to the fact that a certain For-Next Loop was
Just executed so the program needs to do something else before the loop is
executed again. Lets also say that you are using a flag variable to tell your
program that the user has a Coler or B&W monitor. So, for this example lets
say that normally you would set B=1 to send the Output to the printer, you
would set C=1 when something else must be executed before the loop is
executed again and you would set D=1 for a Color monitor. The parts of your
program that may use these Flag variables may look something like this:
160 IF D=1 THEN CALL COLOR(x,x,x) ELSE CALL COLOR(y,¥y,¥)

230 IF B=1 THEN PRINT #3:A%,B$
240 PRINT A$,BS

.

400 IF C=1 THEN RETURN
410 FOR I=1 TO 20 :: ...vecee.. :: NEXT I :: RETURN

As you can see we are using 3 variables as flags in this program example. By
using AND, OR, XOR and NOT you can reduce this to one variable and just test
to see if ceratin bits are On or Off for your flags. This method also allows
you to test multiple conditions or flag bits in one operation.

First lets map out the values of those bits again:

Bit No. 15 14 13 12 11 M 9 8 T 6 5 4 2 1 0
1 oz o9

3
Value sgn 16384 8192 4096 2048 1024 512 256 128 64 32 8

6
You can turn ON any of the 15 bits (0=143) with the OR function without

worrying about the status of the other bits. Example: F=F OR 4. This turns on
bit number 2 without affecting the other bits.

You can test any bit with the AND function. Example: IF F AND 4 THEN ... bit
number 2 is on.

You can turn OFF a bit with the AND and NOT functions. Example F=F AND NOT 4
(which is the same as FzF AND -5) This turns off bit number 2 without
affecting the other bits.

And, you can turn ON a bit that is OFF and turn OFF a bit that is ON (toggle
the bit to its opposite state without knowing the state} with the XOR
function. Example: F=F XOR 3. This will turn OFF bit 2 if it is ON and it
will turn ON bit 2 if it is CFF.

M

O 12

With this in mind lets put it to work in the previous example program hul
first we will map out our Flag variable F.

OUTPUT = Set equals Output to printer
NOLOCP = Set equals Don't execute loop
COLOR = Set equals Color Monitor

Bit no. 15 === 3 2 1

Value = cecemeee 4 2 1

Condition not used COLOR NOLOOP OUTPUT
0ld variable D c B

And now lets apply them tc the previous program example but now we only noo
one flag variable.

160 IF F AND 4 THEN CALL COLOR(xX,xX,x) ELSE CALL COLOR(y,y,y)

.

230 IF F AND 1 THEN PRINT #3:4%,B$
240 PRINT A$,B$

400 IF F AND 2 THEN RETURN
410 FOR I=1 TO 20 f: ..uveev... t: NEXT I :: RETURN

In your program the IF F AND 4 statement uses the same number of bytes an 11
F=1. However, since we have eliminated 2 other variables (flags C & D) and
replaced B with F we have reduced the running size of the program. Also, Lh

fewer the variables in your program the faster it runs! If your program had
few more flag variables in it they too could be eliminated by assigning tholnr
flag condition to one of the unused bits in F.

When you want to test for more than one condition at the same time simply add
up the values for the bits you want to test and perform your AND and comparo
the result to the total value. Example:
IF F AND 6=6 THEN both the COLOR and NOLOP bits are set
ELSE one or none of the bits are set.

This type of multiple testing replaces the normal code of:
IF D=1 AND C=1 THEN both conditions are set.

To replace the normal code of IF D=1 OR C=1 add up the bits again but do nol
compare the result of AND to the total. Example:
IF F AND 6 THEN ..., both or either bit could be set
ELSE neither bit is set.

5. It can be used to eesily round off a floating point number into an
integer.

Since the logical expressions of AND, OR XOR and NOT work on binary integers
you can use AND to round a fleoating point number into an integer. Normally
your code to perform this may look like:

B=INT(B+.5)
By using AND you can save 3 bytes and slightly speed up your program by
replacing the above code with:

B=B AND=-1
This forces the computer do the rounding internally for you so it can operate
on an integer., When you use this method your floating point value must be in
the range of -32768.5000 through 32767.4999.

We used the AND value of -1 because -1 is the same as NOT 0 or ALL BITS ON.
With all the bits turned on, your AND or filter allows all bits to pass
through it and just return the result of the computer's internal rounding.

You can carry this one step further and use it to round for dollars and cents
or any number of decimal places you want. For example, the normal code used
to round to 2 decimal places of:

B=INT{B#100+.5)/100
Could be replaced with:

B=(B#100 AND-1)/100
But this makes the valid range limit -327.6850 through 327.6749 since we are
multiplying by 100 before the AND is executed. Alsc, this method only saves 1
byte and with all the other floating point operations in this statement the
time saved is very slight. So, we recommend that you only use this method of
rounding for obtaining integers and not for rounding to decimal places.

6. Easily converts Lower case to Upper case or visa versa.

To convert lower case or uppercase to uppercase value just AND it with 95.
Example: 67 AND 95 returns 65 65 AND 95 also returns 65,
a A A A

To convert uppercase or lower case to lower case value just OR it with 32.
Example: 65 OR 32 returns 97 97 OR 32 also returns 97.
A a a a

To exchange case, upper to lower & lower to upper, just XOR it with 32.
Example: 65 XOR 32 returns 97 97 XOR 32 returns 65.
A a a A

One practical application for this is with CALL KEY statements. Example:
CALL KEY(0,X,S):: IF K AND §5=89 THEN Y or y was pressed.

However, on the 99/4A, TI gave us a CALL KEY that only returns uppercase
values so, CALL KEY(3,K,8):: IF K=89 THEN works the same as the above
example and K will equal 89 whether Y or y was pressed.

We hope that the previous pages have helped shed some light on the potential
uses for AND, OR, XOR and NOT. With a little experimentation in your programs
you may find many more areas that these logical expressions can be used to
help speed up your programs and save a few bytes of code.

M

] 14

THE CHARACTERS

Character Set 1

32
33
34
35
36
37

38
39

Character Set

40
4
42
43
Ly
45
46

LY

Character Set

48
49
50
51
52
53
54

55

M

hb

b
4

ul:

1

- I

i Wy Lag Ty

Space character

Tank R&P Ship

Solid block for foreground 11,1 11,1 5,1

Top of the water

Clecsed and Open Missile silo

36-39 Tank fire = sprite

Sprite Colors

g9 — -

Character Colors

Solid block for hills

(not used)
(not used)
(not used)
Hill
Hill
Hill

Hill

3

Tank R&P Ship

11,1 11,1 1,1

Character Colors

Chars 48 thru 57 are

redefined as slanted

numerals.

Tank R&P Ship

15,1 15,1 15,1

Character Colors ___

IC

1,1

EC

EC

15,1

15

Charaecter Set &

56
57

58
59

60
61
62
63

60
61
62
63

60
61
62
63

60
61
62
63

60
61
62
63

Character Set 5

64
65
66
67

64
65
66
6T

64
65
66
67

M

-0

+
-
.

¥,

g
i

8

9

(not used)
(not used)

60-63 Man running, Planes
& Rockets, Ship and
Enemy Chopper
sprites

64-67 Man running, Ship &
Enemy Chopper fire
sprites

Character Colors

Tank R&P Ship EC

15,1 15,1 15,1 15,1

Sprite Colors

2 rnd 16 6
3-10

Planes screen

Rockets screen

Ship screen

Enemy Chopper screen

Sprite Colors

Tank R&P Ship EC

2 - 16

7 or 4

Ship screen

Enemy Chopper screen

16

Character Set 5 Continved ________ N

68 " 68-71 Man running and

69 y B Ship sprites

70 , ':. e R e

71 = « eaisiaT SN

68

69

o

71

Character Set 6 el MO S B B~ =~ S
72 72-75 Man running

73 *— sprite

T4 i e e

75 Le St st i

76 76-79 Man running

77 sprite

78 A — .e

79 3 4 g -

Character Set 7

80 80-83 Man shot or climbing
81 ﬁ into chopper - sprite
82 § o I S L

83 BT e i s

84 84-87 First pattern

85 s tank or chopper

86 . explosion - sprite
87 e s VAN ¥
Character Set 8

88 . 88-91 Second pattern

89 C tank or chopper

90 % ¥ explosion - sprite
91 sl 6 AR

9z . 92-95 Third pattern

93 g . tank or chopper

9l - explosion - sprite
95 < sy S avae

Sprite Colors ___ ..

Tank

2

R&P Ship 1C

dn 16 =

Ship screen

Sprite Colors R

Tank R&P Ship EC

2 b _— P

Sprite Colors

2 — s s

Sprite Colors

Tank R&P Ship EC

2 e i .

Sprite Colors

Tank = 2 - 11

Qur Chopper = 16 or rnd

Sprite Colors

Tank R&P Ship EC

see char 84 —- 1
15

Sprite Colors

see char 84 -~ 11
15

3=10

T

I Character Set 9

Character Set 10

104 o0 104=107
1 105 -
‘ 106 ;

107 z
i 108 108-111

o S
110]

111

Il Character Set 11

112 112=-115
113
114
| 115

116 veapaies 116=119

17
18

| 119 +7a

Character Set 12

120
121
122
123

120-123

124
125
126
127

124-127

=

M

96 . 96-99 Fourth pattern
97 ¥ i tank or chopper

; 98 o explosion - sprite

‘ 99 i T gt

il 100 100-103 Fifth pattern
101 tank or chopper
102 explosion - sprite
103 b and the Star char

Backwards flight
chopper - sprite
and the letters
PLAY

Level flight
chopper - sprite
and the letters
GIN

Forward flight
chopper - sprite

Chopper on the ground
or landed on the ship
sprite coewey oas

s ecascseateena

First pattern
man waiving - sprite

R R I I

Sprite Colors
Tank R&P Ship EC

see char 84 - 11
15

Sprite Colors

see char 84 — 11
(Star char - 15,1 all scrns)
Character Colors

Tank R&P Ship EC

End of Game -~ Letters
twinkle - 7,9,16,10 on 1

Sprite Colors

13 13 13 13

Sprite Colors
Tank R&P Ship EC

13 13 13 13

Sprite Colors

13 13 13 13

Character Colors
Tank R&P Ship EC

15,1 15,1 15,1 15,1

Sprite Colors

2 - - -

18

Character Set 13

128 128=131 Second pattern

1
129 !
130 B kel Sk S ok
131

man waiving = sprite

132 I M (crRL D) —MG—r0
133 l’_‘:‘ G (CTRL E)

134 — Line (CTRL F)

135 o Line {CTRL G)
Character Set 18

136 - 136-139 Laser fire - sprite
137 R
138 .:::._.
139 b dvate | aNEEATeTAEY WieTe T
140 140-143 Tank - sprite
141 VRl SRR R
142 -ﬂﬁI:-
143 P45 TALTRRGS T B

Sprite Colors
Tank R&P Ship

2 s e

Character Colors

12,1 12,1 12,1

Sprite Colors
Tank R&P Ship

7 e ==

Sprite Colors

2 - -

19

THE VARIABLES

Permanent String Variables

A$ = Lower line of the hills & foreground with missile silos
B$ = Image for the DISPLAY AT USING for Score

W$ = Water screen for the ship

E$ = Eight zeros for CALL CHAR statements

T$ = Twelve zeros for CALL CHAR statements

S$ Sixteen zeros for CALL CHAR statements

Permanent Numeric Variables

Il = Value for bonus (incremented by 10,000's)

5C = Total current Score

P = Number for men in your chopper (incremented by 1's)
8P = Total men delivered to the ship (incremented by 5's)

7 = Remaining number of your choppers (decremented by 1's)
K = Current level you have reached (incremented by 1's)
V¥ = Current column velocity of your chopper

Tomporary Numerie Variables

X . Carries your choppers dol row position.

Y = Carries your choppers dol column position. It is also used in
conjunction with the AND function to generate random numbers. ie:
SGN(Y-YY)®((Y AND 6)+4+K). It is also used in FOR NEXT loops as the
control variable,

Y1 = Carries the dot column position of the man running to your chopper.
It is also used to carry the random number of enemy choppers for
that screen. :

Yy Carries the tanks dot column position. It is also used for the sound
value on the rockets and planes screen and as the dot row of the
enemy chopper.

" = The all areound catch all. IFFOR NEXT locps. CALL COINC flag. Chopper
Just coming into play flag. The Key variable from CALL KEY or CALL
JOYST ete.

M

20

NIGHT MISSION - THE PROGRAM FLOW

There are many ways to program the computer to do essentially the same
task. Some ways are faster and/or they use up less RAM than others. What we
hope to accomplish is to show you some of the tricks and methods we have
found that work quite well for reduecing program space and improving the
execution speed of your programs.

The Night Mission program toock approximately seven months to write with
its' many revisions and improvements. Our main objective with this program
was to write a multiple screen game that would be fun for all ages to play.
It would also have to incorporate extensive use of sprites, animation,
graphics, sound effects and of course lots of color and action. Oup challenge
was to do it all in Extended BASIC, without the use of expansion memory, and
to maintain a fast response time to Jjoystick and keyboard inputs. Well we are
proud to say that once again the TI 99/4(A) computer has shown us how
powerful it can be with the right program structure and proper use of its!
built in subprograms! So now lets see how 'THE HOME COMPUTER' reacts to the
various program statements and how it all came together to form an Award
Winning Program.

The fellowing pages contain the documentation for the Night Mission keyboard
version, On the Left hand page you will find the program listings for the
lines that are documented on the right hand page. Some of the lines have a
label in front of them to indicate that there is a GOTO op GOSUB instruction
somewhere else in the program that references that line.

The documentation was set up to matech each brogram line so that each new
paragraph starts a new program line. Also all IFs and ELSE IFs have been
indented to make it easier to follow the program flow and, remember IFs
without an ELSE always have an automatic ELSE (or continuation) on the next
program line.

After you have completed the documentation try changing different things in
the program to see what affect it has. When you are able to make successful
changes you know that you fully understand that porticn of the program., This
is how we first learned to program since books on programming TI Extended
Basic were nonexistent at the time.

We hope that you find this documentation simple to follow and complete enough
to allow you to use different routines and subroutines from Hight Mission in
your own programs. And now - On With The Program.

NIGHT MISSION LINE NUMBER MAP

10~ 210 Initialization and title screen.
220~ 290 Restart, Gamwe Over & Bonus play.
300~ 400 Rockets and Enemy Planes initialization and game loop.
410- 560 Enemy Choppers initialization and game loop.
570~ 730 Ship screen initialization and game loop.
T40- 600 Tank screen initialization.
§10-1C20 Tank screen routines.
1030=1120 Tank screen game loop.
1130=-1170 Laser fire routine.

= 21

START

START1

10 CALL CLEAR :: CALL MAGNIF
Y(3):: CALL SCREEN(2):: GOTO
30 :: A$,B$,W$,B :: CALL KE
Y :: CALL SOUND :: CALL PEEK
:: CALL HCHAR :: CALL VCHAR

20 X,Y,Y1,YY,K,v,Z,HP,SP,SC

t: CALL POSITION :: CALL PAT
TERN :: CALL SPRITE :: CALL

DELSPRITE :: CALL COINC :: C
ALL MOTION :: CALL LOCATE

30 E$="00000000" :: T$=E$&v0
000" :: S$=E$&E$:: CALL CHA
R(132,"6152524CCC00000080808
OFFB0QCSLUFCHEESE PR ETSENEFY
Y:: FOR T=1 TO 8 :: CALL COL
OR(T,15,1):: NEXT T :: 1€P-

40 CALL CHAR(47,"™3C4299A1R19
o423cn, 33, RPTH("FEP, 8)&"0000
0020 11B3FFFFFFFFFFFFE1TETES
".112,"A008021039T9FDFF1F0OT0
1080701 "&E$&"80DOBUC1FOFCF2E
2E2F2FCOCFAICH)

22

MoT

w
b 5
—

L 5 2 1.3 8

MIKE MC CUE & CRAIG MILLER

—

]
()
h

X,

[y

4]
—_—

e
-
=
s
1051
Ol

i
T
= e —
=l
—
= =
i
=
o
R 0 e
Mmoo
LT
R L e
—_
b B '}
i Loy
LTl

START

20

START1
30

ko

Clear the screen, set the sprite magnification to 3 (four
regular sized characters per sprite), change the screen color
to black, and GOTO START1 (jump over the follewing items that
were placed here for a rapid Pre-Scan).

These items are also here for a rapid Pre-Scan.

Setup E,T & S strings as eight, twelve and sixteen zeros for
the CALL CHARs to follow, define chars 132 (etrl d), 133 {ctrl
e), 134 (ctrl f) and 135 (ctrl g) as the MG logo and
accompanying lines, set the upper case character colors to grey
on transparent and turn off the Pre-Scan (]€P-).

Define char 47 as the Copyright symbol for the Title screen,
char 33 as a solid foreground character for all screens but the
Enemy Chopper screen, char 34 as the top of the water for the
Ship screen, char 35 as the closed missile silos for the Tank
screen, and chars 112, 113, 114 and 115 for our forward flying
chopper sprite.

23

TITLE_SCRN

50 DISPLAY AT(5,3):"N I G H
T MISSION : : :RPT$
("en,13)&"2Y"ERPTSH("2, 13) ::
CALL COLOR(13,12,1):: GOSUB
240 :: CALL SPRITE(#1,112,1
3,46,25,0,11)

60 DISPLAY AT(12,14):"BY";
® MIKE MC CUE & CRAIG MILLER
neo:o: $TAB(12);"/ 1983u: it
MILLERS GRAPHICSW: W
1475 W CYPRESS AVE":™
SAN DIMAS CA 91773"

70 CALL CHAR(136,"9048241209
0402010 "&EESE1080402090482
%1209",96, 710000040 &ES&" 80"
&E$&"21E5447104000001000068"
, 100, "0000008"&S$&T000004 MES
$&TONETEE QLN)

80 CALL CHAR(120,"030E3F3CTF
F7FFFEFF6FTFTF33360F03E0583C
FEBFBESFOBOFOFOFOTOTBEBICFC™,
124, 70008080907 "&RPTE(01", 1
1)&"00COCOCOEOEOEOROEQCO4O0LO
LO4OUOED™)

90 A$=RPT$(™ w,22):: CALL CH
AR(128,"0202040503"&RPT$(01
", 11}&"00COCOCOECEQROEOEOCOY
OL4OLQUOLOED™, 140, T$&"0103073
FEABAAATF"&S$&"80COEOFCAAAGA
AFC™}

o]

100 A$=A3&™/ e
e

TITLE_SCRN
50

60

70

80

90

106G

Display the top part of the Title screen with the MG logo, turn
on the colers for the MG logo, GOSUB CHOP_SOUND (generate
the chopper sound), and bring out our forward flying chopper.

Display the bottom portion of the title screen.

Now that there is something on the screen we will let the
computer go on with the rest of the initislization of the
characters and stripngs. Define chars 136 thru 139 as the laser
fire, chars 96 thru 99 and 100 thru 103 as the fourth and Fifth
patterns for the blow_up routires. Note: Char 101 (e) is also
used as the stars.

