COMPUTE!’s

VOLUME ONE

With over 30 TI-99/4A games, applications,
utilities, and tutorials—most never before
published—this anthology contains the best
from COMPUTE! Publications. Arcade-style
games, data base management, a sophis-
ticated character editor, and much more
provide something for every Tl user.

A COMPUTE! Books Publication $12.95

COMPUTE!’s

Tl

COLLECTION

VOLUME ONE

COMPUTE! Publications,Inc. @

One of the ABC Publishing Companies

Greensboro, North Carolina

The following article was originally published in COMPUTE! magazine, copyright
1982, Small Systems Services, Inc.: “All Sorts of BASIC Sorts” (December),

The following articles were originally published in COMPUTE! magazine, copyright
1983, Small Systems Services, Inc.: “Programming the TI” (January); “Writing Your
Own Games” (February); “Easy Editing” (March); “TI Graphics Made Easy” (March);
“TI BASIC One-Liners” (May); “Using a Printer with the TI-99/4A" (June).

The following articles were originally published in COMPUTE! magazine, copyright
1983, COMPUTE! Publications, Inc.: “TI Mailing List” (July); “‘Sprite Editor for the
TI” (September); “Runway 180: Using Sprites in TI Extended BASIC” (October); “All
About the TI Character Set” (November); “TI Word Processor” (December).

The following articles were originally published in COMPUTE! magazine, copyright
1984, COMPUTE! Publications, Inc.: “The Mozart Machine” (January); “Sound
Shaper” (March); “Worm of Bemer” (April); “Statistics for Nonstatisticians” (July).

The following articles were originally published in COMPUTE!'s Gazette magazine,
copyright 1983, COMPUTE! Publications, Inc.: “Thinking” (December); “Bowling
Champ” (December).

Copyright 1984, COMPUTE! Publications, Inc. All rights reserved

Reproduction or translation of any part of this work beyond that permitted by
Sections 107 and 108 of the United States Copyright Act without the permission of
the copyright owner is unlawful.

Printed in the United States of America

ISBN 0-942386-71-X

10987654321

COMPUTE! Publications, Inc., Post Office Box 5406, Greensboro, NC 27403, (919)
275-9809, is one of the ABC Publishing Companies, and is not associated with any
manufacturer of personal computers. TI-99/4 and TI-99/4A are trademarks of Texas
Instruments, Inc.

1 3

R

Foreword ...ttt v
Chapter 1. Getting Started 1
TI Features
C.Regenacooiiiiiiiiiiiiiiiiiniiieanannn 3
Write Your Own Games
C.Regenacooiiiiiiiiiiiiiiii i 9
Easy Editing
C.Regena ... 14
All About the Character Set
Michael A. Covingtoncoiiiiieinnnneennn. 18
Chapter 2. The Basicscooonn. 27
TI BASIC One-Liners
Michael A. Covingtoncoovvvveinnnnneennnn, 29
CALL KEY Hints
Roger Lathrop ...t 34
All Sorts of BASIC Sorts
C.REZENA ...t 36
Searching Algorithms
Doug Hapemancooieiiiiniiiiiinnennn 41
Transferring Variables in TI Extended BASIC
Patrick Parrish ioiiiiiiiiiiniiinaenen 49
Computer Visuals
Richard D. Jones and Howard Alvir 55
Using a Printer
C.REZENA oo i e 60
Chapter 3. Applications 63
Mailing List"
Doug Hapemancouiiinnnnnnneennnninnn 65
Statistics for Nonstatisticians
A. Burke Luitich (TI Translation by Patrick Parrish) 75
Tlcalc
Raymond J. Herold iiiiiieeiin, 84
Financial Interests
Doug Hapemanc.ouuiiiieeununnnnneennnanes 99
A Mini Data Base Management System
Raymond J. Heroldccoiiiiiiiinne.. 109
TI Word Processor
James D. Bakeriiiiiiiii i 127
Chapter 4. Recreation 145
Trap
Larry Michalewiczc.ooiiiinniieinnnneennn.. 147

Duck Leader

Douglas E. Smith and Douglas W. Smith 150
Freeway 2000
John B.Dorffo i e 158
The Chase
Dennis M. Reddingtoncccovviiiiiinnnnnn. 165
Thinking
Andy VanDuyne (TI Version by Patrick Parrish) 172
Bowling Champ
Joseph Ganci (TI Translation by Patrick Parrish) 179
Worm of Bemer
Stephen D. Fultz (TI Translation by Patrick Parrish) 186
Chapter 5. Sound and Graphics 195
TI Graphics Made Easy
LyleO.Hagaiiiiiiiiiiiiieeninnnn. 197
Animating TI Displays Without Sprites
Jim Schlegel 201
SuperFont
Patrick Parrish i ittt 211
Sound Maker
Frank Elsesser 0ot 226
Sound Shaper
Steven Kaye (TI Translation by Patrick Parrish) 238
The Mozart Machine
Donald]. Eddington (TI Translation by Gregg Peele) 240
Chapter 6. Spritesoiiiiii, 245
A Beginner’s Guide to Sprites
GaryK Hamlin o iiiiiiiiiiiinnnn, 247
Sprite Editor
Larry Long ..ot ittt 264
Runway 180: Using Sprites in Extended BASIC
JamesDunn e e 270
Chapter 7. Utilities 281
TI Disk Deleter
Patrick Parrish i, 283
Master Disk Directory
Raymond J. Heroldccoiviiiiiann., 291
Appendix e 305
A Beginner’s Guide to Typing In Programs 306

3

o Wi

il

Forewora

Why did you buy a computer? Was it to play games? Or were
you more interested in home applications? Maybe you hoped
that your children would learn BASIC programming. Whatever
your reason, you'll be pleased with what you find between the
covers of COMPUTE!s TI Collection, Volume 1.

COMPUTE! Publications has been supporting the TI-
99/4A since columnist C. Regena first appeared in COMPUTE!
magazine in January 1983. Since then, through continuous
coverage in COMPUTE! magazine and the publication of seven
books, TI owners have recognized the high-quality programs
and tutorials published by COMPUTE!. COMPUTE!’s TI Collec-
tion, Volume 1 continues that tradition, presenting over 30 pro-
grams and articles in clear and easy-to-understand language.

This anthology of games, applications, utilities, and
tutorials for the TI-99/4A contains many never before pub-
lished. ““SuperFont” is an exceptionally powerful and simple-
to-use character editor. “Sprite Editor” and ““Sound Shaper”
make graphics and sound programming easy. Games like
““Worm of Bemer” and “Bowling Champ” will provide hours
of fun. “Thinking,” a game that tests your memory and
reasoning skills, can be played by the youngest learner, yet
challenges even the most experienced game player. Need to
organize your Christmas card files? “Mailing List” fits the bill.

And if all this weren’t enough, we’ve included articles
that show you how to use sprites in your own programs, util-
ities that help you organize your diskettes, an electronic
spreadsheet, a word processor, and much more.

L.

L.

|
Getting Started

- _ momm
m s m BN L n .

E e eEepEnm EeEran

1 71

1 3 1

e C Regena

The TI has some very powerful features. This overview of
hardware, software, and miscellaneous resources will give
you an idea of just what the TI can do.

Welcome to the world of the TI-99/4A computer. For home,
personal, and educational applications, the TI-99/4A computer
is a very powerful machine. This article will discuss some of
the features unique to this microcomputer.

Extraordinary Graphics and Sound

Graphics. You may easily define your own high-resolution
(detailed) graphics characters. There are 16 colors, and you
may use all 16 on the screen at the same time in high-resolution
graphics (unlike other computers). You may also use text any-
where on the screen at the same time you use high-resolution
graphics. Most other microcomputers are limited when com-
bining text with graphics.

Music. You may play up to three notes and one noise for
a specified time using one statement. The music is specified by
a number which represents a frequency of 110 Hz to 44733
Hz, tones from low A on the bass clef to beyond human hear-
ing range. The tone may be between regular musical notes. An
example which plays a three-note, C-major chord for three
seconds is:

CALL SOUND(36060,262,6,330,4,440,2)

The first number is the duration in milliseconds, in this case
3000. The next numbers are frequency and loudness for each
note. You may also add a “frequency” of —1 through —8 and
a loudness for the noise generator. You may combine tones
and noises for all kinds of sounds—everything from classical
music to sound effects from outer space.

Combining music and graphics. “Computer choreog-
raphy” is possible because other statements (including graph-
ics) may be executed while music is played. You may illustrate
a song, for example. Or if you have a game program, you may
make calculations while you are making a noise. The com-
puter will play music and execute statements until the dura-
tion runs out or until the program comes to another CALL

Getting Started ===

SOUND statement with a positive duration. A negative num-
ber for the duration will start that CALL SOUND statement
even if the first duration has not finished. Try using a
FOR-NEXT loop to vary any of the parameters for special
effects. Here is a sample using just one tone:

166 FOR N=5S¢d TO 88¢ STEP 20
118 CALL SOUND(-99,N.2)

120 NEXT N

136 FOR N=88¢ T0 566 STEFP -2
146 CALL SOUND(-99.,N.2)

Noises. Using negative durations and combinations of
music and noise numbers for frequency, you can make all
sorts of synthesized noises. Quite often with noises you will
want to use a FOR-NEXT loop and vary the loudness
parameter. .

Built-in BASIC. The programming language of TI BASIC
is built into the main console—nothing extra to buy. The TI
BASIC language is an excellent language for learning how to
program, yet it is powerful enough for an experienced math-
ematician because of the built-in functions.

String manipulations. String (non-number) manipula-
tions are also very powerful. Here is a sample program to print
a phrase A$ on the screen starting at row R and column C:

1¢@¢ FOR I=1 TO LEN(AS$)
119 CALL HCHAR(R,C+I-1,ASC(SEG$(A$,I,1)))
126 NEXT I

The loop will go from 1 to the LENgth of the phrase A$.
String variable names must always end with a dollar sign.
SEG$ takes a SEGment of the phrase. In this case we are start-
ing at the left side and taking one letter at a time. ASC gets
the ASCII character code value of the character in the phrase.
CALL HCHAR uses a graphic method to place the character
on the screen at a certain row and column.

No Variable Name Worries

Variable naming. In your own programming on the TI-
99/4A you may use meaningful variable names, although in
many microcomputers the BASIC language recognizes only
two characters for a variable name. For example, if you have a
program with the variable name BLUE and another variable
name BLACK, other computers may recognize only one vari-

4

S N R R B

I R

e Getting Started

able, BL, but the TI-99/4A knows you are using two variables.
You also do not have to worry about embedded reserved
words in variable names.

Documentation. Two excellent manuals are included with
the computer. One teaches you programming in TI BASIC.
The manual is very easy to understand, and a person with no
previous computer experience can learn to program with this
book. Also included is the User’s Reference Manual, which may
cost over $15 for other computers. The reference manual,
which is in loose-leaf form, includes all the commands along
with explanations and sample programs.

Plug-in modules. The easiest way to use the TI-99/4A is
to insert a command module which contains a program. The
modules actually add memory to the computer while they are
being used. Unfortunately many of the very best modules are
difficult to find or even completely unavailable.

Speech. Even though this feature is not built in, I'm going
to include speech in this list of unique features of the TI-
99/4A because it is very easy to use. The speech synthesizer
is a small box that attaches to the side of your console.

16-bit microprocessor. The TI-99/4A uses a TMS9900,
16-bit microprocessor, which offers more computing power
and greater expansion and configuration flexibility than an
8-bit microprocessor. You can get higher numeric precision
and simplified memory addressing.

Programmer’s aids. Programmers will enjoy the easy line
editing features. Various function keys allow you to insert or
delete characters or to erase or clear a line. There is also a
TRACE command to help in debugging.

Another feature programmers like is the built-in automatic
numbering. Just type in NUM, press ENTER, and you can start
programming. The line numbers start with 100 and automati-
cally increment by 10. Or you may specify any starting num-
ber and increment. NUM 5,2 will start with line 5 then
increment by 2.

After you have programmed and added or deleted state-
ments here and there, you’ll enjoy the automatic resequencing
command, RES. This command will automatically renumber
your statements, including all statement numbers referenced
by other statements.

Getting Started

Using the Cassette Recorder

Cassette. Probably one of the first items you’'ll need is a
cassette cable to connect a cassette recorder to the computer.
Nearly any cassette recorder is acceptable; however, the vol-
ume setting for the TI-99/4A is quite critical. In general, a
battery-operated recorder does not work well enough for ac-
curate data retrieval. Also, your recorder should have a tone
control and a volume control. I have had the greatest success
using the Panasonic RQ2309A cassette recorder.

Page I-9 in the User’s Reference Guide tells how to connect
the cassette cable, and the pages following describe how to
save and load data from modules. Page [I-42 shows an example
of how to load a program that you have saved or purchased.
Some other hints for using the cassette recorder are:

Turn the tone control to the highest setting.