Define chars 120 thru 123 as the moon and chars 124 thru 127 as
the first of two patterns that make up the man waving his arm
at our chopper when we take off and leave hir on the ground.

Start setting up A$ as the hills for the Tank screen (it
wouldn't all fit on one program line), define chars 128 thru
131 as the second pattern of the man waving his arm, and define
chars 140 thru 143 as the tank for the Tank screen

Finish setting up A$ as the hills for the Tank screen.
(Note: If you use strings, whenever possible, to display your
screens they will display MUCH faster than HCHARs).

& E
E f.‘ E [q -
lrl:\-— E "’:.l.lil::l:,. E
E REN L g LR LA =
s LCECLE, E,CCCCCCCC(-
— 0L CCE -, CCECd{eidie,

Print out of A$ in ASCII form (28 columns)

Screen dunmp of A$ in graphics form

110 GOSUB 240 :: B$=RPT$("In
,28) &RPT$(M 1 14, Q) &RPTS(M 17,
29):: WH=RPT§(mnnu 28)&RPTH(
nyn,8y)

120 CALL CHAR(92,"0008000020
000000400000001 "&E$&"8C"&ESE
"208000002001", 116, "00005501
OF1E183020301E1F0F1320300000
5580F078180C040CTBFBFOCB040C
")

110

120

GOSUB CHOP_SOUND (keep the chopper sound going), set up B$ as
the foreground and missile silos for the tank screen and set up
W$ as the top of the water and the foreground for the Ship
screen.

it
!

K
aE
i

!
!

|1
I
Il

|] NS ENN NN RN
K EIREIREIREIRE Y
| SERERNRARE AN AN

s H

Print out of B$ in ASCII form (28 columns)

nn

Screen dump of B$ in graphics form

L L T T O O T Y T T O T [O T O TR O 1
RN NN NN
i YRS ESE AR
i EERRRRRRRREE

! |
i i
| | B

out of W$ in ASCII form (28 columns)

Sereen dump of W§ in graphics form

Define chars 92 thru 95 as the third pattern for the blow up
routines, and chars 116 thru 119 as our chopper when it has
landed on the ground or on the ship. This is the end of the
characters that can be defined with the Title screen displayed.
The rest of the character definitions and initialization will
effect the characters that are currently displayed on the Title
sereen.,

27

CLEAR_TITLE

130 CALL CLEAR :: FOR T=1 TO
13 :: CALL COLOR(T,1,1):: N
EXT T :: FOR X=1 TO 30 :: RA
NDOMIZE :: CALL PEEK(-=-31808,
T,Y):: CALL HCHAR(T/18+1,Y#,
12+1,101):: NEXT X

140 GOSUB 240 :: CALL CHAR(S
8,1000004001000000020000008"
&E$&"001"&E$&"L 100000040017,
56, "1F1122223E4444F81F21213E
02040408™)

150 CALL CHAR(48,"1F21214242
848UFB01070202040408081F0101
023C2040TE3F0103021C0L08FB™,
52,™1111223E020404081F202040
7C0408F8102020407E82827C3F01
0204081020407)

160 CALL CHAR(80,E$&"0003040
1010101010202040600000018F8E
0F8COCOCOT70101018"™,84,m00000
00200080000100002"&T$&"00200
00008200000082")

170 CALL CHAR(T72,"0000010107
0503010101010102020203C0C0OC0
EQEQFBC0C0C02020101020406M) :
: CALL HCHAR(20,1,34,32)

180 CALL CHAR(36,"140A200D1A
21641A241A0814080800080"&5%,
76,m000001030303030101010100
00070400COCOCOECEOEOFOCOCO40
40COCOAO80C™) :: CALL HCHAR(2
1,1,33,128)

190 DISPLAY AT(10,1):"e h i
jkejl jmnekne"™::CA
LL CHAR(40,RPT$("FF",8),u4,"
00008082C2CTFTFF8080COEQELFC
FEFF0103232B7F7FFFFF"&E$&"08
28A9FD™)

CLEAR_TITLE
130

140

150

160

170

180

180

Clear off the Title screen, turn off the colors for all the
character sets that make up the screen display, and generate 30
randomly placed stars on the screen using the double random
nunber generator from the Smart Programming Guide for Sprites.
These stars will end up between rows 1 thru 15 and columns 1
thru 32.

GOSUR CHOP_SOUND (keep the chopper sound goling), define chars
88 thru 91 as the second pattern for the blow up routines, and
redefine chars 56 and 57, the 8 and 9 characters, as slanted
nuoerals.

Redefine chars 48 thru 51 and chars 52 thru 55, the 0 thru 7
characters, as slanted numerals.

Define chars 80 thru 83 as the man when he is climbing into the
chopper or when he is shot by the tank, and chars 84 thru 87 as
the first pattern for the blow up routines.

Define chars 72 thru 75 as the forth pattern for the running
man, and place the top of the water character across the screen
at row 20 to fill the edges of the screen.

Define chars 36 thru 39 as the sprite character that the tank
fires at our chopper, chars 76 thru 79 as the fifth pattern for
the running man, and fill the foreground portion of the screen
with the solid block character. This HCHAR and the one in the
previcus line are used to fill the edges of the screen that are
not written to with a DISPLAY or PRINT statement.

Place the characters that make up the words "PLAY AGAIN Y N" on
the 10 row of the screen. There are also a few stars (e)
displayed with these characters. The characters are not seen
because their color is turned off. These characters are defined
as the backwards and level flying choppers until the end of the
game. When the game ends they are redefined into the letters
and their color is turned on. Define char 40 as a solid block
for the hills and chars 44 thru 47 as the top of the hills for
the tank screen.

200 DISPLAY AT(2,7):RPTH("en
s 13)&"22ME&RPTSH("7M,13) 12 DIS
PLAY AT(3,24):"xz"™ :: DISPLA
Y AT(4,24):"y{" :: DISPLAY A
T(15,1):A$:B$:: A$=SEG$(AS,
141,28)4R$

210 GOSUB 240 :: B$="e # ###
edddHHHAE e " 1z CAL
L DELSPRITE(ALL):: CALL COLC
R(3,15,1,4,15,1,9,11,1,2,11,
1,1,11,1,12,15,1,13,12,1)

200

210

Now we display the lines with the MG logo to separate the
scoring values from the play area of the screen, next we
display the four characters that make up the moon, and then we
display the hills (A$) and foreground (B$), and lastly we set
A$ equal to the last screen line of A$ plus all of B$, for
rapid screen changes in the game.

(Note: once the hills have been displayed we never clear them
off the screen instead we just turn off their color, so we
don't need to retain them in 4$.)

= LT (L~ i %
HUER NRER | | | !I
DI i T T80 i8ii
SRR LE by Lidriini

g
S ——
T — ———

i
I
!
!

e —
= - ST
e]
.-—:ﬂ:._— -

i
|
| 4 1
|

Print out of new A$ in ASCII form (28 columns)

Scereen dump of new A$ in graphics form

Since B$ has been added to the new A$ we can now reuse B$ so we
will assign the USING IMAGE to B$ for our scoring display. This
image also contains a few stars (e) along with the ### signs
for the scoring. Next we delete our chopper that has been
flying across the screen since the Title screen appeared.
Lastly we turn on all the colors for the screen at the same
time. This causes the play screen to appear all at once.

E # HEHS #4444 448888 ctH &

RESTART

CHOP_SOUND

GAME_OVER

GETEEY

220 CALL COLOR(10,1,1):: CAL
L CHAR(108,E$&"55000061E1FFF
FFF00000003"&E$&"S5U0ECFBELE
2E1F1FFTCUSFE"}

230 K=1 :: Z=5 :: HP,SP,SC,B
=0 :; CALL CHAR(10%,E$&"0104
10400103CFFFFET86001020820C0
707CE2E1E1F3FEFCCS54658EM) 11
GOTO T40

240 CALL SOUND(-4250,-4,1,11
0,30,110,30,200,30) :: RETURN

250 CALL KEY(3,T,¥):: Z=INT(
(SC-B)/10000):: FOR T=1 TC Z
: CALL SOUND(200,770,4,777
,6):: DISPLAY AT(1,24):USING
MEER T NEXT T

260 IF Z THEN B=B+Z%10000 ::

GOTC 740 ELSE CALL CHAR(108
, "FF81BFAOAFB98 1FFFF81ET 1818
E781FFE7B5B5BDBDADADET ")

270 CALL CHAR(104,"FFB1BD81B
FAQOAOEOEOACACAOACBF81FFFF81B
DBD81BDASETETASED81ET181818"
):: CALL SPRITE(#1,112,13,87
»1,0,12)

280 CALL COLOR(10,7,1,10,9,1
,10,16,1,10,6,1):: CALL KEY(
0,T,T)

290 IF T=89 THEN 220 ELSE IF
T=78 THEN CALL DELSPRITE(AL
L):: CALL VCHAR(1,1,32,768):
¢ END ELSE 280

32

RESTART

220

230

CHOP_SOUND

240

GAME_OVER

260

270

GETKEY
280

290

Turn off the colors for the PLAY ACAIN letters, in case the
program came here from a game over condition, and define chars
108 thru 111 as the level flying chopper (the game_over routine
defines these characters as the letters GIN for the PLAY AGAIN
Y N message at the end of the game).

Set

the level (K) to 1, set the number of our choppers

remaining (Z) to 5, clear out the number of men in the chopper

(HP)

-~ the number of men delivered to the ship (SP) = the score

(SC) and the bonus points (B), and define the chars 104 thru
107 as the backwards flight chopper (the game_over routine
defines these characters as the letters PLAY for the PLAY AGAIN
Y N message at the end of the game). GOTC TANK_INIT (set up the

tank

This

screen).

subroutine is used to keep the chopper sound going during

initialization,.

Initialize keyboard for caps only, calculate the number of
250 bonus choppers that should be awarded, if the current score
minus the previous bonus is less than 10000 this calculation

will

set Z equal to zero and the following FOR NEXT loop will

not execute, if Z is greater than zero (1,2,3 ete.) the loop

will

execute that many times and display the adding of choppers

in the scoring portion of the screen with a bell sound each

time

IF

ELSE

it increments the display.

there are bonus choppers (Z<»0) THEN add to the variable
(B) that keeps track of the bonuses awarded so far, and
GOTO TANK_INIT (set up the tank screen since the game
isn't over yet).

redefine the characters used for the GIN letters in the
PLAY AGAIN Y N message.

Redefine the characters used for the PLAY letters in the PLAY
AGAIN Y N message, bring out our forward flight chopper and

make

Turn
scan

IF

ELSE

it fly across the screen.

on the colors for the letters and make them twinkle, and
for a key press.

a YES key dis pressed THEN GOTO RESTART (start the game

over).

IF a NO key is pressed THEN delete all the sprites and
wipe off the screen and END the program.

ELSE since no key was pressed GOTO GETKEY (twinkle the
letters and scan for a key).

33

R&P_INIT

300 V=8 :: IF K<2 THEN 570 E
LSE IF Y AND 1 THEN 340 ELSE
CALL CHAR(60,"08081C1C1C1C1
C3ETF1C0008221004080"&3%)

310 YY=600 :: CALL DELSPRITE
(ALL):: FOR T=2 TO 5 :: CALL
LOCATE(#T, 1, T#17, #T+4, 177, T
#17):: NEXT T

320 CALL SOUND(-350,-7,6,110
,5):: CALL CHAR(35,"FFFFFFFF
81000081"):: CALL SOUND(4250
,~8,4,110,27,115,28,YY,30)

330 FOR T=10 TO 18 :: RANDOM
IZE :: CALL PEEK(=-31880,X):-
CALL SPRITE(#T,60,(X AND 7)
+3, 177, T#24-208,~X/8~3~K,0):
¢ NEXT T :: GOTO 360

~
" = A i= i~
i 5 e o= i 5

[)

a3

34

R&P_INIT
300

310

320

330

Set V equal to 8 for use with the blow_up_chop subroutine, in

case we get hit, or in case the level is less than 2.

IF the level is less than 2 THEN GOTO SHIP_INIT (set up the

ship screen).

ELSE IF when our chopper's last position was checked and it
was on an odd dot column ((Y AND 1)<>0) then GOTO
PLANE_INIT (bring out enemy planes).

ELSE Define the rocket characters.

Set YY equal to 600 for the rocket sound, delete all the
sprites, place four invisible sprites at the top and bottom of
the screen (this makes the rockets disappear under the scoring
and reappear at the silos).

Generate the silo opening sound, define the silo character as
open and generate the rocket sound.

Bring out the 9 enemy rockets with random colors and at random
speeds using the level (K) to increase the speeds at higher
levels, and GOTC OUR_CHOP_OUT (bring out our chopper).

35

PLANE_INIT

OUR_CHOP_OUT

340 CALL CHAR(60,T$&"01030F7
FO"E$&T$& " TOYFAB20LFC3CICFF
0C"):: ¥Y=1600 :: CALL SOUND
(=4250,-8,6,110,27,115,28,YY
,30):: CALL DELSPRITE(ALL)

350 FOR T=10 TO 18 :: RANDOM
IZE :: CALL PEEK(-31880,X):-
CALL SPRITE(#T,60,(X AND T7)
+3,T#16=120,256,0,-X/8-3-K):
: NEXT T

360 CALL SPRITE(#1,112,13,72
11,0,3)

L I

1]
hi:

36

PLANE INIT
340

350

QUR_CHOP_OUT
360

Define the plane character, set YY equal to 1600 for the plane
sound, generate the plane sound, and delete all the sprites,

Bring out the 9 enemy planes with random colors and at random
speeds using the level (K) to increase the speeds at higher
levels.

Bring out our forward flight chopper on the left band edge of
the sereen flying slowly to the right.

37

R&P_LOOP

END_R&P_LOOP

370 CALL SOUND{~-999,-8,6,110
,27,115,28,¥Y,30):: CALL COI
NC(ALL,T):: CALL POSITION{#1
,X,¥):: IF T OR X>161 THEN G
OSUB 870 :: GOTO T40

380 IF Y»224 THEN 410 ELSE C
ALL KEY(1,T,T):: IF T<0 THEN
CALL MOTION(#1,0,2):: GOTO

370

390 IF T=0 THEN T=8 ELSE IF

T=5 THEN T=8%(X>35)ELSE IF T
=3 THEN CALL MOTION(#1,0,l4):
: GOTO 370 ELSE CALL MOTION(
#1,0,0):: GOTO 370

400 CALL MOTICN(#1,T,2):: GO
TO 370

oS

38

R&P_LOOP
370

380

390

Generate rocket or plane sound according to value of YY, check
coincidence between any sprites, and get the position of our
chopper.

IF

IF

ELSE

IF

ELSE

there was a coinecidence or our chopper has flown into the
ground THEN GOSUB CRASH_CHOP (blow it up), GOTO TANK_INIT
(go back to the tank screen).

the chopper has made it to the right hand edge of the

screen THEN GOTO EC_INIT {move on tc the next screen)

scan for a Kkey press.

IF no key was pressed THEN slow down the chopper and
GOTO R&P_LOOP (start the loop over again).

the Down arrow key was pressed THEN set T equal to 8 for

downward motion and continue with end_ré&p_loop.

IF the Up arrow key was pressed THEN set T equal to =8
if our chopper is 1s on a dot row greater that 35
else set T equal to O and continue with end_r&p_loop

ELSE IF the Right arrow key was pressed THEN put our

chopper into a faster forward motion, and GOTO
R&P_LOOP (start the loop over again),

ELSE it must have been some other key that was
pressed so bring our chopper to a stop, and GOTO
R&P_LOCP (start the loop over again).

END_R&P_LOOP Put our chopper into motion according to the value of T (§,-8
or 0), and GOTC R&P_LOOP (start the loop over again).

%00

39

hJ

. i
EC_TINIT 410 CALL DELSPRITE(#1):: IF . h d :I"" . Kl
K<3 THEN 570 ELSE Y1=(Y AND
6)-4% :: CALL DELSPRITE(ALL): i ﬁ

: CALL COLOR(2,1,1,1,1,1,13,
1,1)

420 DISPLAY AT(21,1):" e
e e e ' : ’) '

e e e " h -

E“

430 CALL CHAR(60,T$&"AAOR1F2 "L'
CACTF107F"&S$&"ABOOCTIFFE1COY : J
QEM,64,33&"00009292 & TH&S$&" ; ;
4949my:: CALL SPRITE(#1,108,
13,40,31,8,0)

EC_INIT Delete our chopper
410 IF the level is 1less than 3 THEN GOTO SHIP_INIT (set up the
ship screen).

ELSE set Y1 equal to a random number of enemy choppers based on |
the last dot column of our chopper, delete all sprites,
and turn off the colors for the hills and the lines with
the MG logo.

(Note: since Y, which comes from the call position statement,

can only have a value between 1 and 256, the Y AND 6 function

can only return 0,2,4 or 6 for any value of Y. By subtracting 4

from 0,2,4 or 6, ¥1 can only have a value of -4,-2,0 or 2, Fach

time ocur chopper shoots down an enemy chopper we add 1 to Y1
and then test it to see if it i1s less than 5. If it is less
than 5 there are more enemy choppers. So the least number of
enemy choppers that must be shot down before you can go on to
the next screen is 3 and the maximum number is 9).

420 Display some more stars (e) at the bottom of the screen.

430 Define the enemy chopper character and the sprite that it fires
at us and we fire at them, and bring out our level flight
chopper at the top left hand edge of the screen moving
downward.

<
s

40 41

EC_OUT

EC_LOOP

END_EC_LOOP

440 CALL SPRITE(#2,60,6,242,
216,(Y AND 1)%80-140,0)

450 CALL SOUND(-4250,-l,1,20
0,30,200,30,200,30):: CALL P
OSITION(#1,X,Y,#2,YY,¥)

460 IF X>180 THEN CALL LOCAT
E(#1,1-(V<0)%180,31)ELSE IF
ABS(X=YY)<7 THEN 2490 ELSE CA
LL MOTION{#2,SGN(X-YY)#({YY
AND 11)+9),0)

470 CALL KEY(1,T,Y):: IF T=1
3 THEN 510 ELSE IF T=5 THEN
V=-8 ELSE IF T=0 THEN V=8 EL
SE IF Y THEN V=0

480 CALL MOTION(#1,V,0):: GO
TO 450

EC_OUT
4ho

EC_LOOP

450

460

470

END_EC_LOOP
480

Bring out the enemy chopper, randomly from the top or bottom of
the screen based on our chopper's previous position, or the
missile's position, that we fired at the last enemy chopper,
dot column position (odd or even).

Generate chopper sound, get our chopper's and enemy chopper's
positions (we only need their dot row position since they are
not allowed to change celumn positions),

IF our chopper is moving off the screen THEN wrap it around
back onto the screen (determined by the motion direction
according to the value of V).
ELSE IF the enemy chopper is lined up with us THEN GOTO
EC_FIRES (enemy shoots us down).
ELSE make the enemy chopper move at a random speed to
align itself with us.

Scan for a Key press,

IF the fire key was pressed THEN GOTO WE_FIRE (shoot at the
enemy chopper).

ELSE IF the Up arrow key was pressed then set V equal to -8

(upward motion) and continue with end_ec_loop.

ELSE IF the Down arrow key was pressed the set V equal
to 8 (downward motion) and continue with
end_ec_loop.