Start with the volume about mid-range.

Follow the instructions after you type in OLD CS1.

If you get the message NO DATA FOUND, increase the
volume.

If you get the message ERROR IN DATA, decrease the
volume.

Sometimes a fraction of a change in volume can make all
the difference in your success in reading a program. Once in a
while, if I alternate between the two error messages at a vol-
ume setting near 2 or 3, I turn the volume to about 8 or 9 and
the program will load.

The smallest jack of the cassette cable goes into the re-
mote switch of the cassette recorder so the computer can turn
the recorder on and off automatically. If the recorder does not
turn on and off properly, simply remove the remote jack from
the plug. You can operate the cassette recorder manually to
save and load programs. For programs using the cassette re-
corder for data entry, you will need the remote capability. An
adapter is available for the remote switch.

Disk drives. You can save and retrieve data or programs
on a diskette much more quickly than by using a cassette sys-
tem. The TI-99/4A uses 5%-inch, single-sided, soft-sectored
diskettes. To connect a disk drive, you also need a disk
controller. One disk controller can handle up to three disk
drives. Many business applications require two disk drives.

1 3)

73

L A T T TS L

a Getting Started

Memory expansion. The TI Memory Expansion is for 32K
RAM, and you need a module that will access it. You cannot
use it with console BASIC. Extended BASIC does not require
the memory expansion but can use it. Pascal, TI Logo, and
Editor/Assembler require the memory expansion.

Peripheral box. The “o0ld” method had each peripheral in
a separate “box” connected to the computer or the previous
peripheral; each had its own power cord. The “new” system is
the peripheral box, which has its own power supply and slots
for cards for the RS-232 interface, memory expansion, disk
controller, P-code, one disk drive, and possible future cards.

Monitor. Although most TI users connect their computers
to a regular television set, it is possible to connect to a mon-
itor. A monitor will give a very clear, sharp picture.

Making the Computer Speak

Speech. The TI Speech Synthesizer allows you to hear the
computer speak to you. You will need a command module
with built-in speech to hear the computer speak.

To program your own speech or to use any cassette or
disk programs that use speech, you will need a module.
Speech Editor and Extended BASIC have speech capabilities
with a given list of words. Terminal Emulator II allows un-
limited speech; the accompanying documentation gives you
ideas for programming speech using this module. You may
vary the pitch, slope, and inflections. You may use allophones
to create words, or you may have the computer speak words
which you spell phonetically.

Telecommunications and Languages

Terminal. The Terminal Emulator II command module
(or Terminal Emulator I, which does not have speech) allows
you to use your TI-99/4A to act as a terminal either to an-
other computer or to a large telecommunications service. You
will also need the TI RS-232 Interface and a telephone

modem.
Printer. You may use a number of different brands of

printers with your microcomputer. To connect your TI-99/4A
to a printer, you'll need the TI RS-232 Interface and a cable to
go from the interface to the printer (the cable is usually sold
with the printer).

Getting Started ===

RS-232. The RS-232 Interface has two ports so you may
be connected to a modem and a printer at the same time. An
instruction book comes with the RS-232 so you’ll know how
to operate the computer under different conditions.

Extended BASIC. TI Extended BASIC (XBASIC) is a
programming language contained on a module. A manual
(over 200 pages) and a programmer’s reference card come
with the module. No other peripherals are necessary to use
XBASIC. If a program has been written in XBASIC, the
XBASIC module must be inserted for the program to run.
Some of the advantages of XBASIC are multistatement lines,
complex IF-THEN-ELSE logic, subroutine and MERGE
capabilties, DISPLAY AT and PRINT USING, program se-
curity (SAVE protection), speech (with speech synthesizer),
and moving sprites with greater graphics capabilities.

Editor/Assembler. For machine language programmers,
it requires the memory expansion, disk controller, and one
disk drive.

Software

I've mentioned software (programs) last, although it’s probably
the first extra purchase you will make for your computer. Soft-
ware is what you need to use your computer. Software is
available on command modules, cassettes, diskettes, and by
typing in programs you find in books and magazines. This
book is an example of a source of inexpensive software.

)

S B B

)

=

C. Regena

Some tips on getting the most out of your TI when writing
games.

You have probably discovered that one of the fun things to do
with your TI-99/4A is to play games. In fact, many people
who wanted one of the popular game machines have discov-
ered that for about the same amount of money they could
have a computer and still be able to play games. Many of the
games written for the TI-99/4A are arcade quality—that is,
they have good graphics and fast action.

To program your own games with fast, smoothly moving
objects, you will want to use TI Extended BASIC. It allows
you to use up to 28 sprites. You may define the shapes of the
sprites and designate a certain magnification. You may also
specify the sprites’ speed. The row velocity and the column
velocity may vary from —127 to +127, and by specifying
numbers for both velocities you will get a diagonal movement.
Sprites “wrap” at the edges of the screen, so you don’t need
to worry about “crashing” your program on edge conditions.
With one CALL SPRITE statement you can define the sprite
number, shape, color, position, and speed. (For more infor-
mation about sprites see chapter 6.)

TI Console BASIC (the BASIC built in with no accessories
or peripherals) is a language powerful enough that you can
design a variety of fun games with it. If you have moving ob-
jects, however, they have to move a square at a time and thus
will have jerky movement. Depending on the number of ob-
jects, BASIC games tend to be slow; however, I have seen sev-
eral fast action games that really require nimble fingers.

Whether you are writing a game in TI BASIC or in TI Ex-
tended BASIC, I can offer a few programming tips. Keep in
mind that the best way to learn is to actually start program-
ming—and playing.

Getting Started =—=memmrrommme

Randomness

Probably a central tool in computer games is the machine’s
ability to choose things randomly. Most computers have the
command RND, but each computer has a slightly different
syntax (way of writing the command). On the TI-99/4A, RND
represents a random number between zero and one. Turn on
your computer, press any key to begin, and press 1 for TI
BASIC. Now type in PRINT RND and press ENTER. The com-
puter will print a decimal fraction (to ten places). Usually in
game situations you won't want a fraction, so multiply that
fraction by a number. For example, multiply RND by 10 like
this: PRINT 10*RND or PRINT RND*10. Now you will get
ten times that decimal fraction.

You probably want just the whole number part of that
mixed decimal number. Use the INTeger function to get the
whole number. PRINT INT(10*RND). If you keep trying this
command, you will get numbers from zero to nine. Remember,
INT truncates the decimal portion; it does not round the num-
ber. Suppose you really wanted a random number from one
through ten. The command would be: PRINT INT(10*RND)-+1
or PRINT INT(10*RND+1).

One more step. Assume you want a number N to be a
random number between 10 and 20, inclusive. 20—10=10.
There are 10 numbers plus 1 (“inclusive”’). The command
could be N=INT(11*RND)+ 10. The portion INT(11*RND)
will give you numbers from 0 to 10; then you add 10 to get
numbers from 10 to 20.

Now try this short program:

1668 FOR I=1 TO 1@
116 PRINT INT(18%XRND)+1
128 NEXT 1

Run the program. Run it again. And again. The program is
printing ten random numbers from 1 to 10. However, you'll
notice that each time you run it, you get the same numbers in
the same order. You need to add the line: 105 RANDOMIZE.
The RANDOMIZE command mixes up the numbers so
that each time the program is run you will get different num-
bers—and that’s what you want in a game. The User’s Ref-
erence Guide indicates that the RANDOMIZE statement only
needs to be somewhere in the program to generate different
numbers; however, I have found that one RANDOMIZE state-

10

b

LI

A

z=m Getting Started

ment at the beginning of a program does not always work. It's
better to use the RANDOMIZE statement just before you use
the statement containing RND. Note: If you are debugging a
program, you may want to leave RANDOMIZE out so that
you’ll know exactly what numbers your program is choosing.
Debug your program, then add the statement and test it.

Moving Objects

In general, the fewer moving objects you have in your game,
the faster the action can be, and the logic will be a lot less
complex. Also, each moving object should be specified by only
one character number so you don’t have to use up valuable
time by building an object out of several characters. To move
an object in TI BASIC you need to erase the object in the first
position (replace it with a space) and draw it again in the sec-
ond position—each move takes two statements.

Player Input

There are two main ways the computer can understand what
you want: by using the joysticks or pressing keys on the key-
board. Your game may be designated for joysticks only, key-
board only, or both. Because of the logic involved, a game
using both methods of input will be slightly slower in re-
sponse; and depending on the branch sequence, one of the
methods will be slower than the other.

Joysticks may be easier to use to learn a game, especially
if the player is used to a videogame using joysticks. My
own children, and many other players I know, prefer using
the keyboard for TI Invaders and Munchman because the
joystick response is considerably slower than the keyboard
response.

The keyboard action is easy to learn because there are
standard arrow keys for all games designed for the TI-99/4A.
Programmers writing games for other computers often choose
their own favorite keys to use, and the directions are different
for each game. On the TI-99/4A, the arrow keys are E (up), X
(down), S (left), and D (right), with the shooting key either the
ENTER key or the period key. If there are two players, the
standard arrow keys on the right half of the keyboard are I,],
K, and M.

The TI joysticks (wired remote controllers) come with a
little instruction book with some sample programs. The main

11

Getting Started e=mmmm=rmmm

command is CALL JOYST(K,X,Y), which returns an X and Y
value for the position of the joystick, where X and Y may be
4, —4, or 0.

To detect keys pressed on the keyboard, use the CALL KEY
command. This command is like the GET command in other
BASIC languages. The form is CALL KEY(0,KEY,STATUS)
where 0 means to scan the whole keyboard. STATUS is a
variable name (it could be ST or S, or whatever you wish)
which will return whether a key has been pressed or not. KEY
is a variable name (again, use whatever you wish) that will re-
turn the ASCII code of the key pressed, such as 13 for the
ENTER key, 65 for the letter A, 69 for the letter E, etc.

By using IF statements, you can check which key was
pressed and branch accordingly. You can also GOTO the
CALL KEY statement for other keys to make the computer act
as if it is ignoring all responses except the keys allowed. Here
is a sample using arrow keys: :

188 CALL KEY(G,K,S)
11@¢ IF K=469 THEN 146869 {(up arrow)
126 IF K=68 THEN 20490 (right arrow)
134 1IF K=88 THEN 36088 (down arrow)
14@ IF K=183 THEN 4¢66¢ (left arrow)
ELSE 199 {any other key will
be ignored)

Remember, there are several ways to program the same proce-
dure; this is just one way. You may prefer to use “‘not equal”
signs or a split keyboard and an ON-GOTO statement.

A split keyboard approach scans half the keyboard using
CALL KEY(1,K1,51) or CALL KEY(2,K2,52). The key codes re-
turned for up, right, down, and left are 5, 3, 0, and 2. A
sample program using the split keyboard is:

199 CALL KEY(1,K,S)
118 IF (K<@)+(K>5) THEN 1469
126 ON K+1 GOTO 3900,100,4000,2000,190, 1000

Line 110 makes sure the K value is in the right range; the key
value must be from 0 to 5. All other keys are ignored. Line
120 branches according to which key was pressed. The keys
corresponding to 1 and 4 were not acceptable, so they return
to the CALL KEY statement. If you want to try out either of
these programs, add the following lines, then run and try
pressing various keys.

12

A

R T

b

F

Getting Started

1688 PRINT "UpP"
1619 GOTO 109
2000 PRINT "RIGHT"
2016 GOTO 100
3988 PRINT "DOWN"
3614 GOTO 1060
4688 PRINT "LEFT"
4416 GOTO 169

There is a slight problem in testing for zero on the TI-
99/4A console. Use logic such as IF K+1<>1 rather than IF
K<>0. Also, some of the split keyboard codes are different for
the TI-99/4A than for the TI-99/4. It’s better not to use the
comma, period, semicolon, slash, space bar, ENTER, SHIFT, B,
and G so that programs may be used on either console.

13

C. Regena

If you use these editing keys and built-in programmers’
commands, you'll soon discover how fun and easy-to-use the
TI-99/4A can be.

You are writing a program or keying one in from this book or

COMPUTE! magazine when—oops!—you make an error. Hold
it! Don’t type the whole line over! Take advantage of the easy-
to-use editing capabilities built into the TI-99/4A.

Take a look first at the arrow keys (found on letters
E,S,D,X). You thought they were just for games? They will
probably be the most frequently used editing keys once you
get used to them. Suppose you have typed lines 100-150 and
look up at the screen and notice you want to change the num-
ber in line 130:

138 CALL SCREEN(14)

Type in 130 then hold the function key (FCTN) down while
you press the down arrow (). (It might be best to follow
through this article as you sit at your TI-99/4A.) You'll notice
line 130 comes up at the bottom of the screen with the cursor
at the first position. Now press FCTN and the right arrow. The
cursor will go toward the right. You may go one space at a
time, or hold the key and it will repeat. Go over to the 4 in
14. Stop right over the 4 and type 6. Press ENTER, and the
line will now be:

13¢ CALL SCREEN(16)

Any characters you don’t want to change you can just
pass over with the arrow key. Change the character you want,
then press ENTER—you don’t need to go to the end of the
line either.