ELSE IF any other key was pressed (Y<>0) then set V
equal to 0 (no motion) and continue with
end_ec_loop.

(Note: if no key was pressed the above IFs would not be
executed so the value of V would remain unchanged and the
program flow would drop thru to end_ec_loop)

Put chopper into an upward or downward motion according to the
value of V and GOTO EC_LOOP (start the loop over again).

EC_FIRES

WHERE

WE_FIRE

WHERE1

BLOW_UP_EC

490 CALL SPRITE(#3,64,7,YY,2
09, V+X=YY,~127):: CALL SOUND
(-900,-8,1,110,30,110, 30,999
9,30):: T=0

500 CALL POSITION(#3,Y,¥)::
IF Y>50 THEN 500 ELSE CALL D
ELSPRITE(#3):: CALL COLOR(#1
,11):: GOSUB 930 :: CALL DEL
SPRITE(#2):: GOTO 740

510 CALL SOUND(-900,-8,0,110
,30,110,30,300,30):: CALL PO
SITION(#1,X,¥):: CALL SPRITE
(#3’61‘!""’}{! 36!0I127)

520 CALL POSITION(#3,X,Y¥)::
IF ¥<192 THEN 520 ELSE CALL
DELSPRITE(#3):: CALL COINC(#
2,X,220,7,T):: IF T THEN CAL
L SOUND(~1,-4,9)ELSE 450

530 CALL COLOR(#2,15):: FCR

T=0 TC 2 :: CALL PATTERN(#2,
88+T#4):: FOR X=5 TO 7 :: CA
LL SOUND(100,-X,T#10):: NEXT
X it NEXT T

540 CALL DELSPRITE(#2):: Yi1=
Y1+1 :: SC=SC+250 :: DISPLAY
AT(1,12)SIZE(10) :USING "###
#E#HEL#":SC 1 IF Y1<5 THEN

o

550 CALL POSITION(#1,X,Y)::
IF X>185 THEN CALL LOCATE(#1
»35,Y)

560 CALL PATTERN(#1,112):: C
ALL MOTION(#1,0,20):: CALL S
OUND{-4250,-4,1,200,30,200,3
0,200,30)

s

by

EC_FIRES
430

WHERE
500

WE_FIRE
510

WHERE1
520

BLOW_UP_EC
530

540

550

560

Shoot enemy's milssile at us, according to the values obtained
from the last position check, generate missile fire sound, and
set T equal to zero. T is used as a flag in the BLOW_UP_CHOP
subroutine to indicate a coincidence between the crashing
chopper and the tank on the Tank screen.

Check the missile'’s position.

IF it has not reached us yet GOTO WHERE (keep checking).

ELSE delete the missile, change our choppers color to light
yellow for a better blow up effect, GOSUB BLOW_UP_CHOP
(blow up our chopper), delete the enemy chopper and GOTO
TANK_INIT (go back to the Tank screen).

Generate missile fire sound, get our chopper's position and
shoot our missile at the enemy from our current position.

Check the missile's position.

IF it has not reached them yet GOTO WHERE1 (keep checking).

ELSE Delete the missile and check for coincidence between our
missile's last position and the enemy's chopper.

IF we hit them, turn off +the missile sound, since the
next sound statements have a positive duration, and
continue with BLOW _UP_EC (blow up the enemy chopper).

ELSE GOTO EC_LOOP (start the locp over again).

Since we hit them change their color to grey for a better blow
up effect, and start the blow up routine. Change their pattern
to 88,92 & 96 while the blow up =sound is being generated.

Delete the blow up pattern, add 1 to the enemy choppers

destroyed counter (Y1), add 250 points to our score (SC), and

display the new score at the top of the screen.

IF the EC counter is less than five (there are more enemy
choppers to shoot down before we can move on so) THEN GOTO
EC_OUT {bring out the next enemy chopper).

Check our chopper's position.
IF it is too low or off the screen THEN locate it at the
top of the screen at its current dot cclumn.

Change its pattern to forward flight, set it in forward motion,
generate the chopper sound and continue execution with
SHIP_INIT (set up the Ship screen).

4s

SHIP_ TINIT

570 CALL CHAR(68,S$&"000000F
F7F1FFEAB"&S$&"000000FFFFFFA
A6D",64,E$&"0021F373FFFFFFFF
FFFF972A08103CFFFOFFFFFFFFFF
FFFFFFFFSEAAY)

580 Y1=(Y AND 5}+6 :: GOSUB

800 :: CALL CHAR(60,"0000008
0B0CKCFEEFFFFSBAAFFFF722B & T
$&"COOFFEFCF8FOE2C6TB3DM) 1 ¢

CALL COLOR(1,1,1,2,1,1)

590 DISPLAY AT(20,1):W$:: C
ALL COLOR(1,5,1,7,12,1):: FO
R T=1 TO 4 :: CALL LOCATE(#T
,167,1):: NEXT T :: CALL SPR
ITE(#9,112,13,15,1,20,35)

600 CALL SPRITE(#10,68,15,14
3,1,#11,64,15,143,17,#12,60,
15, 143,33):: CALL MOTION(#10
,0,Y1,#11,0,Y1,#12,0,¥1)

\
fo— .~ -;—! l"_ 1
) b e gl o

!

46

SHIP_INIT
570

580

590

600

Define the back portion (char 68) and middle portion (char 6I)
of the ship.

Calculate a random value for the ship's speed based on the lant
value of Y (dot column tracker), GOSUB INVIS_SUB (delete all
sprites and put invisible sprites at the bottom of the screcn),
define rest of the ship, and turn off the hill colors (in cano
we haven't just come from the Enemy Chopper screen.)

Display the top of the water at row 20, turn on the water and
the MG logo colors, put 4 more invisible sprites just below Lho
top of the water for the sinking effect, and bring oul our
chopper.

Bring out the 3 sprites that make up the ship and put them all
into motion at the same time so the ship doesn't break up.

47

SHIP_LOOP

END_SHIP_ LOOP

610 CALL SOUND(-4250,-4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#9,X,¥Y)}:: IF X<35 TH
EN CALL MOTION{#9,0,V):: CAL
L LOCATE(#9,35,Y)ELSE IF %>1
40 THEN 690

620 CALL COINC(#9,#11,16,T):
: IF T AND X>130 THEN 680 EL
SE CALL COINC(#9,#10,9,T)::
IF T THEN 710

630 CALL KEY(1,T,T):: IF T<O

THEN CALL PATTERN(#9,SGN(V)
#44108):: CALL MOTION(#9,3%(
X>35),V):: GOTO 610

640 IF T=3 THEN CALL PATTERN
(#9,112):: V=V-4#{V<12):: GO
TO 670 ELSE IF T=2 THEN CALL
PATTERN(#9,104):: V=V+4%(y>
=12):: GOTO 670

650 IF T=0 THEN CALI, PATTERN
(#9,108):: CALL MOTICN(#9,8,
V):: GOTO 610

660 IF T=5 THEN CALL PATTERN
(#9,108):: CALL POSITION(#9,
X,Y):: IF X<36 THEN CALL LOC
ATE(#9,35,Y)ELSE CALL MCTION
(#9,-8,V):: GOTO 610

670 CALL MOTION(#9,0,V):: GO
TO 610

48

SHIP_LOOP Generate chopper sound, get chopper's position,
610 iF it is too high THEN adjust its motion to level <flight and
bring it down to dot row 35.
ELSE IF it is too low THEN GOTO SINK_CHOP (Sink the chopper).

620 Check coincidence between our chopper and the sprite in the

middle of the ship (see drawing).

IF there is a coincidence GOTO SINK_SHIP (crash the chopper,
sink the ship and sink the chopper).

ELSE check for proper coincidence between our chopper and the
back of the ship (see drawing).
IF there is a coincidence THEN GOTO LAND_CHOP (land the

chopper on the back of the ship).

v IF X>140
Safe Landing Zone 4] Sink Chopper

IF T AND X>130

Sink Ship & Chopper
IF T

Land Chopper

630 Scan for a key press.
IF no key was pressed THEN change pattern to forward or
backward motion chopper according to the value of V,
adjust motion to make our chopper fly slowly up and GOTO
SHIP_LOOP (start the loop over again).

640 IF the Right arrow key was pressed THEN change the choppers
pattern to forward flight, add 4 to V if V is less than
12, and GOTO END_SHIP_LOOP (change the chopper's motion),
ELSE IF the Left arrow key was pressed THEN change the
chopper's pattern to backward flight, subtract 4 from
V if V is greater than -12, and GOTC END_SHIP_LOOP

(set the chopper into the new motion).

650 IF the Down arrow Kkey was pressed THEN change the chopper's
pattern to level flight, set the chopper into a diagonal
downward motion along with the forward or backward motion
according to the value of V, and GOTO SHIP_LOOP (start the
loop over again).

660 IF The Up arrow key was pressed THEN change the chopper's
pattern to level flight, and get its current position.

IF it is too high THEN bring it back down to dot row 35
at its current dot column, and continue with
end_ship_ loop.

ELSE set the chopper into an upward motion along with the
forward or backward moticn according to the value of
V and GOTO SHIP_LOOP (start the loop over again).

(Note: If a key was pressed that wasn't one of the 4 arrow keys
the program would not execute any of the previous IF statements
or change the value of V. It would just drop through and
execute end_ship loop.)

END_SHIP_LOOP Set the chopper into forward or backward motion according to
670 the value of V, and GOTO SHIP_LOOP (start the loop over again).

& 49

SINE_SHIP

SINE_CHOP

LAND CHOP

680 CALL MOTICN(#9,0,0,#10,2
S, #11,2,8,#12,2,4) 1 SC=SC-
SP#500 :: SP=0

690 CALL MOTION(#9,3,0):: CA
LL SOUND(-2450,-8,6,110,30,1
10,30,9999,30):: CALL PATTER
N(#9,104):: CALL SOUND(1,-4,
9):: HP=CQ :: Z=2Z~1

700 CALL DELSPRITE(#9):: IF
SP THEN 740 ELSE CALL DELSPR
ITE(#10,#11,#12):: GOTO TLO

710 CALL POSITION(#10,X,¥)::
CALL SPRITE(#9,116,13,136,Y
,0,Y1}:: FOR T=306 TO 122 ST
EP =6 :: CALL SOUND(-200,-4,
1,7,27,7,30,T,30):: NEXT T

720 FOR T=130 TO 306 STEP 8
*: CALL SOUND(-4250,=-4,1,T,3
0,T,30,T,27):: NEXT T :: CAL
L MOTION(#9,-10,0):: K=K+1 :
¢ SC=SC+500#HP

730 FOR T=1 TC 300 :: NEXT T
t: SP=SP+HP :: HP=0

SINK_SHIP
680

SINE_CHOP

Stop our choppers motion and set the ship into a slow diagonal
downward motion to sink it, subtract all the points Ffor the
total number of men that have been delivered to the ship, and
reset the variable for the total men delivered to the ship (SP)
to zero.

Set our chopper into a slow downward motion, generate the

690 sizzling sound, change our choppers pattern to the backward

700

LAND_CHOP
710

720

730

flight chopper to give it the effect of sinking tail first,
turn off the sizzling sound, reset the variable for the number
of men in the chopper (HP) to zero, and subtract 1 from the
humber of our choppers remaining (2).

Delete our chopper off the screen.

IF there are men on the ship (SP<>0) (we didn't sink the
ship, however, it is possible that we never delivered any
men to the ship, we Just sank our chopper) THEN GOTO
TANK_INIT (set up the tank screen).

ELSE Delete the ship, because odds are that it is sinking and
we don't want it to wrap around and come floating out of
the top of the screen, and then GOTO TANK_INIT (set up the
Tank screen).

Get the back of the ship's position, set our chopper down there
in the landed pattern using the same motion (velocity) as the
ship, and generate the sound of the chopper engines slowing
down (for a slight time delay to give your Jjoystick or keyboard
hand a rest).

Rest time is over, so rev up the chopper engines, make our
chopper 1ift off the ship, add 1 to the level (K), and add 500
points for each man in the chopper to the score.

(Note: by using the HP variable here you can easily change the
total number of men required to be picked up on the tank screen
without worrying about adjustments to the scoring).

Generate a slight time delay to allow the chopper to get higher
in the air before going back to the Tank screen, add the number
of men in the chopper (HP) to the total men delivered to the
ship (SP), and reset the number of men in the chopper (HP) to
zero, and continue with tank_init.

TANE_INIT

T40 DISPLAY AT(1,2):USING B$
iHP,SP,8C,Z :: IF Z THEN CAL
L DELSPRITE(ALL)ELSE 250

750 CALL CHAR(60,"000001010F
090909010101013E200000C0C4CH
FCCOCOC0C0C020100808102031)

760 CALL CHAR(64,"™0101031F13
13130303C3033F20000000808888
88F8808080808000008040203")

770 CALL CHAR(68,"0000010107
0909050101010106181000C0COC2
F4C8C0C0C0C02010080810203",3
5, "FFFFFFFFE1TETER1 ")

780 DISPLAY AT(20,1):4% :: C
ALL COLOR(2,11,1,1,11,1,13,1
2,1):: GOSUB 800

790 CALL SPRITE(#3,140,2,161
;256,0,-24):: FOR T=9 TO 20
:: CALL SPRITE(#T,136,7,200,
1):: NEXT T :: GOTO 1030

Fy
-
Ljﬂ
LI

[

it .ﬂu

52

TANK_TNIT

T40

780

790

Display the scoring on row 1.

IF there are any of our choppers left (Z<>0) THEN delete all
aprites.

ELSE GOTC GAME_OVER (end of game).

Define the first pattern of the running man sprite {char 60).
Define the second pattern of the running man sprite (char 64},

Define the third pattern of the running man sprite (char 68)
and redefine the missile silc character as closed, in case it
was opened.

Display the Tank screen foreground with the missile silos in
case we Jjust came from the Ship or Enemy Chopper screens, turn
on the colors for the hills and the MG logo, and GOSUB
INVIS_SUB (delete all sprites and place 4 invisible sprites at
the bottom of the screen).

Bring out the tank from the right hand edge of the screen at a
rapid motion so that it will be near the middle of the screen
when our chopper comes out, set up the sprites used for the
laser fire but place them off the visible portion of the
screen, and GOTO CHOP_QUT (bring out our chopper).

53

INVIS_SUB

TANE_SHOOTS

MACHINE_GUN

800 CALL DELSPRITE(ALL):: FO
R T=5 TO 8 :: CALL LOCATE(#T
SATT,T#1T):: NEXT T :: RETUR
N

810 IF T<>12 THEN CALL POSIT
ION(#1,X,Y,#3,YY,YY):: IF AB
S(Y-YY)<80 THEN CALL SPRITE(
#4,36,9,157,YY,X=147, 2#V+Y-Y
Y)ELSE 1060 ELSE 1060

820 CALL SOUND(=150,-8,3,110
,30,110,30,5010,30):: CALL S
ounbp(300,-8,1,128,30, 128,30,
1100,30):: CALL DELSPRITE(#4
):: GOSUB 870 :: GOTC 1030

830 CALL MOTION(#3,0,V/4,#2,
0,0):: CALL PATTERN(#2,80)::
CALL SOUND(-1,-4,9):: IF T=
12 THEN CALL MOTION(#1,0,V)

840 FOR T=1 TO 9 :: CALL SOU
ND(50,=6,1):: NEXT T :: CALL
DELSPRITE(#2)}:: Y1=0 :: RET
URN

54

INVIS_SUB
800

TANE_SHOOTS
810

820

MACHINE_GUN
830

840

This subroutine deletes all sprites, sets up U invisible
sprites at the bottom of the sereen, and returns.

IF our chopper is not just coming out (T<>12, the just coming
out flag) THEN get our choppers current position and the
tanks current position, we only need the tanks dot column
since its dot row is not allowed to change.

IF they are still in alignment and our chopper has not
flown, wrapped, arcund to the other side of the
screen (ABS(Y-YY)<80) THEN make the tank shoot a
sprite at the chopper from the tanks current position
to the choppers current position and continue with
the next line.

ELSE the chopper must have flown around to the other side
of the screen so just GOTO TANK_LOOP1 (go back into
the tank loop).

ELSE our chopper is just coming out so give it a chance and
GOTO TANK_LOOP1 (go back into the tank loop).

Generate tank shoots sound which we will use in conjunction
with the next positive duration sound statement as a time
delay, generate the hit sound, delete the sprite that was shot
at the chopper, GOSUB CRASH_CHOF (crash or blow up the chopper)
and GOTO OUR_CHOP_OUT (to start the tank loop over),.

This subroutine, which can be branched to from the tank_loop or
the land_it sections of the program, will change the tanks
motion and move it at 1/4 the speed of our choppers last
velocity (this usually makes the tank move away from the
chopper when it has landed on the ground so that the
blow_up_chop routine doesn't cause the chopper to hit the tank
and blow it up too). Also, in case the man is running, stop his
motion, change the man's pattern in case he is on the screen,
to the bent over figure, stop any previous sound statements
that may be on since the next sound statements have a positive
duratiocn.

IF the chopper is just coming out (T=12, the just coming out
flag) THEN change its motion to level flight so that it
doesn't fly through the ground while the tank machine guns
the man.

Generate the machine gun scund, delete the man off the screen,
set the mans dot column varilable (Y1) to zero, this tells the
tank_loop that the man is no longer on the screen and it tells
the land_it loop to bring out another man, and then return to
the next statement after the GOSUB MACHINE_GUN statement.

55

BLOW_UP_TANE

CRASH_CHOP

NEW_COLOR

850 CALL COLOR(#3,2):: FOR T
=0 TO 16 STEP 4 :: CALL SOUN
b(-%99,-8,T,120,27,127,28,10
00,30):: CALL PATTERN(#3, 84+
T)s: NEXT T

860 S5C=605-3¥X+SC :: CALL DE
LSPRITE(#3):: CALL SPRITE(#3
»140,2,161,256,0,=-24):: RETU
RN

870 T=0 :: CALL SOUND(-1,=1,
9):: IF Y AND 1 THEN CALL PA
TTERN(#1,112):: CALL MOTION(
#1,9,V)ELSE CALL COLOR(#1,16
):: GOTO 930

880 CALL COLOR(#1,RND#7+3)::
FOR T=1 TC 26 STEP 5 :: CAL
L SOUND(T®40+200,-8,T, 110,30
,110,30,1100-T,30)

890 CALL POSITION(#1,X,Y)::
IF X>155 THEN CALL MOTION(#1
»0,0):: GOTO 910 ELSE IF X 4
ND 2 THEN 880

900 NEXT T :: GOTO 880

BLOW_UP_TANE
850

860

CRASH_CHOP
870

NEW_COLOR
880

890

9co

This subroutine will change the tanks color back to black since
the laser fire routine changes it to white, start the blow up
routine by generating the blow up sound while changing the tank
pattern into expanding fragments.

Calculate and add a number of points to our score (the higher
the chopper is in the air the greater the peints, X 1s the
choppers dot row position, so if the chopper is low, dot row
160, this will add 125 points and if the chopper is at the top
of the screen, dot row 35 this will add 500 points to our
score), delete the blown up tank sprite, bring out a new tank
from the right hand edge of the screen, and return.

This Subroutine Has 2 entry points. The First one randomly
decides to either crash the chopper into the ground or to just
blow it up in the air. The second entry point at BLOW_UP_CHOP
blows up the chopper wherever it is. So, by letting CRASH_CHOP
fall through to BLOW_UP_CHOP we can crash the chopper into the
ground and then blow it up. First we clear the COINC flag (T=0)
in case we hop right into BLOW_UP_CHOP. Next we turn off any
previous sounds that may be on since the next sound statements
have a positive duration.

IF Our choppers last checked position was on an odd dot
column (¥ AND 1) THEN we will get ready to crash it into
the ground by changing its pattern to the forward flight
chopper, and setting it into a diagonally downward motion
acecording to the value of V.,

ELSE We will get ready to blow it up in the sky by changing its
color to white and then we will GOTO BLOW_UP_CHOP.

This is part of the loop that crashes the chopper into the
ground. First change its color to a randomly selected color
between 3 and 10. Next we start up a For-Next loop that may or
may not be completed but it is used to generate a sound like
the choppers engines are in trouble.

Now we check our choppers position.

IF we are close to the ground (X>155) THEN stop our choppers
motion and GOTO CHK_COINC (this leaves the For-Next loop
and the crash loop).

ELSE IF our choppers last dot row position has the binary bit

for the value of 2 turned on, then goto NEW_COLOR.
This will not allow the entire For-Next loop to
execute so the sound will not have a regular pattern.
(the X AND 2 is a simple random test since the
chopper is constantly changing its position)

Since the X AND 2 test returned 0 or false then execute NEXT T.
When the For-Next loop is finished GOTO NEW_COLOR and start the
loop over again. The only way out of the loop is when the
choppers dot row is greater than 155.

s

57

CHK_COINC

BLOW_UP_CHOP

LAND_TT

MAN_OCT

910 CALL COINC(#1,#2,16,T)::
)IF T THEN CALL DELSPRITE(#2

920 CALL COINC{#1,#3,17,T)::

CALL COLOR(#1,2):: IF T THE
N CALL SOUND(-300,-8,1,110,3
0,110,30,3000,30):: CALL COL
OR(#3,7)

930 FOR ¥=0 TO 16 STEP 4 ::
CALL SOUND(~999,-8,Y,120,27,
127,28,1100,30):: CALL PATTE
RN(#1,84+Y):: NEXT Y

S40 CALL DELSPRITE(#1):: Z=2
-1 :: HP=0 :: IF T THEN GOSU
B 850 :: RETURN ELSE RETURN

950 CALL MOTION(#1,0,V):: CA
LL COINC(#1,#2,12,Y¥):: IF Y
Y THEN CALL SOUND(~500,-8,1,
110,30, 110,30,84%0,28):: CALL
DELSPRITE(#2)

960 CALL SCUND(-U4250,=4,1,14
0,30,140,30,140,30):: CALL P
OSITION(#1,X,Y,#2,Y1,¥1):: C
ALL SPRITE(#1,116,13,160,Y,0
,0)

970 CALL MOTION(#2,0,4%SGN(Y
~¥1)):: IF Y1=0 THEN CALL SP
RITE(#2,76,2,163,256)

58

CHE_COINC
910

920

BLOW_UP_CHOP
930

940

LAND_IT
950

960

MAN_OUT
970

When the program flow comes here our chopper is near the ground

(X>155) so check to see if it has crashed on top of the man.

IF it has crashed on top of the man THEN delete him off the
sereen,

Next check to see if our chopper has crashed on top of the

tank and change our choppers color to black since it was

changed to random colers in the crash loop.

JF ~ it has crashed on top of the tank THEN generate a noise
that sounds like the choppers blades hitting the tank and
change the tank's color to red.

Now we will execute a For-Next 1loop to generate the blow up
sound while it changes the blow up pattern for our chopper.

Next we delete our blown up chopper off the screen, subtract 1

from the number of our choppers remaining (Z=Z-1) and clear out

the variable that contains the number of men currently in our

chopper (HP=0).

IF our chopper crashed into the tank (T<>0) THEN GOSUB
BLOW_UP_TANK and RETURN.

ELSE just RETURN to the statement after gosub crash _chop or
blow_up_chop.

This routine, which makes our chopper land on the ground, is

branched to from the TANK_LOQOP when our chopper's dot row is

greater than 151. First we stop its downward motion but we keep

its forward motion going so it can slide in for a landing. Then

we check to see if we landed the chopper on top of the man.

IF we have landed on top of the man (YY<>0) THEN generate a
sound and delete the man off the screen.

Next generate a slightly different sound for the chopper while
its on the ground, check the position of our chopper and the
man so we can set the man into motion toward our chopper and
then set our chopper on the ground in the landed pattern with
all velocities at 0 or bring it to a stop.

Now put the man into motion toward our chopper. Note: Since we

used CALL DELSPRITE(#2) instead of CALL DELSPRITE(ALL) the

sprite is not actually deleted it is Jjust moved off the screen.

IF the man is not on the screen (Y1=0 when the sprite is
deleted and its position is checked) THEN bring him out on
the extreme right hand edge of the screen. The previous
CALL MOTION will put him into motion towards the chopper
s0 he will smoothly come out on the left hand edge of the
screen,

59

KEY_LOOP

TAKE_OFF

980 CALL KEY(1,T,T):: IF T=5
THEN 1020 ELSE YY=Y¥-4 :; T
F YY<60 THEN YY¥Y=76

990 CALL PATTERN(#2,YY):: CA
LL COINC(#1,#3,32,T):: IF T

THEN GOSUB 830 :: GOSUB 870

:: GOTO 1030

1000 CALL COINC(#2,#3,24,T):
: IF T THEN GOSUB 830 :: GOT
0 970 ELSE CALL COINC(#1,#2,
11,T):: IF T THEN CALL PATTE
RN(#2,80)ELSE 980

1010 CALL SOUND(-200,220,7,2
23,8,226,9):: HP=HP+1 :: DIS
PLAY AT(1,3)SIZE(2):HP :: CA
LL DELSPRITE(#2)

1020 CALL SOUND(-4000,-4,1,1
10,30,110,30,320,30):: CALL

MOTION(#1,-17,V/2,#2,0,0) 1

CALL PATTERM(#2,128):: IF HP
=5 THEN 300 ELSE 1050

60

EEY_LOOF
980

990

1000

1010

TAKE_OFF
1020

Scan the left hand keyboard, we don't care about the status so
we can reuse the T variable here for faster operation.
IF the up arrow key was pressed THEN goto TAKE_OFF.
ELSE subtract Y from the pattern variable for our animated
running man.
IF the pattern variable is less than 60 we are at the
end of the running man patterns so THEN reset it back
to 76.

Change the running man's pattern and then check to see if the

tank is within 32 pixels of our chopper.

IF it is (T<>0) THEN GOSUB MACHINE_GUN to shoot the tank and
man, GOSUB CRASH_CHOP to blow up our chopper and GOTO
OUR_CHOP_QUT to start the Tank Loop all over again.

Since the tank was not close to our chopper check to see if

just the man is close to the tank.

IF he is THEN GOSUB MACHINE GUN to shoot the man and GOTO
MAN_OUT to bring out another man and continue with the
key_loop.

ELSE Since the man was not close to the tank check to see if he
is close to our chopper so he can climb abecard.

IF he is then change his pattern and make him bend down
to elimb in and continue with the next line.

ELSE since he is not close enough to our chopper yet GOTO
KEY_LOOP and start this loop cver again.

Since he was close enough to climb aboard generate the beep
sound to indicate that he made it, add 1 to the variable that
contains the total number of men in our chopper, display the
total number of men in our chopper at the top of the sereen and
delete the man of the screen.

Generate the take off sound for our chopper, put our chopper

into a diagonally upwards motion according to the value of V

and stop the running man and change his pattern to the waving

man in case we came to this part of the routine directly from

key_loop and left him on the ground.

IF we have 5 men in the chopper THEN goto R&P_INIT to check
the level and see which screen we should goto next.

ELSE go back to the TANK_LOOP to continue playing on the Tank
Screen since we don't have enough men in the chopper yet.

61

OUR_CHOP_QUT

TANE_SCORE

TANK_LOOP

TANE_LOOP1

1030 IF Z THEN CALL SPRITE(#
1,112,13,20,1,20,35):: T,V=1
2

1040 DISPLAY AT(1,2):USING B
$:HP,SP,SC,Z :: IF Z=0 THEN
250

1050 CALL SO0UND(-999,-4,1,11
0,30,110,30,200,30):: CALL P
OSITION(#1,X,Y,#2,Y1,Y1,#3,¥
¥,Y¥):: IF ABS(YY-Y)<5 THEN

810 ELSE IF Y1 THEN CALL PAT
TERN(#2, 124)

1060 CALL MOTION(#3,0,SGN(Y-
YY) ®((Y AND 6)}+4+K)):: IF %<
35 THEN CALL MOTION(#1,0,V):
: CALL LOCATE(#1,35,Y)ELSE T
F X>151 THEN 950

1070 IF Y1 THEN CALL PATTERN
(#2,128):: IF ABS(YY=-Y1)<26
THEN GOSUB 830

OUR_CHOP_QUT
1030

TANESCORE
1040

TANE_LOOP
1050

TANE_LOOP1
1060

1070

IF there are any choppers left (Z<>0) THEN bring out our
chopper from the upper left hand corner of the screen
moving diagonally down and forward, initialize the
chopper's velocity variable (V) and set the chopper just
coming out flag (T) with the same value.

Display the scoring on row 1.
IF there aren't any choppers left (Z=0) THEN GOTO GAME_OVER
(end of game).

Generate chopper sound, get the chopper's (sprite #1), the

running man's (sprite #2) and the tank's (sprite #3) positions

(Note: we need the dot row and dot column for our chopper but

we only need the dot column for the man and the tank since they

are always on the same dot row).

IF the tank is lined up within 4 dot column pixels of the
flying chopper (ABS(YY-Y)<5) THEN GOTO TANK_SHOOTS (tank
shoots at the flying chopper).

ELSE IF the man is on the screen (Y1<>0) THEN change his

pattern to make his arm wave.

Make the tank move towards the chopper (SGN(Y-YY) at a random
speed based on our choppers last dot column position ((Y AND
6)+4) adding some extra speed for the current level (+K).

IF our chopper is too high on the screen (X<35) THEN change
its motion into level flight in the current direction it
is heading (V), and relocate it back down to dot row 35 at
it current dot column position.

ELSE IF our chopper is near the ground (X>151) THEN GOTO

LAND_IT (land it on the ground),

IF the man is on the screen (Y1<>0) THEN change his pattern
to make his arm wave and,
IF the tank is within 25 dot column pixels of him
L (ABS(YY-Y1)<26 THEN GOSUB MACHINE_GUN (make the tank
shoot the man).

63

END_TANK_LOOP

1080 CALL KEY(1,T,T):: IF T=
13 THEN 1130 ELSE IF T<0 THE
N CALL PATTERN(#1,V/3+108)::
CALL MOTION(#1,3%(X>35),V):
: GOTO 1050

1090 IF T=3 THEN CALL PATTER
N(#1,112):: V=12 :: GOTO 112
0 ELSE IF T=2 THEN CALL PATT
ERN(#1,104):: V==12 :: GOTO
1120

1100 IF T=0 THEN CALL PATTER
N(#1,108):: CALL MOTION(#1,8
,¥)i: GOTO 1050

1110 IF T=5 THEN CALL PATTER
N(#1,108):: CALL POSITION(#?
s X,Y):: IF X<36 THEN CALL LO
CATE(#1,35,Y)ELSE CALIL MOTIO
N(#1,-12,V¥):: GOTO 1050

1120 CALL MOTION(#1,0,V):: G
OTQ 1050

64

|
|
|

|

1080

1090

1100

1110

END_TANE_LOOP
1120

Scan the left hand side of the keyboard for a key press (we

don't need the status).

IF the fire key was pressed (T=13) THEN GOTO LASER_FIRE

(shoot at the tank).

ELSE IF no key was pressed (T<0 or T=-1) THEN set the
choppers pattern according to the veloecity (V), the
pattern equals 104 (backwards) when V=-12 and it
equals 112 (forwards) when V=12, set the chopper into
a slightly upward diagonal motion (forward or
backward according to V) if it is not above or at dot
row 35, and then GOTO TANK_LOOP (start the over loop
again).

IF the Right arrow key was pressed THEN change the choppers
pattern to forward flight (char 112), set the velocity
variable (V) equal to 12, and GOTO END_TANK_LOOP (adjust
our choppers motion).

ELSE IF the Left arrow key was pressed THEN change the
choppers pattern to backward flight (char 104), set
the velocity variable (V) equal to =12, and GOTO
END_TANK_LOOP (adjust choppers motion).

IF the Down arrow key was pressed THEN change the choppers
pattern to level Flight, set it into a diagonally downward
motion (forward or backward according to V), and GOTO
TANK_LOOP,

IF the Up arrow key was pressed THEN change the choppers

pattern to level flight, check its current position and,

IF it is too high (X<36) THEN locate it back down to dot
row 35, if it was on dot row 35 this locate statement
won't have any visual effect on the screen, and
continue with end_tank loop.

ELSE set it inte a diagonally upward motion (forward or
backward according to the value of V), and GOTO
TANK_LOOP (start the loop over again).

(Note: if an invalid key was pressed then none of the above IF
statements would be executed and the value for V will remain
unchanged and the program will drop through to end_tank loop)

Ad just our chopper's motion according to the value of V and
GOTO TANK_LOOP (start the loop over again).

o

65

LASER_FIRE

1130 CALL SOUND(-999,-8,3,12
8,30,128,30,999,30):: CALL M
OTION(#1,0,V):: CALL POSITIO
N(#1,X,¥):: ¥=V/2+4Y :: IF ¥<
1 THEN Y¥=1

1140 FOR T=X+16 TO 175 STEP
13 ¢t ¥=¥+13 :: IF Y>255 THE
N ¥=1

1150 CALL LOCATE(#T/13+7,T,Y
Y:: NEXT T :: IF Y1 THEN CAL
L COINC(#2,160,Y,18,T):: IF
T THEN CALL DELSPRITE(#2)

1160 CALL SOUND(-999,-8,3,12
8,30,128,30,500,30):: CALL C
OINC(ALL,T):: CALL DELSPRITE
(#9,#10,#11, #12,#13, #14, #15,
#16,#17,#18,#19,#20)

1170 IF T THEN CALL COLOR(#3
,16):: GOSUB 850 :: GOTO 104
0 ELSE 1050

66

i 2L b5
t LASER_FIRE Generate the Laser Fire sound, change our chopper's motion to
*l 1130 level flight V and check its position. HNext adjust the dot

column variable slightly to compensate for our chopper's level

flight motion. This allows the laser to always start underneath

the chopper no matter which direction it is moving in.

IF after the adjustment, we are left with a value less than
1, because our chopper is moving backwards and on the left
hand edge of the screen, THEN change it to 1.

1140 Start the laser fire For-Next 1loop 16 pixels lower than our
choppers position. This also determines how many laser sprites
to bring out. The closer our chopper is to the ground the fewer
the sprites we need to display. This loop increments in units
of 13 to compensate for the double line laser pattern., If you
look in the appendix for the definition of character number
136, laser fire, you will notice that only 13 pixel rows were
used. If you use a single line laser you can use all 16 pixel
rows without worrying about sprite pixel overlap., The end of
the loop at 175 assures that the laser will be displayed all
the way down to the 4 invisible sprites at the bottom of the
screen, which have a lower number than the laser sprites. This
automatically ends the laser at the same position on the ground
no matter where our chopper is in the air since any part of the
laser that resides in the same dot rows will not be seen. On
each loop we also add 13 to Y (the dot column) to make the
laser come out diagonally.

IF Y is greater than 255 we need to wrap the laser around to
the other side of the secreen.

1150 Bring out a laser fire sprite. At the end of the TANK_INIT
routine we placed sprite numbers 9 through 20 off the bottom of
the screen for the laser fire. This was done because a CALL
LOCATE works MUCH faster than a CALL SPRITE, S0 now with them
defined and off the screen we can just use a CALL LOCATE to
display them. Keep looping until the For-Next loop 1s done.

IF our man is on the screen (Y1<>0), THEN check the
coincidence between him and the last laser sprites
position from the For-Next loop (Y).

IF we hit him THEN delete him off the screen. Note: You
could make the game much harder here by clearing out
the total score if you shoot one of our men or you
could penalize the player by blowing up the chopper
Or......7 its up to you.

1160 Generate the end of the laser fire sound and check for any
coincidence (we already checked to see if we hit the man so if
there is a coincidence it must be the tank) and delete the
laser fire off the screen. By using CALL DELSPRITE(#x) instead
of (ALL) we will not actually delete the laser sprites we will
just move them off the visible portion of the sereen. This
method works faster than a For-Next loop to delete the sprites,

1170 IF we hit the tank THEN change its color to white, GOSUB
BLOW_UP_TANK and GOTO TANK_SCORE to display the score and
start the tank loop over again.

! ELSE since we didn't hit the tank there's no need to display

the score so just goto TANK_LOOP to start it over again.

67

MORE CALL PEEEs & CALL LOADs

Listed below are some new CALL PEEKs and CALL LOADs. Along with these you
will also find the CALL PEEKs and CALL LOADs that were in the Smart
Programming Guide for Sprites and the Smart Programmer newsletter.

CALL PEEE (Extended Basie)

CALL PEEK(-28672,A)::IF A=0 OR A=127 The speech synthesizer is NOT attached

RANDOMIZE ::

RANDOMIZE ::

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CALL

CNLL

CALL

CAhLL,

PEEK(-31879)
PEEK(-31878)
PEEK(-31877)
PEEK(8198,4,B)::

or
or

CALL PEEK(-31880,4)

CALL PEEK(-31808,4,B)

IF A/B=2
IF A®256+B=43605
IF A=170 AND B=85

Random Integers 0-99

Double Random Integers 0-255

VDP Interrupt Timer

Highest # Sprite in Auto-Motion

VDP Status Register

THEN CALL INIT has been executed

PEEK(8194,4,B,C,D)::(C~A)#256+D~B =

PEEK(-31974,4,B)

PEEK(-31936,4,B)

PEEK(~-31866,4,B)

PEEK(-31952,4,B)

PEEK(~31950,4,B)

PEEK(~31954,4,B)

13 A¥256+B-2487

12 AW#2564B-2487

11 A256+B-11023

1: A¥2564B

s: A¥2564B

t: A¥2564B

n

Free Space in Low Memory after CALL
INIT or CALL LOAD("DSEx.xxxxxx")

Running free space in VDP Ram. Note:
FOR - NEXT LOOPs, GOSUBs etc. use
running space, garbage collection
recovers it. This PEEK will not
ALWAYs return EXACT amount of free
VDP Space unless Garbage collection
has JUST been accomplished. (SIZE
performns garbage collection before
reporting STACK Free Space)

Exact amount of Free Stack space
while the program is running. Does
not count the garbage collection
area as used,

Free Program space in High Memory

Start of Line number Table -~ Without
Mem=Expansion this points into VDP
Ram. With Mem~Expansion this points
into High Mem-Expansion.