Now suppose you don't like color 16 (white) and decide
you want color 6. Type 130 then FCTN !. Use FCTN~ to get
over to the 1 in 16. Stop right on top of the 1. Now press
FCTN and 1, which is DEL, for DELete. Now press ENTER
and you should have:

139 CALL SCREEN(6)

14

o

BE B R B

Getting Started

Try another function key. Type 130 then FCTN{. Use
FCTN- to go on top of the 6 and type 2. Just a second,
though. You don’t want screen 2; you want 12. Use FCTN« to
back up one spot (cursor on 2). Press FCTN 2 for INSert. You
won'’t notice anything right away, but now type 1—you have
color 12. Press ENTER and your line has been changed.

Automatic Repeats
The left arrow, right arrow, and DELete keys repeat automati-
cally when you hold the key down. The INSert key needs to
be pressed just once and characters will keep being inserted as
you type until you press ENTER, DELete, or one of the arrow
keys. To delete or get rid of a whole line, type the line num-
ber and then press ENTER.

Two more handy editing keys are the up arrow and down
arrow. Let’s assume you have the following lines:

299 CALL HCHAR(3,5,42)
216 CALL HCHAR(3,8,42)
229 CALL HCHAR(3,28,33)

You run your program and discover the graphics need to be
a line lower—the row value needs to be changed from 3 to 4.

Type 200, press FCTN{, and use the right arrow to
change the 3. Instead of pressing the ENTER key, press
FCTN\. After line 200 has been edited, the very next line, line
210 in this case, will appear for editing. Likewise, the up ar-
row will give you the line just before the one on which you
were working.

Two other editing keys you should be aware of are
ERASE (FCTN 3) and CLEAR (FCTN 4). You may already be
familiar with CLEAR. If you are running a program and want
to stop, FCTN 4 will interrupt the program. (QUIT, FCTN =,
will stop the program, erase it from memory, and return to the
TI title screen; CLEAR stops the program but retains it in
memory and you may either CONtinue or RUN.)

CLEAR has another function while you are programming.
If you start typing a line and decide you don’t want that line
after all, press CLEAR. The cursor will go to the next line and
the line you were working on is ignored. ERASE will erase the
line that you are working on.

The other function keys you see along the top row of
your keyboard are used in some of the command modules and
are described in the manuals accompanying the modules.

15

Getting Started ===

Some helpful commands for programmers are LIST,
NUM, and RES. As you are writing a program, each command
needs a line number. When the program is run, the computer
executes each line in numerical order. The command LIST will
list your complete program in order. As your program lists, the
lines scroll off the top if the program is too long for one
screen. If you want to stop the listing, press CLEAR. If you
want to list only part of your program, just list the lines you
wish:

Command Lists:

LIST Whole program

LIST-200 All lines up to and including line 200
LIST 100-300 Lines 100 to 300 inclusive

LIST 300- Lines 300 to the end

When you're typing in a program, it will save time and
reduce the chance for error if you let the computer type the
line numbers. Type in the command NUM (for NUMBER).
The computer will automatically start with line 100. Now type
in CALL CLEAR and press ENTER. The computer enters line
100 and starts you on line 110. The NUM command automati-
cally increments the line numbers by 10.

You may start anywhere—for example, type NUM 3220
and press ENTER. Your program starts with line 3220 and in-
crements by 10.

Yes, you can change the increments also. Type NUM
200,5 and you'll start with line 200 and increment by 5 (line
200,205,210, etc.). The general form is: NUM initial line,
increment.

If you want the program to start with line 100 but the in-
crements to be 7 instead of 10, you may use NUM ,7.

To get out of the automatic numbering, just press ENTER
after the line number or CLEAR. You'll also notice that if you
have a program in the computer and type NUM the computer
will show you what is on that line. If you want to keep the
line as is, just press ENTER.

Complete Renumber

RES is a command that stands for RESEQUENCE. You've
been programming and adding lines here and there and want
it to look nice again, all numbered by tens. Type RES and
press ENTER. As soon as the cursor reappears, your program

16

B N B

A

-
-

mmemren Getting Started

is resequenced or renumbered, including all line numbers ref-
erenced in other lines. Try this sample:

12 CALL SCREEN(14)

2¢ FOR I=%1 TO 8

3¢ CALL SOUND(S@#.-I.2)
IS NEXT I

Now type RES and press ENTER, then LIST. The lines are
resequenced, starting with 100 and incrementing by 10. Like
the NUM command, you may specify the starting line number
and the increment: RES initial line, increment.

Try RES 10 then LIST.

Try RES 1,1 or RES ,5 and experiment with your own
numbers.

Quite often I like to start writing programs with line num-
bers incrementing by 10. Type in NUM and start program-
ming. If the program has several branches, I may start one
branch at 1000 (NUM 1000), another at 2000, etc. Leaving
gaps in the line numbers makes it easier to add lines later.

For example, if I have a line 200 and the next line is line
210, I may easily add lines in between by numbering them
202, 204, etc. But what if I had to add 15 lines between lines
that are only ten apart? RES ,50 will spread the lines apart and
allow more numbers in between. Of course, when I'm through
with the program, I RES so the program starts at 100 and in-
crements by 10, and you can't tell where I planned poorly and
had to add lines.

17

——— Michael A. Covington

This brief outline of the TI character set explains how the
computer recognizes each character. The author discusses
some uses of the characters’ numeric codes and indicates
which characters’ graphic representations can be assigned or
changed.

Chances are you've never given your computer’s character set
much thought. You press keys on the keyboard and the
characters appear on the screen; that’s all there is to it, or so it
seems. But there’s a lot more going on than meets the eye.

Inside the computer, each character is represented by a
numeric code—a number between 0 and 255 inclusive. For in-
stance, the code for capital E is 69; the code for an exclama-
tion mark is 33; the code for a blank (a blank is a character
just like all the others) is 32. To associate these codes with the
characters you see on the screen, the computer has to know
two more things about each of them: a graphic representation
that describes how the character is supposed to look on the
screen, and a key assignment that indicates what key or
combination of keys you can hit on the keyboard to type the
character. For instance, the character string “HELLO THERE!”
(not counting the quotation marks) is represented as shown in
Table 1.

Table 1. Representation of the String
“HELLO THERE!”