End of Line Number Table - points to
the last byte of the line number
table.

The memory address of the pointer to
the current line being executed.

68

CALL PEEK (Extended Basie) Continued

CALL PEEK(-31954,A,B) 13

CALL PEEK(A%256+B-65536,C,D):: C¥256+D = Start address of current program

line being executed.

CALL PEEK(=31954,A,B) ::

CALL PEEK(A¥256+B-65538,C,D):: C#256+D = Current line number being executed.

CALL PEEK(-31952,A) :: IF A=55 THEN No Memory Expansion

CALL LOAD (Extended Basiec)

CALL LOAD(-31962,0,32) Execute Power Up Routine - Go To Title Screen
does not close open files,

CALL LOAD(=~31962,33,111) Hop directly into TI Basic

CALL LOAD(-31962,99,114) Restart Extended Basic - try to reload DSK1.LOAD

CALL LOAD(-31962,101,190) Execute LIST command = from command mode only

CALL LOAD(~31962,100,155) Execute RUN command

CALL LOAD(-31962,100,124) Execute NEW command

CALL LOAD(-31962,100,126) Execute CONTINUE command - from command mode only

CALL LOAD(-31962,100,128) Another LIST command - from command mode only

CALL LOAD(~31962,100,130) Execute BYE command (closes all open files)

CALL LOAD(-31962,100,132) Execute default NUM command - when running
program ends. Line 100 contains garbage so Jjust
place a REM there.

CALL LOAD(=-31962,100,136) Execute default RESEQUENCE command

CALL LOAD(-31962,160,000) Generates colorful Title Sereen

CALL LOAD(-31962,160,04) Execute RUN without Pre-Scan (Faster than having
a RUN command in your program to restart it.)

CALL LOAD(-31806,128) Disables Auto Sprite motion, Auto Sound and the
QUIT Key

CALL LOAD(=31806,64) Disables Auto Sprite motion - brings ALL moving
Sprites to an immediate stop.

CALL LOAD(-31878,0) Brings ALL moving Sprites to an immediate stop =
placing a value in here between 1 and 28 allows
only the sprite numbers that are equal to or less

p\/n than that number to be in auto motion.

69

CALL LOAD (Extended Basic) Continued

CALL LOAD(-31806,32)

CALL LOAD(-31806,16)

CALL LOAD(-31806,0)

CALL LOAD(-31T74l,x,x,x,x)

CALL LOAD(~-27648,x,x,x)

CALL LOAD(-31868,0,0)::
RUN "DSKx.xxxxW

CALL LOAD(-31868,255,231)::

RUN "DSKx.xxxx"

Disables Auto Sound processing - leaves the sound
on forever.

Disables the QUIT key

Enables Auto Sprite motion, Auto sound processing
and the QUIT key.

Sound chip location, different values turn on
different sounds.
Speech chip location

Turns OFF Memory Expansion

Turns ON Memory Expansion

APPENDIX - A

10 CALL CLEAK :: CALL HMAGNIF
¥Y(1)t: CALL SCREEN(2):: GOTO
f0 11 A, DG, W$,B :: CALL KE
Y CALL JOYST CALL 30UN
[Nl CALL PEEK CALL HCHAR
ALl VCHAR

‘0 K,Y,¥Y1,YY,K,V,%Z,HP,5P,SC

CALL POSITION :: CALL PAT
TINN i CALL SPRITE :: CALL
DELSPHRITE CALL CQINC :: C
ALL MOTION :: CALL LOCATE
{0 E$="00000000" T$=E$&"0
noan S$=E$&E$ CALL CHA

n{132,"6152524CCCO0000080808
OFFB09CBEFCN&ESEFF &T§&"FF
yi: FOR T=1 TO 8 CALL COL
OR{T,15,1)t: BEXT T :: 1€P~-

35 FOR I=0 TO 27 STEP 3 :: D
LSPLAY AT(12,2):"RELEASE THE
ALPHA LOCK KEY® CALL s0U
ND(~-140,550,T,557,T}:: DISPL
AY AT(12,1):: NEXT T

0 CALL CHAR(LT,"3CH299A1419
Ph23Ct, 33, RETH("FF",8)4"0000
N02011B3FFFFFFFFFFFF81TETES
",112,"A00802103979FDFF1FOT0
1060701 "&E$&"BOD0OBUCIFOFCF2E
PE2F2FCYCFATICH)

L0 DISPLAY AT(5,3):"N I G B

T M ISSIO0N': 5 i :RPTH
(" n,13)&" "&RPTH("™ ", 13)::
ChLL COLOR(13,12,1):: GOSUB
200 :: CALL SPRITE(#1,112,1
1,46,25,0,11}

G0 DISPLAY AT(12,14):"BY":
" MIKE MC CUE & CRAIG MILLER
W: ¢ ¢ +TAB(712)3"/ 1983"7: 17
MILLERS GRAPHICSW:"
1475 W CYPRESS AVE":"
SAN DIMAS CA 917730

70 CALL CHAR(136,7"90482%1209
0402010"LE$&SHE"0B0U020G0L82
§1209",96,"10000040&ESA"EO"
LE$&T2NES$&"108000001000008"
,100,m0000008"&5$E"000004 &S
SETRRETHENOUN)

80 CALL CHAR(120,"030E3F3CTF
FIFFFFFFGFTFTF33360F03E0583C
FEF8ESFOBOFOFOFOTO78ERICFCT,
124, 70008080907 "&RPTH("01™,1
1)&"00COCOCOECEOEQOEOEQCOLO4O
LoUo4oED")

90 A$=RPT§(" ",22):: CALL CH
AR(128,"0202040503"&RPT${"01
%,11)&"00COCOCOEOEQOEOEQEQCOY
O40U04040EO",140,T$&"0103073
FOAAAAATF"&34&"BOCOEOFCAAAGA
AFC™)

100 A$=R24%&"/ e e !y
e (= e (-

@ Fo 00, e e (LK

- SO (- of SCECH

[S A A e A R S R

ST S N N A A

110 GOSUB 240 B§=RPTH("1"

J28)&RPTS("114",9)&RPTE(" I,
29):: W$=RPTS("nnr 28)&RPTH(
niv,84)

(\V|

i
CASSETTE JOYSTICK VERSION

120 CALL CHAR(92,"0008000020
000000U400000001"&E$4"B0 EESE
"208000002001",116,700005501
OF1E183020301E1FOF1320300000
5580F078180C040CT8FBFOCEBOUOC
"

)

130 CALL CLEAR :: FOR T=1 TO
13 :: CALL COLOR(T,1,1):: N
EXT T :: FOR X=1 TO 30 :: RA
NDOMIZE :: CALL PEEK(-31808,
T,Y):: CALL HCHAR(T/18+1,Y%.
12+1,101}:: NEXT X

140 GOSUB 240 :: CALL CHAR(S
8,7000004001000000020000008"
EE$&T001"&ESE"L10000004001™,
56,"{F1122223E44U4F81F21213E
020L40408")

150 CALL CHAR(%8,"1F21214242
8484F801010202040408081F0101
023C2040TE3F0103021C0L08FE",
52,"1111223E020404081F202040
7CO4D8F8102020407E82827C3F01
020408102040m)

160 CALL CHAR(B0,E$&"0003040
1010101010202040600000018F8E
OF8COCOCOTO101018",84,700000
00200080000100002"&T$&"00200
00008200000082")

170 CALL CHAR(72,7"0000010107

0503010101010102020203C0C0OC0

EOEOFBCOCOC02020101020406"):
CALL HCHAR(20,1,3%4,32)

180 CALL CHAR(36,"140A200D14
21641425100814080800080"&3 %,
76,"000001030303030101010100
00070400COCOCOEQEOEQOFOCOCOLD
40COC0AOBOC™):: CALL HCHAR(2
1,1,33,128)

190 DISPLAY AT(10,1):"e h i
Jkejl Jjmnekne™::: CA
LL CHAR(Y40,RPT§{"FF",8),44,"
00008082C2CTFTFF8080COE0ESFC
FEFF0103232BTFTFFFFFP&E$&"08
28A9FD")

200 DISPLAY AT(2,1):RET§(" "
y13)&" MERPT$("™ m,13):: DIS
PLAY AT(3,20):"xz" :: DISPLA

¥ OAT(Y,24):my(n DISPLAY A
T(15,1):A$:B% A$=SEG$(24$,
141,28)&B$

210 GOSUB 240 B$="e { #f4

+ e#ddedd#fPd e F e i CAL
L DELSPRITE(ALL):: CALL COLOD
R(3,15,1,4,15,1,9,11,1,2,11,
151,11,1,12,15,1,13,12,1)

220 CALL COLOR(10,1,1):: CAL
L CHAR(108,E$&"55000061E1FFF
FFFOQ000003"ZE$&"S5U0E0FBELE
2E1F1FFTCU5FE")

230 K=1 1: =5 HP,SP,SC,B
=0 :: CALL CHAR(104,E$4"010%
10400103CFFFFF786001020820C0
707CEZE1E1F3FEFCCS4658E) 1 ¢
GOTO ThHO

240 CALL SOUND(-4250,-4,1,11
0,30,110,30,200,30):: RETURN

250 CALL KEY(3,T,Y):: Z=INT{
{8C-B)/10000):: FOR T=1 TG Z
CALL SOUND(Z200,770,4,777
,6):: DISPLAY AT(1,2H4):USING
nga#m:T :: NEXT T

260 IF Z THEN B=B+Z10000 ::
GOTO 740 ELSE CALL CHAR(108
,"FFB1BFAOAFBO81FFFFE1ET1818

ET81FFETB5B5BDBDADADETY)

270 CALL CHAR(104,"FF81BDB1B
FAOAOEOEOAOACAOAOBFBIFFFFB1B
DBD81BDASETETASBDE1ET181818"
}:: CALL SPRITE(#1,112,13,87
21,0,12)

280 CALL COLOR(10,7,1,10,9,1
,10,16,1,10,6,1):: CALL KEY(
1,T,¥1):: CALL KEY{0,T,T)

290 IF T=89 OR Y1 THEN 220 E
LSE IF T=78 THEN CALL DELSPR
ITE(ALL):: CALL VCHAR(1,1,32
,768):: END ELSE 280

300 V=8 :: IF K<2 THEN 570 E
LSE IF Y AND 1 THEN 340 ELSE
CALL CHAR(60,m"08081C1CI1C1C1
C3ETF1C0008221004080"&5%)

310 YY=600 CALL DELSPRITE
(ALL):: FOR T=2 TO 5 :i: CALL
LOCATE(#T,1,T#17,#T+4,177,T
17):: NEXT T

320 CALL SOUND(-350,-7,6,110
,5)t: CALL CHAR(35,"FFFFFFFF
81000081"):: CALL SOUND(4250
,-8,4,110,27,115,28,YY,30)

330 FOR T=10 TO 18 :: RANDOM

IZE :: CALL PEEK(-31880,X)::

CALL SPRITE(#T,60,(X AND 7)

+3,177,T#24-208,-X/8-3-K,0);
NEXT T :: GOTO 360

340 CALL CHAR(60,T$&"01030F7
FONAE$&T$&"TOGFAB20LFC3CI1CEF
0C™):: YY=1600 CALL SOUND
(-4250,-8,6,110,27,115,28,YY
,30):: CALL DELSPRITE(ALL)

350 FOR T=10 TO 18 :: RANDOM

IZE :: CALL PEEK(-31880,X)::
CALL SPRITE(#T,60,(X AND T)

+3,T#16-120,256,0,-X/8-3-K):
NEXT T

360 CALL SPRITE(#1,112,13,72
»1,0,3)

370 CALL SOUND(-999,-8,6,110
,27,115,28,YY,30):: CALL COI
NC(ALL,T):: CALL POSITION(#1
,¥,¥):: IF T OR X>161 THEN G
0SUB 870 GOTO 740

380 IF ¥»224 THEN 410 ELSE C
ALL JOYST(1,T,¥1):: IF Y1 TH
EN CALL PATTERN(#1,108):: CA
LL MOTION(#1,(X-28%Y1>30)%#28Y
1,2):: GOTO 370

390 CALL PATTERN(#1,112):: C
ALL MOTION(#1,0,T/2+2):: GOT
o 370

CASSETTE JOYSTICK VERSION Continued

410 CALL DELSPRITE(#1):: IF
K<3 THEN 570 ELSE ¥1=(Y AND
6)-4 :: CALL DELSPRITE(ALL):

CALL COLOR(2,1,1,1,1,1,13,
1,1)

420 DISPLAY AT(21,1):" e

e e e

[e e
en

430 CALL CHAR{60,T$&"AAO21F2
CUCTEI1OTF"&S$&"ABOOCIFFEICQY
OEN,64,584m00009252M4T$&S4&"
Lg4gm):: CALL SPRITE(#1,108,
13,40,31,8,0)

440 CALL SPRITE(#2,60,6,242,
216, (Y AND 1)%80-40,0)

450 CALL SOUND(-4250,-4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#1,X,Y,#2,YY,¥)

L60 IF X>180 THEN CALL LOCAT
E{#1,1-(V<0)®180,31)ELSE IF
ABS(X-YY)<T THEN 490 ELSE CA
LL MOTION(#2,8GN{X-YY¥)®((YY
AND 11)+8),0)

470 CALL KEY(1,T,¥):: IF Y T
HEN 510 ELSE CALL JOYST(1,Y,
T):i: IF T THEN V=-28#T ELSE I
F Y THEN V=0 ELSE 450

480 CALL MOTIOMN(#1,V,0):: GO
TO 450

490 cALL SPRITE(#3,64,7,YY,2
09,V+X-YY,-127):: CALL SOUND
(~900,-8,1,110,30,110,30,999
9,30):: T=0

500 CALL POSITION(#3,Y,Y)::
IF Y>50 THEN 500 ELSE CALL D
ELSPRITE(#3):: CALL COLOR(#1
,11):: GOSUB 930 :: CALL DEL
SPRITE{#2):: GOTO 740

510 CALL SOUND(-$00,-8,0,110
130,110,30,300,30):: CALL PO
SITION(#1,X,Y):: CALL SPRITE
(#3,64,4,%,36,0,127)

520 CALL POSITION(#3,X,Y)::
IF ¥<192 THEN 520 ELSE CALL
DELSPRITE(#3):: CALL COINC(#
2,%,220,7,T):: IF T THEN CAL
L SOUND(=1,-4,9)ELSE 450

530 CALL COLOR(#2,15):: FOR
T=0 TO 2 :: CALL PATTERN(#2,
BB+T®4):: FOR X=5 TO 7 :: CA
LL SOUND(100,-X,T#10):: HEXT
X it NEXT T

540 CALL DELSPRITE(#2):: Y1=
Y1+1 i: SC=SC+250 :: DISPLAY
AT(1,12)SIZE(10):USING "##4
#EFFEE#TSC 12 IF Y1<5 THEN
440

550 CALL POSITION(#1,X,¥Y)::
IF X>185 THEN CALL LOCATE(#1
»35,Y)

560 CALL PATTERN{#1,112):: C
ALL MOTIONM(#1,0,20):: CALL §
OUND(-4250,-4,1,200,30,200,3
0,200,30)

M

570 CALL CHAR(68,S$&"000000F
FTF1FFEAB"4S$&"000000FFFFFFA
AGD",64,E$&"0021F373FFFFFFFF
FFFFGT2408103CFFFOFFFFFFFFFF
FFFFFFFFGEAA™)

580 Y1=(Y AND 5)+6 :: GOSUB
800 :: CALL CHAR(60,"0000008
OBOCUCFEEFFFF5BAAFFFF722B"&T
$&"COOFFEFGFBFOERC67B3DM) 1 :
CALL COLOR(1,1,1,2,1,1)

590 DISPLAY AT(20,1}:W$:: C
ALL COLOR({1,5,1,7,12,1):: FO
R T=1 TO ¥ :: CALL LOCATE(#T
y161,1):: NEXT T :: CALL SPR
ITE(#9,112,13,15,1,20,35)

600 CALL SPRITE(#10,68,15,14
3,1,#11,64,15,143,17,412,60,
15,143,33):: CALL MOTION(#10
,0,Y1,#11,0,¥1,#12,0,11)

610 CALL SOUND(-4250,-4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#9,X,Y):: IF X<35 TH
EN CALL MOTION(#9,0,V):: CAL
L LOCATE(#9,35,Y)ELSE IF X>1
4o THEN 690

620 CALL COINC(#9,#11,16,T):

IF T AND X>13C THEN 680 EL
SE CALL COINC(#9,#10,9,T)::
1F T THEN 710

630 CALL JOYST(1,Y,T):: IF Y

THEN CALL PATTERN(#9,Y+108)
V=V-Y®(ABS(Y+V)<16):: CAL

L MOTION(#9,0,V):: GOTO 610

640 IF T THEN CALL PATTERN(#
9,108):: CALL MOTION(#9,2%T#
(X-T>35),V):: GOTC 610

650 CALL PATTERN(#9,SGN(V)#4
+108):: CALL MOTION{#9,(X>35
J®3,¥):: GOTO 610

680 CALL MOTION(#9,0,0,#10,2
JU,#11,2,48,012,2,4):: SC=8C-
SP#500 :: SP=0

690 CALL MOTION(#9,3,0):: CA
LL SOUND(~-2450,-8,6,110,30,1
10,30,9999,30):: CALL PATTER
N{#9,104):: CALL SOUND(1,-l,
9):: HP=0 :: Z=Z-1

700 CALL DELSPRITE(#G):: IF
SP THEN 740 ELSE CALL DELSFR
ITE(#10,#11,#12):: GOTO Tho

710 CALL POSITION(#10,X,Y)::

CALL SPRITE(#9,116,13,136,Y
y0,¥1}:: FOR T=306 TO 122 ST
EP -6 :: CALL SOUND(-200,-4,
1,7,27,7,30,T,30):: MNEXT T

720 FOR T=130 TO 306 STEP 8
CALL SOUND(-4250,-4,1,T,3
0,7,30,T,27):: NEXT T :: CAL
L MOTION(#9,-10,0):: K=K+1
5C=SC+500%HP

T30 FOR T=1 TO 300 :: NEXT T
SP=S5P+HP :: HP=0

T40 DISPLAY AT(1,2):USING B$
+HP,8P,8C,Z :: IF Z THEN CAL
L DELSPRITE(ALL)ELSE 250 111

750 CALL CHAR(60,"000001010F
090909010101013E200000C0OCHCY
FCCOCOCOCOC02010080810203™)

760 CALL CHAR(64,"0101031F13
1313030303033F20000000808888
BBFB808080808000008040203")

T70 CALL CHAR(68,"0000010107
0909050101010106181000C0C0C2
FLCB8COCOC0C02010080810203",3
5,"FFFFFFFF81TETES1M)

780 DISPLAY AT{20,1):4% :: C
ALL COLOR(2,11,1,1,11,1,13,1
2,1):: GOSUE 800

790 CALL SPRITE(#3,140,2,161

,256,0,=24):: FOR T=9 TO 20
CALL SPRITE(#T,136,7,200,

1):: NEXT T :: GOTO 1030

800 CALL DELSPRITE(ALL):: FO
R T=5 TO 8 :: CALL LOCATE(#T
s 177, TRI7):: NEXT T :: RETUR
N

810 IF T<>12 THEN CALL POSIT
ION(#1,X,Y,#3,YY,YY):: IF 4B
S{Y-YY)<80 THEN CALL SPRITE(
#4,36,9,157,YY,X-147,28V4Y-Y
YJELSE 1060 ELSE 1060

820 CALL SOUND(-150,-8,3,110
»30,110,30,5010,30):: CALL S
QUND(300,-8,1,128,30,128,30,
1100,30):: CALL DELSPRITE(#4
Y:: GOSUB B70 :: GOTO 1030

830 CALL MOTION(#3,0,V/4,#%2,
0,0):: CALL PATTERN(#2,80)::
CALL SOUND(-1,-4,9):: IF T=
12 THEN CALL MOTION(#1,0,V)

840 FOR T=1 TO § :: CALL SOU
HD({50,-6,1):: NEXT T :: CALL
DELSPRITE(#2):: Y1=0 :: RET
URN

850 CALL COLOR(#3,2):: FOR T
=0 TO 16 STEP 4 :: CALL SOUN
D(-999,-8,T,120,27,127,28,10
00,30):: CALL PATTERN(#3,88+
T):: NEXT T

860 8C=605-3%X+SC :: CALL DE
LSPRITE(#3):: CALL SPRITE(#3
,140,2,161,256,0,-24):: RETU
RN

870 T=0 :: CALL SOUND(~1,=4,
9):: IF Y AND 1 THEN CALL PA
TTERN(#1,112):: CALL MOTION(
#1,9,V)ELSE CALL COLOR(#1,16
yi: GOTO 930

880 CALL COLOR(#1,RND#7+3)::

FOR T=1 TO 26 STEP 5 :: CAL
L SOUND(T®40+200,-8,T,110,30
+y110,30,1100-T,30)

890 CALL POSITION(#1,X,Y)::
IF X>155 THEN CALL MOTION{#1
,0,0):: GOTO 910 ELSE IF X 4
ND 2 THEN 880

I

T2

CASSETTE JOYSTICK VERSION Conl bntied

900 MNEXT T :: GOTO 860

910 CALL COINC(#1,#2,16,T)::
IF T THEN CALL DELSPRITE(#2
)

920 CALL COINC(#1,#3,17,T):!

CALL COLOR(#1,2):: IF T THE
N CALL SOUND(-300,-8,1,110,3
0,110,30,3000,30):: CALL COL
OR(#3,7)

930 FOR ¥=0 TO 16 STEP 4
CALL SOUND(~-999,-8,Y,120,27,
127,28,1100,30):: CALL PATTE
RN(#1,84+Y):: NEXT Y

940 CALL DELSPRITE(#1):: Z=1
-1 :: HP=0 :: IF T THEN GOSU
B 850 :: RETURN ELSE RETURN

G50 CALL MOTION(#1,0,V):: CA
LL COINC(#1,#2,12,YY):: IF ¥
Y THEN CALL SOUND(-500,-8,1,
110,30,110,30,840,28):: CALL
DELSPRITE(#2)

960 CALL SOUND(-4250,~4,1,14
0,30,140,30,140,30):: CALL P
OSITION(#71,X,¥,#2,¥1,¥1):: C
ALL SPRITE(#1,116,13,160,Y,0
,0)

970 CALL MOTION(#2,0,4®SGN(Y
-¥1)):: IF ¥1=0 THEN CALL SP
RITE(#2,76,2,163,256)

980 CALL JOYST(1,T,¥1):: IF
Y1>0 THEN 1020 ELSE YY=YY-1
IF YY<60 THEN YY=76

990 CALL PATTERN(#2,Y¥):: CA

LL COINC(#1,#3,32,T):: IF T

THEN GOSUB 830 :: GOSUB 870
GOTO 1030

1000 CALL COINC(#2,#3,24,T):
IF T THEN GOSUB 830 :: GOT
0 970 ELSE CALL COINC(#1,#2,
11,T):: IF T THEN CALL PATTE
RN(4#2,B0)ELSE 980

1010 CALL SOUND(-200,220,7,2
23,8,226,9):: HP=HP+1 :: DIS
PLAY AT(1,3)SIEZE(2):HP :: CA
LL DELSPRITE(#2)

1020 CALL SOUND(-4000,-4,1,1
10,30,110,30,320,30):: CALL
MOTION(#1,-17,V/2,#2,0,0)::
CALL PATTERN(#2,128):: IF HP
=5 THEN 300 ELSE 1050

1030 1K % THEN UALI PHITEL#
1,192,918, 00, 1,80, 48) 11 T, ¥al
2

1040 DISPLAY ATC), 0 r B THEE B
$:HP,SP,SC,% 1 (Nl 0 WHiEH
250

1050 CALL SOUND(=9u4, W, 1,11
0,30,110,30,200,30) 11 CALI
OSITION(R1,X, ¥, #2,Y1, 00 ,01,7
Y,YY¥):: IF ABS{YY-Y)<% THEN
810 ELSE IF ¥1 THEN CALL I'A1
TERN(#2,124)

1060 CALL MOTION{#3,0,SGN(Y-
YY)E((Y AND 6)+4+K)):i: IF X<
35 THEN CALL MOTION{#1,0,V):

CALL LOCATE(#1,35,Y)ELSE I
F X>151 THEN 950

1070 IF Y1 THEN CALL PATTERN
(#2,128):: IF ABS(YY-¥1)<26
THEN GOSUB 830

1080 CALL KEY(1,YY,T):: IF T
THEN 1130 ELSE CALL JOYST(1

,T,¥¥):: IF T OR YY THEN CAL

L PATTERN(#1,108+T)ELSE CALL
PATTERN(#1,V/3+108):: CALL

MOTION(#1,3%(X>35),V¥):: GOTO
1050

1090 IF T THEN V=T®#3 :: CALL
MOTION(#1,0,V):: GOTO 1050
ELSE CALL MOTION(#1,YY®#2#(X-

YY>31),V¥):i: GOTO 1050

1130 CALL SOUND(-999,-8,3,12
8,30,128,30,999,30):: CALL M
OTION(#1,0,V):: CALL POSITIO
N(#1,X,Y):: Y=V/2+4Y :: IF X<
1 THEN Y=1

1140 FOR T=X+16 TO 175 STEP
13 :: Y=Y¥+13 :: IF Y>255 THE
N ¥Y=1

1150 CALL LOCATE(#T/13+7,7T,Y
Y:: NEXT T :: IF Y1 THEN CAL
L COINC(#2,160,Y,18,T):: IF
T THEN CALL DELSPRITE(#2)

1160 GCALL SOUND(-999,-8,3,12
8,30,128,30,500,30):: CALL €
OINC(ALL,T):: CALL DELSPRITE
(49,810,811, #12, 813,414,815,
#16, 817, #18,419,£#20)

1170 IF T THEN CALL COLOR(#3
,16):: GOSUB 850 :: GOTO 104
0 ELSE 1050

73

APPENDIX - B

DISK LOADer

10 CALL CLEAR :: CALL MAGNIF
¥Y(3):: CALL SCREEN(2):: GOTO
30 :: YY,X,Y

20 A$:: CALL KEY :: CALL PE
EK :: CALL HCHAR :: CALL SPR
ITE :: CALL SOUND :: CALL DE
LSPRITE

30 E$="00000000" :: T$=E$&"0
000" :: S§=E$&E$:: CALL CHA
R(132,"6152524CCC00000080808
OFF809CBUFCNAESE"FFN&T$ANFF N
}:: FOR T=1 TO 8 :: CALL COL
OR(T,15,1)t: NEXT T :: 18P-

40 CALL CHAR(AT,"3CH299A41K19
9423C",33,RPT$("FF",8)&"0000
002011B3FFFFFFFFFFFF81TETES T
", 112,"A00802103979FDFF1F070
1080701"&E$&"80D0OBACIFOFCF2E
2E2F2FCICFAICT)

50 DISPLAY AT(5,3):"N I G H
T MISSION": : : :RPTS
(", 13)8" MARPTH(™ ", 13)::
CALL COLOR(13,12,1):: GOSUB
290 :: CALL SPRITE(#1,112,1
3,46,25,0,11)

60 DISPLAY AT(14,1):" PRESS
TO USET: : ;® 1 THE NU
MBER 1 JOYSTICK": ; ;v 24T
HE ARROW KEYS (ESDX)®; :n
AND V TO FIRE"

70 X=X+1 :: CALL KEY({0,Y¥,T)
¢t IF T=0 THEN IF X<90 THEN
70 ELSE GOSUB 290 :: GOTO 70

80 IF YY<49 OR YY>50 THEN DI
SPLAY AT(14,1):: CALL SOQUND(
-100,200,4,208,6):: X=90 ::
GOTO 60 ELSE IF YY-49 THEN 1
00

90 FOR X=0 TO 27 STEP 3 :: C
ALL S0UND(-1%0,550,X,557,X):
i DISPLAY AT(14,1): & ¢ : :
o1t ot o:: DISPLAY AT(16,2
J:"RELEASE THE ALPHA LOCK KE
" i: NEXT X

100 GOSUB 290 :: DISPLAY AT(

12,14):"BY": :n MIKE MC CUE
& CRAIG MILLER": : : :TAB(12

;%7 19857 m MILLERS
GRAPHICSM 1 1475 W CYPRE
83 AVEw;n SAN DIMAS CA ¢

T30

110 CALL CHAR({136,"904824120
90U02010"4ES$&4S$&T0B0L0200048
241209",96,"10000040"&E$&" 80
PEESEN2MLS$&"104000001000008
",100,M"0000008"&5$4"000004";
SHEm2NETEENOL)

120 CALL CHAR(120,"030E3F3CY
FFIFFFFFRPEFTFTF33360F03E0583
CFB8FBLEBFOBOFOFOFO7078ES1CFCH
» 124, "0008080907"&RPTS(01",
11)&"00COCOCOEOEOEOEQEQCOL0Y
OhohouoEQ™)

130 CALL CHAR(128,"020204050
J"ERPTS("01™,11)&"00COCOCOED
EOEOEOEOCOHO4040U0L0ED"™, 100,
E"O103073F6AARAATF &S$61780
COEOFCAAAQAARGT)

140 CALL CHAR(92,"0008000020
000000400000001"&E$E B0 RESE
"208000002001",116,"00005501
OF1E183020301E1F0F1320300000

ny
150 A$="e e
e e
&
: n
160 CALL CLEAR :: FOR T=1 TO
8 :: CALL COLOR(T,1,1):: HNE
XT T ;i GOSUB 290

170 DISPLAY AT(3,24):"xz" ::
DISPLAY AT(4,2H):myf{m :: CA
LL COLOR{12,9,1,13,1,1)t: CA
LL HCHAR(20,1,3%4,32)

180 CALL HCHAR(21,1,33,128):
: FOR ¥X=1 TO 30 ::; RANDOMIZE
t: CALL PEEK(-31808,7T,Y)::
IF T>26 AND T<E4 AND Y¥>204 &

ND Y<221 THEN T=T+40

190 CALL HCHAR(T/18+1,Y# 124+
1,101):: NEXT X

200 DISPLAY AT(10,1):"e h i
Jkeijl jmnekner

210 DISPLAY AT(2,1):RPT$(n" v
»13)&" TERPTH(M ", 13):: DIS
PLAY AT(15,1):A$&AS&AS :: CA
LL COLOR({12,15,1,9,11,1)

220 GOSUB 290 :: CALL CHAR(S
8,7000004001000000020000008"
EE$&"001"AE$4TH10000004001 N,
56,"1F1122223E4444FB1F21213E
02040408m)

230 CALL CHAR(48,"1F21214242
BUBUFBO1010202040408081F0101
023C20407E3F0103021C0408Fn,
52,"1111223E020404081F202040
TCO4O0BFE102020407EB2827C3F0
020408102040m)

240 CALL CHAR(80,E$&"0003040
1010161010202040600000018F8E
OFBCOCOCOT0101Q18",84,00000
00200080000100002"&T$&"00200
00008200000082")

250 CALL CHAR(72,70000010107
0503010101010102020203C0C0OCO
EOEOF8COCOC020201010200060)

260 CALL CHAR(36,"1404200D14
21641424100814080800080"48$,
76,m000001030303030101010100
00C70400COCOCOECEDEOFOCOCOUD
sococono8ocm)

270 CALL CHAR(Y0,RPTS("FE",8
Y44, "00008082C2CTFYFFEOB0OCO
EOE4FCFEFF0103232B7FTFFFFF &
E$L"0B28A9FDN)

280 GOSUB 290 :: CALL DELSPR
ITE(ALL):: IF YY=49 THEN RUN

"DSK1.NMJOY" ELSE RUN "DSK1
~NMKEYH

290 CALL SOUND(-l250,-4,1,20
0,30,200,30,200,30):: X=0 ::
RETURN

5580F078180C040CT8F8FOCB040C

APPENDIX - C

10 CALL MAGNIFY(3):: CALL SC
HrEN{2):: GOTO 30 :: CALL KE
v CALL SOUND :: CALL PEEK

CALL HCHAR :i: CALL VCHAR

S0O%,Y,¥1,YY,V,T :: CALL POS

{110N i CALL PATTERN :: CAL

| LPRITE t: CALL DELSPRITE :
CALL COINC t: CALL MOTION
CALL LOCATE

30 E$="00000000" :: T$=E$&"0
0p0" i: S$=E$&ES

50 A$=RPTH(" ",22)

110 GOSUB 240 :: B§=RPTH(™IM
y28)ERPTH(™14, Q) &RPTS(I,
2G):: WH=RPTH(mun, 28)ERPTH(
wpn, 8k

200 DISPLAY AT(15,1):4$:B$:
AS=SEGH(AS,141,28)4E¢

210 GOSUB 240 :: Bfi="e § #i¢
0 oef#EAEERONL ef 4 e" i CAL
I DELSPRITE(ALL):: CALL COLO
R(3,15,1,4,15,1,9,11,1,2,11,
Tida s ledsnda iz)

220 CALL COLOR(10,1,1):: CAL
L CHAR(108,E$&"55000061E1FFF
FFFO0000003"&E$& "SSLOEOFBENE
SE1F1FFTCU4SFE")

230 K=1 :: Z=5 :: HP,S3P,SC,E
=0 :: CALL CHAR(104,E$&"0104
10400103CFFFFFT66001020820C0
TOTCE2E1EIF3FEFCCS4658E") 1
GOTO 74O i3 18P-

240 CALL sOUND{-4250,-4,1,11
0,30,110,30,200,30):: RETURN

250 CALL KEY(3,T,¥)s: Z=INT(
($C-E)/10000):: FOR T=1 TO Z
t+ CALL SOUNDC200,770,4,777
,6):: DISPLAY AT(1,2L4):USING
mEPEMLT ;: NEXT T

260 1IF Z THEN B=B+Z%10000 ::

GOTO TU40 ELSE CALL CHAR(108
, "FFB1BFAOAFB98B1FFFFB1ET1818
E781FFETBSBS5BDBDADADET ")

270 CALL CHAR(104,"FFB1BDB1B
FAOAOEOEQAOAQOAOAOBFBIFFFFE1E
DED81BDASETETASBDB1E7181818"
Jii CALL SPRITE(#1,112,13,87
y1,0,12)

280 CALL COLOR(10,7,1,10,9,1
,10,16,1,10,6,1):: CALL KEY(
i

290 IF T=89 THEN 220 ELSE IF
T=78 THEN CALL DELSPRITE(AL
L):: CALL VCHAR(1,1,32,768):
: END ELSE 280

M

DISKETTE KEYBOARD VERSION

300 V=8 :: IF K<2 THEN 570 E
LSE IF Y AND 1 THEN 340 ELSE
CALL CHAR{60,"0B081C1C1CICH
C3ETF1C0008221004080"&5¢)

310 YY=600 :: CALL DELSPRITE
(ALL):: FOR T=2 TO 5 :: CALL
LOCATE(#T, 1,T#17,#T+4,177,T
E17):: NEXT T

320 CALL SOUNDB(-350,-7,6,110
25)i: CALL CHAR(35,"FFFFFFEF
81000081m):: CALL SOUND(4250
,-8,4,110,27,115,28,YY,30)

330 FOR T=10 TO 18 :: RANDOM

IZE :: CALL PEEK(-31880,X)::

CALL SPRITE(#T,60,(X AND 7)

+3, 177, T#24-208,-X/8-3-K,0):
NEXT T :: GOTO 360

3%0 CALL CHAR(60,T$&"01030F7
FOMLE$4THE"TO9FABR20UFC3ICICFF
O0C"):: YY=1600 :: CALL SOUND
(-4250,-8,6,110,27,115,28,YY
430):1: CALL DELSPRITE(ALL)

350 FOR T=10 TO 18 :: RANDOM
IZE :: CALL PEEK(-31880,X)::
CALL SPRITE(#T,60,(X AND 7)
+3,T#16-120,256,0,-X/8-3-K):
: NEXT T

360 CALL SPRITE(#1,112,13,72
1 1,0,3)

370 CALL S0UND(-996,-8,6,110
229,115,28,YY,30):: CALL COI
NC(ALL,T):: CALL POSITION(#1
;X,¥):: IF T OR X>161 THEN G
0SUB 870 :: GOTO FHU

380 IF ¥>22% THEN 410 ELSE ¢
ALL KEY(1,T,T):: IF T<0 THEN
CALL MOTION{#1,0,2):: GOTO

370

390 IF T=0 THEN T=8 ELSE IF
T=5 THEN T=8%(X>35)ELSE IF T
=3 THEN CALL MOTION(#1,0,4):

GOTG 370 ELSE CALL MOTION(
#1,0,0):: GOTO 370

400 CALL MOTION(#1,T,2):: GO
T0 370

410 CALL DELSPRITE(#1):: IF
K<3 THEN 570 BELSE Y1=(¥ AND
6)-4 :: CALL DELSPRITE(ALL):
¢ CALL COLOR(2,1,1,1,1,1,13,
1,1)

420 DISPLAY AT(21,1):" e
€ e e
e e e
et

430 CALL CHAR(6O,T$&"AAQ21F2
CUCTF10TF &S$&"A800CTFFEICQY
OE™,64,58&"00009292 "&T$&554"
4949m):: CALL SPRITE(#1,108,
13,4%0,31,8,0)

440 CALL SPRITE(#2,60,6,242,
216,(Y AND 1)%80-40,0)

450 CALL SOUND(-4250,-4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#1,X,Y,#2,YY,Y)

460 IF X>180 THEN CALL LOCAT
E{(#1,1-(V<0)*®180,31)ELSE IF
ABS(X-YY)<7 THEN 490 ELSE CA
LL MOTION(#2,8GN(X-YY)#((YY
AND 11)+9},0)

470 CALL KEY{(1,T,¥):: IF T=1
3 THEN 510 ELSE IF T=5 THEN
V=-8 ELSE IF T=0 THEN V=8 EL
SE IF Y THEN ¥=0

480 CALL MOTION(#1,V,0):: GO
TG 450

490 CALL SPRITE(#3,64,7,YY,2
09,V+X-YY,~127):: CALL SOQUND
(-900,-8,1,110,30,110,30,999
§,30):: T=0

500 CALL POSITION(#3,¥,Y):
IF ¥Y»50 THEN 500 ELSE CALL D
ELSPRITE(#3):: CALL COLOR(#1
;11):: GOSUB 930 :: CALL DEL
SPRITE(#2):: GOTO ThO