Graphic H E L L o
representation:

Numeric code: 72 69 76 76 79 32
Key H E L L O | space
assignment: key | key | key | key | key | bar

18

3

A

1

3

rrernsn Getting Started

Graphic T H E R E !
representation:

Numeric code: 84 72 69 82 69 33
Key T H E R E |[shift &
assignment: key | key | key | key | key |1 keys

Statements Using Numeric Codes

Normally (when you type characters in response to a string
INPUT statement or when you type them as part of a pro-
gram) you enter characters by hitting the keys that correspond
to them. That is, you access them by means of their key
assignments, and within the program you treat them as
character-string data. But there are ways of referring to charac-
ters by their numeric codes and treating them as numbers. For
instance, the CALL HCHAR and CALL VCHAR statements,
which you meet at an early stage as you work through the
manuals that come with the computer, refer to characters by
their numbers. The statement:

CALL HCHAR(3,3,69,24d)

will place a row of 20 capital E’s (character number 69) on the
screen beginning at row 3, column 3.

Also, you can input characters as numeric codes. The
CALL KEY statement senses whether a particular key on the
keyboard is up or down; when a key is pressed, CALL KEY
gives you the numeric code corresponding to it. For instance,
here is a program which will tell you the numeric code of any
key on the keyboard:

18 PRINT "PRESS ANY KEY..."
20 CALL KEY(S,CODE,STATUS)
38 IF STATUS <> 1 THEN 2¢
40 PRINT CODE

5S¢ 60 TO 16

The heart of the program is lines 20 and 30. Line 20 tells
the CALL KEY subroutine to look at the keyboard and report
what’s going on. The variable STATUS will equal 1 only if the
condition of the keyboard has changed since the last time the
routine looked at it. If STATUS does not equal 1, we simply
go back to line 20, since we don’t want to do anything more if

19

Getting Started em==

the user hasn’t pressed a key or hasn't yet let go of the one al-
ready looked at. The variable CODE contains the numeric
code associated with the key being pressed, if any. (The first
parameter of CALL KEY, the number 5, simply indicates that
we want the usual BASIC set of codes; specifying other num-
bers there instructs the computer to use other sets of key
assignments for various special purposes.)

The ASC and CHRS$ functions allow you to convert back
and forth between numeric codes and character strings. If A$
is a character string, ASC(A$) is the numeric code of its first
character; thus ASC(“E”) is 69. Conversely, if N is a number,
CHRS$(N) is a one-character string of which N is the numeric
code; thus CHR$(69) is E. If we want the program above to
print the characters themselves rather than their codes, we can
convert the codes into characters by changing line 40 to:

4@ PRINT CHR$ (CODE)

The CALL CHAR subroutine allows you to alter graphic
representations using a hexadecimal code that the manual de-
scribes in detail. For instance, if you want to change the dollar
sign ($) into a British pound sign (£), just execute this
statement:

CALL CHAR(36,"001C22207C28287E")

That will do it, at least as long as the program is running: The
key assignment and numeric code will be the same, but the
dollar sign will look like a pound sign. (It will revert to its
original appearance when your program stops executing.)

What’s Not in the Manual

Those are the preliminaries; now we get to the really interest-
ing part (the part that isn't in the manual, at least not en-
tirely). Internally, the computer can use any number from 0 to
255 as a character code; any such code can be an element in a
character string and can be referred to by CALL VCHAR,
CALL HCHAR, and CHRS$. (In fact, CALL VCHAR, CALL
HCHAR, and CHR$ will actually take numbers up to 32767;
multiples of 256 are subtracted as necessary to get a number
in the 0 to 255 range.) But not all the codes have key assign-
ments or graphic representations. The breakdown (by numeric
codes is as follows:

20

1

7Y 17

R A S A Rt

Getting Started

0—Undefined (no key assignment, no graphic
representation).

1-15—Function keys (Table 2). Most of these characters
can be input by means of the CALL KEY statement, but they
cannot be typed in normal contexts (for example, in response
to an INPUT) because there they are interpreted as requests to
perform cursor movements or the like. They have no graphic
representations (if you print them, you get blanks or garbled
patches).

16-29—Undefined (like 0, these codes have no key
assignments and no graphic representations, and there is no
straightforward way of giving them either).

30—The graphic representation of this character is the
black square that marks the cursor; thus, CHR$(30) is handy if
you want a black square. No key is assigned to it.

31—This is the screen border character—a blank that is
the color of the border rather than the typing area. No key is
assigned to it.

32-126—Standard ASCII character (Table 3). These are
the characters you use every day, including the alphabet, the
numbers, and all the punctuation marks and mathematical
symbols. Their graphic representations can be changed with
CALL CHAR but will revert to their original form when the
program ends.

127-159—User-defined characters (Table 4). These start
out with no graphic representations, but you can define them
with CALL CHAR, and, contrary to what the TI manual says,
such definitions remain in effect after the program stops run-
ning (though most are disrupted when another program is
loaded).

What most people don't realize is that these characters
can be typed—they have key assignments and are acceptable
in the same context as any other character (that is, in response
to an INPUT or CALL KEY, or within quotes in a program).
All but one of them require you to hold down the CTRL key
(at the lower-left corner of the keyboard) when typing them;
character number 127 uses the FCTN key instead.

160-175—Undefined

176-198—These characters have key assignments (Table
5), but no graphic representations and no direct way of giving
them any. They can be used as special function keys of some

21

Getting Started e

sort (in response to either CALL KEY or INPUT), but not as
displayable characters.

199-255—Undefined.

Even the undefined character codes (those that cannot be
typed on the keyboard or displayed on the screen) are not
completely useless. You can refer to them by means of CHR$
and ASC and use them as special markers of various kinds
when manipulating character strings. They also may come into
play when you are transmitting data to other devices (for
example, printers or other computers) that have definitions for
characters that are undefined on the TI-99.

Finally, consider this possibility. Each character in a
character string has a code between 0 and 255 inclusive, acces-
sible through CHR$ and ASC. Also, the SEG$ function allows
you to address individual characters in a string, and the &
(concatenation) operator allows you to construct strings out of
individual characters. This means that a character string gives
you a compact way of storing a set of integers between 0 and
255—each element occupies only one byte in memory, as
compared to the eight bytes normally needed to store a num-
ber. So if you have a program that needs to keep track of
thousands of small integers—more than will fit in available
memory in numeric form—then character strings may be the
answer.

Table 2. Function Key Codes

(None of these characters have graphic representations, nor
can they be given them. They can be typed only through the
CALL KEY statement, not in response to a string INPUT state-
ment, or within a program.)