510 CALL SOUND(-900,-8,0,110
,30,110,30,300,30):: CALL PO
SITION(#1,X,Y):: CALL SPRITE
(#3,64,4,X,36,0,127)

520 CALL POSITION(#3,X%,Y)::

IF ¥<192 THEN 520 ELSE CALL

DELSPRITE(#3):: CALL COINC(#
2,%,220,7,T):: IF T THEN CAL
L SOUND{-1,-4,9)ELSE 450

530 CALL COLOR(#2,15):: FOR

T=0 TO 2 :: CALL PATTERN(42,

88+TH#Y):: FOR X=5 TO T t: CA
LL SCUND(100,-X,T#10):: NEXT
¥ 11 NEXT T

540 CALL DELSPRITE(#2):: Y1=
T1+1 :: SC=8C+250 :: DISPLAY
AT(1,12)STIZE(10):USING "g4d
#EEEPH4":3C 1 IF Y1<5 THERN
Lo

550 CALL POSITION(#1,X,Y)::
L1F X>185 THEN CALL LOCATE{#1
»35,Y)

560 CALL PATTERN(#1,112):: C
ALL MOTION(#1,0,20):: CALL S
OQUND(-Y4250,-4,1,200,30,200,3
0,200,30)

570 CALL CHAR(68,5$&"000000F
FYF1FFEAB"&S$&"000000FFFFFFA
A6D", 64 ,E$&"0021F373FFFFFFFF
FFFFQ72A08103CFFFOFFFFFFFFFF
FFFFFFFFSEAAT)

580 Y1=(Y AND 5)+6 :: GOSUB

800 :: CALL CHAR(60,70000008
0BOCUCFEEFFFF5BAAFFFF722B"&T
$&"COOFFEFCF8FOE2C6TB3DN) ;;

CALL COLOR(1,1,1,2,1,1)

590 DISPLAY AT(20,1):W§ :: C
ALL COLOR(1,5,1,7,12,1):: FO
F T=1 TO 4 :: CALL LOCATE(#T
,167,1):: NEXT T :: CALL SPR
ITE(#9,112,13,15,1,20,35)

600 CALL SPRITE(#10,68,15,14
3,1,#11,64,15,143,17,412, 60,
15,143,33):: CALL MOTION(#10
0, Y1,#11,0,%1,412,0,¥1)

3

75

DISKETTE KEYBOARD VERSION Continued

610 CALL SOUND(-14250,-14,1,20
0,30,200,30,200,30):: CALL P
OSITION(#9,X,Y):: IF X<35 TH
EN CALL MOTION(#9,0,V):: CAL
L LOCATE(#9,35,Y)ELSE IF X>1
40 THEN 690

620 CALL COINC{#9,#11,16,T):
: IF T AND X>130 THEN 680 EL
SE CALL COINC(#9,#10,9,T)::
IF T THEN 710

630 CALL KEY(1,T,T):: IF T<0

THEN CALL PATTERN(#9,SGN(V)
£44108):: CALL MOTION(#9,3%(
X»35),¥):: GOTO 610

640 IF T=3 THEN CALL PATTERN
(#9,112):: V=Vv-4%(v<12):: GO
TQ 670 ELSE IF T=2 THEN CALL
PATTERN(#9,104):: V=V+4#(V>
-12):: GOTO 670

650 IF T=0 THEN CALL PATTERN
(#9,108):: CALL MOTION(#9,8,
V):: GOTO 610

660 IF T=5 THEN CALL PATTERK
(#9,108):: CALL POSITION(#9,
X,¥):: IF X<36 THEN CALL LOC
ATE(#9,35,Y¥)ELSE CALL MOTION
(#9,-8,V}:: GOTO 610

670 CALL MOTION(#9,0,V):: GO
TO 610

680 CALL MOTION(#9,0,0,#10,2
S, #11,2,8,412,2,4):: SC=5C~
SP¥500 :: SP=0

690 CALL MOTION(#9,3,0):: CA
LL SOUND(-2450,-8,6,110,30,1
10,30,9999,30):: CALL PATTER
N(#9,10L}:: CALL SQUND(1,-L,
9):: HP=0 :: Z=2-1

700 CALL DELSPRITE(#9):: IF
SP THEN 740 ELSE CALL DELSPR
ITE(#10,4#11,#12):: GOTO THO

710 CALL POSITION(#10,%,Y}::

CALL SPRITE(#9,116,13,136,Y
,0,¥1):: FOR T=306 TO 122 ST
EP -6 :: CALL SOUND(-200,-4,
1,7,27,T,30,T,30):: NEXT T

720 FOR T=130 TO 306 STEP 8

:: CALL SOUND(~4250,-4,1,T,3

0,T,30,T,27):: NEXT T :: CAL

L MOTION(#9,-10,0):: K=K+1 :
SC=SC+500RIP

730 FOR T=1 TO 300 :: NEXT T
i: SP=5P+HP :: HP=0

THO DISPLAY AT(1,2):USING B$
tHP,SP,SC,Z :: IF Z THEN CAL
L DELSPRITE(ALL)ELSE 250 11!

750 CALL CHAR(60,7"000001010F
090909010101013E200000C0CHCH
FCCOCOCOCO0C02010080810203")

760 CALL CHAR(6Y4,"0101031F13

1313030303033F20000000808888
8BF8808080808000008040203")

M

770 CALL CHAR(68,"0000010107
09090501010G10106181000C0C0OC2
F4CBCOCOCOCO2010080810203",3
5,"FFFFFFFF817ETEB1M)

780 DISPLAY AT(20,1):4% ::
ALL COLOR(2,11,1,1,1%,1,13,
2,1):: GOSUB 800

c
1

790 CALL SPRITE(#3,140,2,161

,256,0,-24):: FOR T=9 TO 20
CALL SPRITE(#T,136,7,200,

1)i: NEXT T :: GOTO 1030

800 CALL DELSPRITE(ALL}:: FO
R T=5 T0 8 :: CALL LOCATE(#T
,177,T%17):: NEXT T :: RETUR
N

810 IF T<>12 THEN CALL POSIT
ICN(#1,X,Y,#3,¥Y,YY):: IF AB
s{Y-YY)<¢B0 THEN CALL SPRITE(
#4,36,9,157,YY, X-147,2%V+Y=Y¥
Y)ELSE 1060 ELSE 1060

820 CALL SOUND(=-150,-8,3,110
,30,110,30,5010,30}:: CALL 3
DUND(300,-8,1,128B,30,128, 30,
1100,30):: CALL DELSPRITE(#4
}:: GOSUB 870 :: GOTC 1030

830 CALL MOTION(#3,0,V/4,#2,
0,0):; CALL PATTERN(#2,80)::
CALL SOUND(=1,-U,9):: IF T=
72 THEN CALL MOTION(#1,0,V)

840 FOR T=1 TO 9 :: CALL 30U

ND({50,-6,1):: NEXT T :: CALL
DELSPRITE(#2):: ¥1=0 :: RET
URN

850 CALL CGOLOK(#3,2):: FOR T
=0 TO 16 STEP 4 :: CALL S0UN
pt-999,-8,1,120,27,127,28, 10
00,30):: CALL PATTERN(#3,84+
T):: NEXT T

860 SC=605-3¥X+5C :; CALL DE
LSPRITE(#3):: CALL SPRITE(#3
,140,2,161,256,0,-24):: RETU
RN

§70 T=0 :: CALL SOUND(-1,-14,
9):: IF ¥ AND 1 THEN CALL PA
TTERN(#1,112):: CALL MOTION(
#1,9,V)ELSE CALL COLOR(#1,16
Jr: GOTO 930

880 CALL COLOR{#1,RND®T+3)::

FOR T=1 TO 26 STEP 5 :: CAL
L SOURD(T*40+200,-8,T,110,30
,110,30,1100-T,30)

89C¢ CALL POSITIOR(#1,X,Y}::
1F X3>155 THEN CALL MOTION(#1
,0,0}:: GOTO 91¢ ELSE IF X A
ND 2 THEN 880

900 HEXT 7 :: GOTO 880
910 CALL COINC{#1,#2,16,T):i:

IF T THEN CALL DELSPRITE(#2
)

920 CALL COINC(#1,#3,17,T)::

CALL COLOR{#1,2):: IF T THE
N CALL SQUND(-300,-8,1,110,3
0,110,30,3000,30):: CALL COL
OR(#3,7)

930 FOR ¥=0 TO 16 STEP 4 ::
CHLL S0UND(-999,-8,Y,120,27,
127,28,1100,30):: CALL PAITE
RE{#1,8U4+Y):: NEXT Y

940 CALL DELSPRITE(#1):: Z=Z
-1 :: HP=Q IF T THEN GOSU
B 850 :: RETURN ELSE RETURN

950 CALL MOTION(#1,0,V):i: CA
LL COINC(#1,#2,12,¥Y):: IF ¥
¥ THEN CALL SOUND(-500,-8,1,
110,30,110,30,840,28):: CALL
DELSPRITE(#2)

960 CALL SOUND(-4250,-U,1,14
0,30,140,30,140,30):; CALL P
OSITION(#1,X,Y,#2,¥1,Y1):: C
ALL SPRITE(#1,116,13,160,¥,0
,0)

670 CALL MOTION(#2,0,4%8GN(Y
-¥1)):: IF ¥Y1=0 THEN CALL SP
RITE(#2,76,2,163,256)

980 CALL KEY(1,T,T):: IF T=5
THEN 1020 ELSE YY=¥Yy-U4 :: I
F YY<60 THEN YY=T76

990 CALlL, PATTERN(#2,YY)}:: CA
LL COINC(f#1,#3,32,T):: IF T

THEN GOSUB 830 :: GOSUB 870

i1 GOTO 1030

1000 CALL COINC(#2,#3,24,T):
: IF T THEN GOSUB 830 :: GOT
0 970 ELSE CALL COINC(#1,#2,
11,T}s: 1F 7 THEW CALL PATTE
RN(#2,80)ELSE 980

1010 CALL SOQURD(-200,220,7,2
23,8,226,9):: HP=HP+1 ;: DIS
PLAY AT(1,3)S1ZE(2):HP i: CA
LL DELSPRITE(#2)

1020 CALL SOUND(-4000,-%,1,1
10,30,110,30,320,30):: CALL

MOTION(#1,-17,V/2,42,0,0)::

CALL PATTERN(#2,128):: IF HP
=5 THEN 300 ELSE 1050

1030 IF 2 THEN CALL SPRITE(#
1,112,13,20,1,20,35):: T,V=1
2

1040 DISPLAY AT(1,2):USING B
$:HP,8P,3C,Z :: IF Z=0 THEN
250

1050 CALL SOUND(-599,-4,1,11
0,30,110,30,200,30):: CALL F
OSITION(#1,X,Y,#2,¥Y1,¥1,#3,¥
Y,¥Y):: IF ABS(YY-¥)<S THEN
810 ELSE IF Y1 THEN CALL FAT
TERN(#2,124)

1060 CALL MOTION(#3,0,S3GN(Y~
YY)#((Y AND 6)+4+K)):: IF X<
35 THEN CALL MOTION{#1,0,V}:
: CALL LOCATE(#1,35,Y¥)ELSE I
F X>151 THEN 950

()

76

DISKETTE KEYBOARD VERSION Cont inuad

1070 IF ¥1 THEN CALL PATTERN
(#2,128):: IF ABS(YY-Y1}<26
THEN GOSUB 830

1080 CALL KEY(1,T,T):: IF T=
13 THEN 1130 ELSE IF T<0 THE
N CALL PATTERN(#1,¥/3+108)::
CALL MOTION(#1,3%(X>35),V):
: GOTO 1050

1090 IF T=3 THEN CALL PATTER

N(#1,112):: V=12 31 GaTO 112
0 ELSE IF THEN CALL PATT
ERN(#1,104):: V==12 i3 GOTO

1120

1100 IF T=0 THEN CALL PATTER
N($#1,108):: CALL MOTION(#1,8
,V)i:t GOTO 1050

1§10 IF T=5 THEN CALL PATTER
¥(#1,108):: CALL POSITION(#1
JX,¥):: IF X<36 THEN CALL LO
GATE(#1,35,¥)ELSE CALL MOTIO
NC#1,-12,V):: GOTO 1050

1120 CALL MOTION(#1,0,V):: G
0TO 1050

1130 CALL SOUND(-999,-8,3,12
8,30,128,30,999,30):3 CALL M
OTION(#1,0,V):: CALL POSITIO
N(g1,%,)t ¥=V/2+Y 1t IF ¥<
1 THEN ¥=1

1140 FOR T=X+16 TO 175 STEP
13 :: ¥=Y+13 :: IF ¥>255 THE
N Y=1

1150 CALL LOCATE(#T/13+7,T,Y
y:: NEXT T :: IF Y1 THEN CAL
L COINC(#2,160,¥,18,T):: IF
7 THEN CALL DELSPRITE(#2)

1160 CALL SOUND(-999,-8,3,12
8,30,128,30,500,30):: CALL C
OINC(ALL,T):: CALL DELSPRITE
(#9,#10,411,#12,#13,#14,415,
#16,817,#18,#19,#20)

1170 IF T THEN CALL COLOR(#3
,16):: GOSUB 850 :: GOTO 101
0 ELSE 1050

7T

APPENDIX = D

10 CALL MAGNIFY(3):: CALL SC

REEN(2):: GOTO 30 CALL KE

Y :: CALL JOYST CALL SOUN

D :: CALL PEEK CALL HCHAR
CALL VCHAR

20 X,Y,¥1,Y%,v,T CALL POS

ITION :: CALL PATTERN :: CAL

L SPRITE :: CALL DELSFRITE

CALL COINC
CALL LOCATE

CALL MOTIOHN

30 E$="00000000" :: T$=E$&"0
000" :: S$§=-EHEE$

90 A$=RPT$(" ",22)

e e

110 GOSUB 240 B$=RPTH("I"
y2B)&RPTH("II4",9)&RPTS(LT,
29):: WH=RPTS("mnn, 28)&RPTH(
Il]“,ali)

200 DISPLAY AT(15,1):A$:B$
A$=SEGH(AE,141,28)&BS

210 Bi="e 4 #4487 efferiLdesd

efftd e CALL COLOR(3,15,
e R R
1,12,15,1,13,12,1)

220 CALL COLOR(10,1,1):: CAL
L CHAR(108,E$&"55000061E1FFF
FFFO0000003"&E$&"5540B0F8ELE
2E1F1FFTCU4SFE")

230 X=1 :: Z=5 HP,SP,SC,B
=0 :: CALL CHAR(104,E$&"0104
10400103CFFFFFT86001020820C0
7O07CE2E1E1F3FEFCCS54658E™) 1 :
GOTO 740 :: 1@P-

240 CALL SOUND(-4250,-4,1,11
0,30,110,30,200,30):: RETURN

250 CALL KEY(3,T,¥):: 2=INT(
{8C-B)/10000):: FOR T=1 TO 2

CALL SOUND(200,770,4,777
,6):: DISPLAY AT(1,24):USING
LEE T LN NEXT T

260 1F 2 THEN B=B+Z#10000
GOTO 740 ELSE CALL CHAR(108
,"FFB1RFAQAFRB9S1FFFFB1ET1818
E7B81FFETB5B5BDBDADADET ")

270 CALL CHAR(104,"FF81BD81B
FAOAQOEOEOAQAOAOQAOBFB1FFFF81B
DBD81BDASETETASBDB1ET 1818187
):: CALL SPRITE(#1,112,13,87
,150,12)

280 CALL COLOR(10,7,1,10,9,1
,10,16,1,10,6,1):: CALL KEY(
1,T,¥1):: CALL KEY(0,T,T)

290 IF T=89 OR Y1 THEN 220 E
LSE IF T=78 THEN CALL DELSPR
ITE(ALL):: CALL VCHAR(1,1,32
,768):: END ELSE 280

M

DISKETTE JOYSTICK VERSION

300 V=8 IF K<2 THEN 570 E
LSE IF ¥ AND 1 THEN 340 ELSE
CALL CHAR(60,"0B8081C1CICICT

C3ETF1C0008221004080m&3%)

310 YY=600 CALL DELSPRITE
{ALL):: FOR T=2 TO 5 :: CALL
LOCATE(#T,1,T#1T7,#T+4,177,T
®#17):: NEXT T

320 CALL SOUND(-350,-7,6,110
,5):: CALL CHAR(35,"FFFFFFFF
81000081"):: CALL SOUND(4250
,=8,4,110,27,115,28,YY,30)

330 FOR T=10 TO 18 :: RANDOM

IZE :: CALL PEEK(-31880,X)::
CALL SPRITE(#T,60,(X AND T)

+3,177,T%24-208,-X/8-3-K,0):
NEXT T :: GOTO 360

340 CALL CHAR(60,T$&"01030F7
FO"(E$&T$&"TO9FAB204FC3ICICFF
0C"):: YY=1600 CALL SOUND
(-4250,-8,6,110,27,115,28, ¥Y
,30):: CALL DELSPRITE(ALL)

350 FOR T=10 TO 18 RANDOM

IZE :: CALL PEEK(-31880,X)::
CALL SPRITE(#T,60,(X AND T)

+3,T#16-120,256,0,-X/8-3-K):
NEXT T

360 CALL SPRITE(#1,112,13,72
2 1:0,3)

370 CALL SOUND(-999,-8,6,110
,27,115,28,¥Y,30):: CALL COI
NC(ALL,T)}:: CALL POSITION(#1!
,X,¥):: IF T OR X>161 THEN ©
0SUB 870 GOTO 740

380 1F ¥Y»224 THEN 410 ELSE C
ALL JOYST(1,T,¥1):: IF Y1 TH
EN CALL PATTERN(#1,108):: C&
LL MOTION(#1,{X-28Y1>30)%24Y
1,2):: GOTO 370

390 CALL PATTERN(#1,112):: C
ALL MGTION(#1,0,T/2+2):: GOT
U 370

410 CALL DELSPRITE(#1):: IF
K<3 THEN 570 ELSE Y1=(Y AND
6)-4 :: CALL DELSPRITE(ALL):

chL COLOR(2,05 15 611513
1a1

420 DISPLAY AT(21,1):" e

€ e e

e e e
em

430 CALL CHAR(60,T$&"AAO21F2
CLCTFIOTF"&S§&"AB00CIFFE1COQ
OE",64,3$&"00009292"&T3&S$EN
4g49m);: CALL SPRITE(#1,108,
13,40,31,8,0)

Lyo CALL SPRITE(#2,80,6,242,
216, (Y AND 1)%80-40,0)

450 CALL SOUNMD(-L250,-4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#1,%,Y,4#2,¥YY,Y)

460 IF %>180 THEN CALL LOGAT
E(#1,1-({V<0)*180,31)ELSE IF
ABS(X-YY)<7 THEN 490 ELSE CA
LL MOTION(#2,SGN{X-YY)#((YY
AND 113+9),0)