Code Key

FCTN 7(“AID”)

None usable. The key definition associated with this code is
FCTN4, but in BASIC, hitting that key interrupts the program.
FCTN 1(“DELETE")

FCTN 2(”“INSERT")

None usable. The key definition associated with this code is
FCTN =, but hitting that key forces a machine reset and the
program in memory is lost.

FCTN 8(“REDQO")

FCTN 3(“ERASE")

FCTN S(left arrow)

FCTN D(right arrow)

G W N =

O g

)

|

A

Table 3. ASCII Graphic Characters on the

FCTN X(down arrow)
FCTN E(up arrow)
FCTN 6(“PROC'D”)
ENTER

FCTN 5(“BEGIN")
FCTN 9(“BACK")

TI-99/4A

(This table gives the numeric codes and graphic representa-
tions; the key assignments are marked on the keyboard. The
graphic representations can be changed by the CALL CHAR

e Getting Started

statements but revert to their original form when the program
stops running.)

Code Graphic

Representation
(space) 53
!

Vi 55

~ + s o~ \zgo\og.;:ﬂ:
(S
O

—(minus) 66

WOZZOR™ RWNRON
0
o}

Code Graphic

Representation

MR = o TN e \NN6)]

®mo AN oY IOTMEHOUOAEBE VYV | A

23

Getting Started mew===

81 Q 104 h
82 R 105 i
8 S 106 j
84 T 107 k
8 U 108 1
86 V 109 m
87 W 110 n
88 X 111 o
89 Y 112 p
9 Z 113 q
91 [114 r
92 \ (back slash) 115 s
93] 116 t
94 - 117 u
95 _ (underline) 118 v
9% 119 w
120 x

121 vy

122 =z

123 {

124 |

125 }

126 -

Table 4. User-Definable Graphics Characters
These characters can be typed using the key combinations
listed and are acceptable in any context (that is, they can be
input using the CALL KEY or INPUT statements and can ap-
pear between quotes within a BASIC program).

Graphic representations can be given to these characters
with the CALL CHAR statement. Contrary to TI documenta-
tion, such representations, once assigned, will persist after the
program stops running.

24

I

A

1 1]

1 1

Code Key

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

FCTN V
CTRL ,(comma)
CTRL A
CTRL B
CTRL C
CTRL D
CTIRLE
CTRL F
CTRL G
CTRL H
CTRL1
CTRL]
CTRL K
CTRL L
CTRL M
CTRL N
CTRL O

e Getting Started

Code Key

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

CTRL P
CTRL Q
CTRL R
CTRL S
CTRL T
CTRL U
CTRLV
CTRL W
CTRL X
CTRLY
CTRL 2
CTRL .(period)
CTRL ;
CTRL =
CTRL 8
CTRL 9

Table 5. Characters with Key Assignments But
No Graphic Representations

These characters are not mentioned in TI documentation. They
can be typed in any context (that is, in response to an INPUT
or CALL KEY statement or between quotes in a program), but
they have no graphic representations and cannot be given any.

Code Key

176
177
178
179
180
181
182
183
184
185
186
187

CTRL 0
CTRL 1
CTRL 2
CTRL 3
CTRL 4
CTRL 5
CTRL 6
CTRL 7
FCTN , (comma)
FCTN . (period)
FCTN /
CTRL /

Code Key

188
189
190
191
192
193
194
195
196
197
198

FCTN 0 (zero)
FCTN ;
FCTN B
FCTN H
FCTN]
FCTN K
FCTN L
FCTN M
FCTN N
FCTN Q
FCIN Y

25

30

2

The Basics

mE N R PB R B R B

I

3 1

Ng:
ILim

Michael A. Covington

The BASIC DEF statement can become a powerful tool in
your programmer’s bag of tricks. Here's how to use it.

If you've been programming in BASIC for any time at all,
you’ve surely come across, and used, some of the built-in
functions that the language provides, such as INT, SIN, COS,
TAN, ATN, and LOG. But did you know that you can use the
DEF statement to create functions of your own? Defining your
own functions lets you type a complicated formula only once,
and it allows you to build complex functions out of simple
ones in a most efficient way.

Suppose, for instance, that your LOG function gives you
natural (base ¢) logarithms, and you want base 10 logarithms.
(If you're not sure which you've got, type PRINT LOG(10)—if
the answer is 1, you're in base 10, and if it's about 2.3026,
you're in base e.) You can convert base e logarithms to base
10 by dividing them by 2.302585093, so one of the options
open to you is obviously to write LOG(X)/2.302585093 (or
whatever) every time you need a base 10 log. But there’s an
easier way.

Creating Functions

To create your own function—let’s call it LOG10, though
some computers may insist that you name it something like
FNL—just include, early in your program, a statement like
this:

1@ DEF LOG1@8(X)=LOG(X)/2.3062585093

From then on, you'll be able to use the new function
LOGI10 to get base 10 logarithms. Try it out with a program
like this:

16 DEF LOG18(X)=LOG(X) /2. 382585693
26 FOR I=1 TO 16 STEP 6.1

36 PRINT I,.LOG18(I)

4@ NEXT I

29

and compare the results against a table of logarithms.

The DEF statement is different from most BASIC state-
ments in that it can’t refer to variables. (The X in it—it could
be any variable name—is used only as a placeholder for the
number within the parentheses; it is completely separate from
any variable named X that you may use elsewhere in the pro-
gram.) You can refer only to numbers or other functions.
Some computers require that the name of the function be
three letters and that the first two be FN—FNA, FNB, FNL,
‘and so forth—although the TI-99, and many other micro-
computers, allow you to name functions with the same type of
names you use for variables.

Sample One-Liners
So that’s how it’s done. Now let’s look at some practical
examples.

1. Base 10 logarithms. That's what we’ve just discussed.
For reference, here is the statement:

DEF LOG18(X)=LOG(X)/2.382585093

(assuming your machine’s LOG function gives you base e
logs).

2. Base 2 logarithms. For a machine on which the LOG
function gives base e logarithms, you can get base 2 loga-
rithms by using:

DEF LOB2(X)=LDG(X)/0.6931471806

If your machine’s LOG function gives base 10 logarithms,
you'll need to use DEF LOG2(X)=LOG(X)/0.3010299957
instead.