470 CALL KEY(1,T,¥):: IF ¥ T
HEN 510 BELSE CALL JOYST(1,Y,
T):: IF T THEN V=-2%T ELSE I
F Y THEN V=0 ELSE 450

480 CALL MOTTON(#1,V,0):: GO
TO 450

k90 CALL SPRITE(#3,6H4,7,¥Y,2
09,V+X=¥¥,~127):: CALL SOUND
(-900,-8,1,110,30,110,30,999
9,30):: T=0

500 CALL POSITION(#3,Y,Y)::

IF Y>50 THEN 500 ELSE CALL D
ELSPRITE(#3):: CALL COLOR(#1
,11):: GOSUB 930 CALL DEL
SPRITE(#2):: GOTG T4O0

510 CALL SOUND(-900,-8,0,110
,30,110,30,300,30):: CALL PO
SITION(#1,%,¥):: CALL SPRITE
(#3,61,4,%,36,0,127)

520 CALL POSITION(#3,X,Y)::

IF Y<192 THEN 520 ELSE CALL

DELSPRITE(#3):: CALL COINC(#
2,%,220,7,T):: IF T THEN CAL
L SCUND(-1,-4,9)ELSE 45C

530 CALL COLGR{#2,15):: FOR
T=0 TO 2 CALL PATTERN(#2,
88+THh):: FOR X=5 TO T :: Ch
LL SOUND{100,-X,T#10):: NEXT
X :: NEXT T

540 CALL ‘E(#2):: Yi=
Y1+1 : DISPLAY
AT(1,12) (10) :USIKG "#44¢
FEEEIANTSC IF Y¥1<5 THEN
3y0

550 CALL POSITIONC#1,X,Y)::
IF X>185 THEN CALL LOCATE(#1
135,1)

560 CALL PATTERM(#1,112):: C
ALL MOTIONM(41,0,20):: CALL §
CUND(-4250,-4,1,200,30,200,3
0,200,30)

570 CALL CHAR{68,3$&"000000F
FTF1FFEAB"&S$&"00000CFFFFFFA
AEDY,64,E$E"0021F3T3FFFFFFFF
FFFFA72A08103CFFFOFFFFFFIFFF
FEFFFFFFSEAA")

580 ¥1=(Y AND 5)+6 :: GOSUB

800 :: CALL CHAR(60,70000008
0B0CUCFERFFFF5BAAFFFFT22B"&T
$&"COOFFEFCFOFOERCETRIDN) 12

CALL COLOR(1,1,1,2,1,1)

590 DISPLAY AT(20,1):W§ :: C
ALL COLOR(1,5,1,7,12,1):: FQ
R T=1 TG 4 CALL LOCATE(#1
L161,1)0:: NEXT T CALL SPR
ITE(#9,112,13,15,1,20,35)

600 CALL SPRITE(#10,68,15,14
3,1,#11,64,15,143,17,#12,60
15,143,33):: CALL MOTIOH(#10
,0,¥1,#11,0,¥1,412,0,Y1)

()

78

DISKETTE JOYSTICK VERSION Continued

610 CALL SOUND({-#250,-4,1,20
0,30,200,30,200,30):: CALL P
OSITION(#9,X,¥):: TIF X<35 TH
EN CALL MOTION(#9,0,V):: CAL
L LOCATE(#9,35,Y)ELSE IF X1
40 THEN 690

620 CALL COINC(#9,#11,16,T):

1F T AND X¥>130 THEN 680 EL
SE CALL COINC(#9,#10,9,T)::
IF T THEN 710

£30 CALL JOYST(1,¥,T):: IF ¥

THEN CALL PATTERN(#9,Y+108)
.: V=y-YR{ABS(Y+V)<16}:: CAL
L MOTIOH{#9,0,¥):: GOTO 610

640 IF T THEN CALL PATTERK(#
9,108):: CALL MOTION(#9,2%T%
(X-T>35),V):: GOTO 610

650 CALL PATTERN(#9,SGN(V)HY
+108):: CALL MOTION(#9,(¥>35
y#3,V):: GOTO 610

680 CALL MOTION(#9,0,0,#10,2
.“,#11,2,“,#12,2,“):: S5C=8C~-
SPE500 :: SP=0

690 CALL MOTION(#9,3,0):: CA
LL SOUND(-2450,-8,6,110,30,1
10,30,9999,30):: CALL PATTER
N(#0,104):: CALL SOUND(1,-1H,
9):: HP=0 i: Z=Z-1

700 CALL DELSPRITE(#9):: IF
gp THEN 740 ELSE CALL DELSPR
[TE(#10,811,#12):: GOTO TUO

410 CALL POSITION(#10,X,¥)::

CALL SPRITE(#9,116,13,136,Y
,0,¥1):: FOR T=306 TO 122 8T
Ep -6 :: CALL SOUND(-200,-H,
1,1,27,7,30,T,30):: KEXT T

720 FOR T=130 TO 306 STEP 8
CALL SOUND(-4250,-4,1,T,3
0,7,30,T,27)1: NEXT T :: CAL
L, MOTION({#9,-10,0):: K=K+1
5C=SC+500%HP
‘t10 FOR T=1 TO 300 NEXT T
i SP=SP+HP :: HP=0

fh0 DISPLAY AT(1,2):USING B§
iip,sp,5¢,2 1+ IF Z THEN CAL
{, DELSPRITE(ALL)ELSE 250 111

Y50 CALL CHAE(60,7000001010F
090909010101013E200000C0CHCH
FECOC0COCoC020100808102037)

Y60 CALL CHAR(64,70101031F13
l|ltUlU]ﬂ3033F20000000803885
I 080B0B08000008040203™)

({0 CALL CHAR(68,"0000010107
w090 0101010106181000C0C0C2
YRCICOCOC0C02010080810203",3
WL MPEFFFFFFBTITETEST)

(0 DISPLAY AT(20,1):4% :: C

AL COLOR(2,11,1,1,11,1,13,1
s, Gosup 800

(V4

790 CALL SPRITE(#3,140,2,1061
,256,0,-24):: FOR T1=9 TO 20
.. CcALL SPRITE(#T,136,7,200,
1):: NEXT T GOTO 1030

00 CALL DELSPRITE(ALL):: FO
R T=5 710 8 CALL LOCATE(#T
LAT7,T#I7) e NEXT T :: RETUR
N

810 IF T<>12 THEN CALL POSIT
TON(#1,X,Y,83,YY,¥Y):: IF AB
S(¥Y-YY)<B80 THEN CALL SPRITE(
#4,36,9,157,YY,X-147,28V+¥-Y
Y)ELSE 1060 ELSE 1060

820 CALL SOUND({-150,-8,3,110
,30,110,30,5010,30):: CALL 5§
OUND(300,-8,1,128,30,128,30,
1100,30):: CALL DELSPRITE(#4
y:: GOSUB 8TO GOTO 1030

830 CALL MOTION(#3,0,V/4,#2,
0,0):: CALL PATTERN(#2,80)::
CALL SOUND(-1,-4,9):: IF T=
12 THEN CALL MOTION(#1,0,V)

840 FOR T=1 T0 9 CALL SOU
ND(50,-6,1):: NEXT T :: CaLL
DELSPRITE(#2):: Y1=0 :: RET

URN

850 CALL COLOR{#3,2):: FOR T
=0 TO 16 STEP 4 CALL SOUN
p(-999,-8,T,120,27,127,28,10
00,30):: CALL PATTERN(#3,8h4+
T):: NEXT T

860 SC=605-3%%+5C CALL DE
LSPRITE(#3):: CALL SPRITE(#3
,1u0.2,161,256.0.-2u):: RETU
RN

870 T=0 :: CALL SOUND(~1%,-4,
9):: IF Y AND 1 THEN CALL PA
TTERN(#1,112):: CALL MOTION(
#1,9,V)ELSE CALL COLOR(#1,16
}:: GOTO 930

880 CALL COLOR(#1,RND#T+3)::

FOR T=1 TO 26 STEP 5 :: CAL
L SOUND(T®40+200,-8,T,110,30
,110,30,1100-T,30)

890 CALL POSITION(#1,X,¥):i:
{F X155 THEN CALL MOTION(#1
,0,0):: GOTO 910 ELSE IF X &
WD 2 THEKN 880
400 NEXT T GOTO 880

970 CALL COINC(#1,#2,16,T)::
IF T THEN CALL DELSPRITE(#2
)

920 CALL COTRC(#1,83,17,T)::

CALL COLDR{#1,2):: IF T THE
N CALL SOUND(-300,-8,1,110,3
0,110,30,3000,30):: CALL COL
OR(#3,7)

930 FOR =0 TO 16 STEP 4
CALL SOUND(-999,-8,Y¥,120,27,
127,28,1100,30):: CALL PATTE
RH{#1,B4+Y):: NEXT I

alho CALL DELSPRITHCO1) 1t Zwdh
-1 11 HPmO 13 LF THEN QOO0
B 850 :: RETURN ELSE RETURN

950 CALL MOTION(#1,0,V):: Cd
LL COINC(#1,42,12,¥¥)ts IF ¥

¥y THEN CALL SOUND(-500,-8,1,
110,30,110,30,8%0,28):: CALL
DELSPRITE(#2)

960 CALL SOUND(-4250,=,1,14
0,30,140,30,140,30):: CALL P
OSITION(#1,X,¥,#2,¥1,¥1):: €
ALL SPRITE(#1,116,13,160,Y,0
+0

§70 CALL MOTIOR(#2,0,4%5GN(Y
Z¥1)):: IF ¥1=0 THEN CALL &P
RITE(#2,76,2,163,256)

980 CALL JoYsT(1,T,¥1):: IF
Y1>0 THEN 1020 ELSE YY=YY~l
IF YY<60 THEN YY=T6

990 CALL PATTERN{#2,Y¥Y):: CA
LL COINC(#1,#3,32,T):: IF T
THEN GOSUB 830 GOSUB B70
::+ GOTO 1030

1000 CALL COING(#2,#3,24,T):
IF T THEN GOSUB 830 :: GOV
0 970 ELSE CALL COINC(#1,482,
44 T SLE T THEN CALL PATTE
RN(#2,80)ELSE 980

1010 CALL SOUND(-200,220,7,.
23,8,226,9):: gP=HP+1 :: D15
PLAY AT(1,3)SIZE(2):HP :: Ch
LL DELSPRITE(#2}

1020 CALL SOUND(-4000,-4,1,1
10,30,110,30,320,30):: CALL

MOTION(#1,-17,V/2,#2,0,0)::

cALL PATTERN(#2,128):: IF HP
=5 THEN 300 ELSE 1050

1630 IF % THEN CALL SPRITE(/
1,112,13,20,1,20,35):: T,V=1
2

1040 DISPLAY AT(1,2):USING I
$:HP,SP,8C,2 IF Z=0 THEN
250

1050 CALL SOUND(-999,-4,1,11
6,30,110,30,200,30):: CALL P
OSITIONC#1,X, ¥, #2,Y1,17,4#3,Y
Y, ¥¥)it IE ABS(YY-Y¥)<5 THEN
810 ELSE IF Y1 THEN CALL FAT
TERN(#2,124)

1060 CALL MOTION(#3,0,8GN(Y-
YYYE((Y AND 6)+4+K)):: IF X<
35 THEN CALL MOTION(#1,0,V):

CALL LOCATE(#1,35,Y)BLEE I
F X>151 THEN 950

1070 1F Y1 THEN CALL PATTERN
(#2,128):: IF ABS(YY-Y1)<26
THEN GOSUB 830

1080 CALL KEY(1,¥Y,T):: IF T
THEN 1130 BLSE CALL JOYST(1
,T,Y¥):: IF T OR Y¥ THEN CAL

L PATTERN(#1,108+T)ELSE CALL
PATTERN(#1,V/3+108):: CALL

HOTION(#1,3%(X>35),V):: GoTo
1050

C]

79

=_'_;__————————————————__TZZJIIlIIlIllll.lllIlll.IlllIlIIlllllIllIl..l.l.llIl.llll.l..lll..lll.lll.ll........l'l

DISKETTE JOYSTICK VERSION Continued

1090 IF T THEN V=T#3 :: caLL
MOTION(#1,0,V):: GOTO 1050
ELSE CALL MOTION(#1,Yyso8(x-

YY>31),V):: GOTG 1050

1130 CALL S0UND(-999,-8,3,12
8,30,128,30,999,30):: CALL M
OTION(#1,0,V):: CALL POSITIO
N(#1,X,Y):: Y=V/2+Y :: IF ¥¢

T THEN Y=1

1140 FOR T=X+16 TO 175 STEP
13 :: ¥=¥+13 :: IP Y>255 THE
N ¥Y=1

1150 CALL LOCATE(#T/13+7,T,Y
Ji: NEXT T :: IF ¥1 THEN CAL
i COINC(#2,160,Y,18,T):; IF
T THEN CALL DELSPRITE(#2)

1160 CALL 80UND(-999,-8,3,12
8,30,128,30,500,30):: CALL ¢
OINC(ALL,T):: CALL DELSPRITE
(#9,#10,#11,#12,#73,#1&,#15.
F16,£17,218,419,#20)

1170 IF T THEN CALL COLOR(#3
»16):: GOSUB 850 ;; GOTO 104
¢ ELSE 1050

0

APPENDIX -~ E 8 x8 CHAHACTER DIAGRAMS

FFFFFFFFFFFFFFFF

(¥8)
wy
]

51 - 3F0103021CONGEFE

(L]
h

52 - 1111223E02040408 53 - 1F2020407COL08F8

| I
| I
L]| . -
54 - 102020407E82827C 55 - 3F01020408102040 56 ~ 1F1122223EMH4FS
Rl B | [[.
| |] N B
| H REERN
|I|||||||||== ENN

57 - 1F21213E02040408 104 - FF81BD8&1BFACAOED

(s =
[!

107 - E7ASBDS1E7181818

110 - ETB5B5BDBDADADET 132 - 6152524CCC000000

134 -~ 00000000FFOC0000 135 - 0000GCFFO000000C

82

APPENDIX - F

16 x 16 CHARACTER DIAGRAMS

36 - 140A200D14216414
241A081408080008
0000000000000000
0000000000000000

60 - 000001010F090909
010101013E200000
COoCLCh4FCCOCOCOCO
C020100808102030

ez

- .

64 - 0101031F13131303
0303033F20000000
80888888F8808080
8080000080402030

68 - 0000010107090905
0101010106181000
COCOC2FL4CBC0COCH
€020100808102030

83

0101010102020203
COCOCOEQEQF8C0CO
€02020101020L060

76 = 0000010303030301
£101010000070400
COCOCOEQOECQEQOF0CO
ColosocoCcean8oco

e
. m

80 - 0000000000030401

0101010102020406
000000 18FBEOFSCO
C0CO0701010180000

84 -~ 0000000200080000
1000020000000000
0000200000082000
0008200000000000

84

——

T T =1 T -
I IEEEN | L
l_ P— | .;
—_— _llﬂ"mq, II ~ B . .‘ i i
FREEN NN 2 i | n

88 - 0000040010000000

92 - 0008000020000000

2000000800000000 4o00000010000000
0010000000041000 0800000000020800
0004001000000000 0002001000000000
|
| ' i
=
: H Bl
B | ’
_ B e
H | B
N -
36 - 1000004000000000 100 - 0000008000000000
8000000000200000 0000000000004000
0000000000010400 0000000000000200
0001000008000000 0000000000040000

85

104 ~ 0000000001041040 108 - 0000000055000061

0103CFFFFFT786001 E1FFFFFF0000

000
020820COTO7CE2E1 0000000055MOEOFg
E1F3FEFCC54658E0 E4E2E1F1FFTCUSFE

112 =~ 400802103979FDFF 116 - 000055010F1E1830

1F07010807010000 20301E1FOF1320
000080D0BUCTFOFC 00305580F07g1833
F2E2E2F2FCYCFA1C 0h40CT8FBFOCB040C

86

RN FEIE
120 = 030E3F3CTFF7FFFF 124 - 0008080907010101
FF6FTFTF33360F03 0101010101010101
E0583CF8FBEBFOBO 00COCOCOEOECEQEQ
FOFOFO70T8ES1CFC EOCOLOUOLC40LUOED
136 - 9048241209040201
©101010101010101 0000000000000000
00COCOCOEOEOEOED 0000000000804020
EOCOL40UCLOLOLOED 90u82141209000000

87

140 -~ 0000000000000103

073F6AAAAATFOO00
00000000000080C0
EOFCAAAQAAFCO000

60 - 0000008080CACFEE
FFFFEBAAFFFEFT22B

000000000000CO0F
FEFCFB8FOE2CETB3D

64 - 000000000021F373
FFFFFFFFFFFF9T724A
08103CFFFOFFFFFF
FFFFFFFFFFFFSEAA

68 - 00000C0000000000
O0000COFFTF1FFEAB
0000000000000000
O000000FFFFFFAA6D

88

60 = 00C0000000000103

60 = 08081C1C1C1CIC3E
OFTF000000000000 7F1C000822100408
000000000T09FAB2 0000000000000000
OUFC3C1CFFOC0000 0000000000000000
= . T T |
RN]] Il i
A e T
| |- { | ! -
HE 7 L il | L
. T f 1
‘.! | \\L l | \, |
l ll!ll } 1 I “_..‘
| I lL | , L
; S | |
| - |L|
*] 0 ! | |
; &l o R L1
., I i B
| | B S = R
: ; | | ! |
L * | = |
[]| i NEEEER
| o Lol ! el % L
[nEEE SENEIEENEANEEENRE
1 I : -

60 - 000000000000AA02 64 - 0000000000000000
1F2CL4CTF10TFO000 0000929200000000
000000000000A800 0000000000000000
C1FFE1C090EQ0000 0000494900000000

89

MILLERS GRAPHICS -~ LIMITED WARRANTY

Millers Graphics warrants the Night Mission program and Book, which it
manufactures, to be free from defects in materials and workmanship for a
period of 90 days from the date of purchase.

During the 90 day warranty period Millers Graphics will replace any defective
products at no additional charge, provided the product is returned, shipping
prepaid to Millers Graphics. The Purchaser is responsible for insuring any
product so returned and assumes the risk of leoss during shipping.

Ship to:
Millers Graphiecs
1475 W. Cypress Ave.
San Dimas, Califormia 91773

WARRANTY COVERAGE

The NIGHT MISSION Cassette and Book are warranted against defective material
and workmanship. THIS WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY
ACCIDENT, UNREASONABLE USE, NEGLECT, TAMPERING, IMPROPER SERVICE OR OTHER
CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR WORKMANSHIP.

WARRANTY DISCLATMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING, BUT NOT LIMITED
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE 90 DAY PERIOD. MILLERS
GRAPHICS. SHALL NOT BE LIABLE FOR LOSS OR USE OF THE SOFTWARE OR BOOK, OR
OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE
CONSUMER OR ANY OTHER USE.

Some states do not allow the exelusion or limitation of implied warranties or

consequential damages, so the above limitations or exclusion may not apply to
you in those states.

LEGAL REMEDIES

This warranty gives you specific legal rights, and you may also have other
rights that vary from state to state.

90

MILLERS GRAPHICS
1475 W. Cypress Ave.
San Dimas, CA 91773