3. Degrees to radians. If X is the measure of an angle in de-
grees, then RAD(X) will be the same angle measured in radi-
ans, if you define the following function:

DEF RAD(X)=X/37.29377951

4. Radians to degrees. The opposite function, converting X
in radians to DEG(X) in degrees, is:

DEF DEG(X)=X¥57.29577951

5. Arcsine (in radians). The following definition will give
you the arcsine function (which is not usually provided in im-
plementations of BASIC, although the arctangent is).

30

.

|

L

i

3

I

3

3

The Basics

DEF ASN(X)=2XATN(X/ (1+SAQR(1-X"2)))

If you look through a table of trigonometric identities, you
may find an apparently equivalent, but simpler, formula that
would lead to the statement DEF ASN(X)=ATN(X/SQR
(1—X"2)). But note that this version won’t do ASN(1) correctly
(it will try to divide by zero). Hence the first version is
preferable.

6. Arccosine (in radians). If you have the arcsine function,
you can get the arccosine, as follows:

DEF ACS(X)=1.37@8796327-ASN{(X)

Remember that the DEF statement for ASN must precede the
DEF statement for ACS (you can'’t refer to a function until
you've defined it).

7. Rounding to a particular number of decimal places. Where
n stands for the number of decimal places you want, use the
definition:

DEF ROUCX)=INT(((12"N)EXX)+8.35) /(14" N)}

Note that you must substitute a number for n; in most im-
plementations, n cannot be a variable. Hence, if you want to
round to three decimal places, your statement will read DEF
ROU(X)=INT(((10"3)*X)+0.5)/(10"3). The number of decimal
places can be negative, of course; if you want to round to the
nearest 20, ask for —1 decimal place, and if you want to
round to the nearest 1000, ask for —3 decimal places.

8. Rounding to a particular number of significant digits.
Often, you'll find that the most convenient type of rounding
involves coming up with a particular number of significant
digits rather than a particular number of decimal places. You
can accomplish this with the definition:

DEF RSF1(X)=(N-1)-INT(LOG1G (X))
DEF RSF(X)=INT(((18~RSF1(X))X)+0.5)/ (18"RSF
1 (X))

Here the definition is so complex that it is best done in two
stages: first we define RSF1, which is a function used in-
ternally in RSF, and then we define RSF, which is the function
we actually use. The character n stands for the number of
significant digits you want; as before, you must substitute a
number for it when typing the definition into the computer.

31

The Basics ===

A word of warning: RSF (with its subsidiary calls to RSF1,
which in turn calls LOG10) can take quite a bit of time to exe-
cute (about half a second of realtime on the TI-99).

9. Sexagesimal output: minutes. Our practice of expressing
time in hours, minutes, and seconds, and angles in degrees,
minutes, and seconds, is a remnant of an ancient Babylonian
base-60 (sexagesimal) number system. Often, in a computer
program dealing with time or with angles, it’s necessary to ex-
press the output in terms of units, minutes, and seconds. The
units are derived by taking INT(X); thus the units part of 2.5
hours = INT(2.5) = 2 hours. Here is a function that gives the
minutes part:

DEF MNT(X)=INT(6OX{(X-INT(X)))

the INT of that.
10. Sexagesimal output: seconds. The seconds part of the
value, in turn, is given by:

DEF SCD(X)=60X(6BX{(X—INT(X))-—MNT (X))

That is, we subtract the integer part and the minutes; what’s
left gets multiplied by 60 twice.

The sexagesimal output functions can be tested by means
of a program such as the following:

18 DEF MNT(X)=INT(6BX(X-INT{(X)))

288 DEF SCD(X)=6OX(68X{(X—INT(X))-MNT(X))
36 FOR H=@ TO 2 STEP @.01

43¢ PRINT

S@ PRINT H,"HOURS"

6@ PRINT INT(H) ,MNT(H),SCD(H)

78 NEXT H

From this we learn, for example, that 0.01 of an hour is 36
seconds, and that 0.5 of an hour is 30 minutes. (If your com-
puter uses binary, rather than BCD or Radix-100, internal
representations of numbers, you may get odd errors due to
rounding or lack of it. The solution would be to round the
-number of hours to some reasonably small number of decimal
places before invoking the conversions, and perhaps to insert
some rounding in the definitions of MNT and SCD
themselves.)
Incidentally, for sexagesimal input, you don’t need any

special functions, only a bit of multiplication. For instance, the
statements:

32

B I R R B

2}

!

I R

2}

n The Basics

T S

16 PRINT “TYPE HOURS, MINUTES, SECONDS"
26 INPUT H.M,S
36 H=H+M/60+S5/3680

will give you (as H) the number of hours expressed as a
decimal.

11. Modulo 12 arithmetic. In dealing with hours, you'll
often want to reduce numbers to modulo 12. For instance, if
it'’s 11 a.m., then you can calculate the time four hours later
by adding 11 + 4 (which gives you 15) and then taking the
resulting modulo 12. The function definition is:

DEF MOD12(X)=12%{(X/12-INT(X/12))

(unless, of course, your computer has a built-in MOD function,
which is even simpler to use). This particular function is likely
to be bothered by rounding and truncation errors. On the TI-
99, I get accurate results for numbers under 1000 or so, but
larger numbers give slightly erroneous answers.

12. Modulo 60 arithmetic. The same function, giving mod-
ulo 60 answers (for dealing with minutes and seconds), is:

DEF MOD&OG(X)=6G%(X/6B-INT(X/608))

(as if you couldn’t have guessed). The following program
starts with a time expressed as H hours M minutes, and adds
M1 minutes:

16 DEF MODI12(X)=12%{X/12-INT(X/12))
20 DEF MOD&@(X)=6@X(X/6@-INT(X/60))
30 INPUT H,M

40 INPUT Mi

S@ M=MOD&SB (M+M1)

&G H=H+INT(M1/68)

76 PRINT H,M

Line 50 adds the right number to the minutes part, and line 60
adds to the hours part if necessary.

33

R Roger Lathrop

CALL KEY is often used in programs, but there are a num-
ber of ways to use CALL KEY which are rarely seen and easy
to use.

If you use a TI-99/4A and do your own programming you al-
ready know how to use the CALL KEY routine. In fact you
probably use it in just about all your programs. However there
is something they don't tell you in the user’s manual that you
may find very useful. First let’s look at a typical use of CALL
KEY, then let’s see how it can be improved:

14 PRINT ” KEY R TO REPEAT KEY E TO END"
20 CALL KEY(8,A.B)

3@ IF A=69 THEN Sg

48 IF A=82 THEN 1@ ELSE 29

S@ END

This kind of program is often used to get information
from the user: “Do you want to play another game Y or N?” It
works fine as long as uppercase letters are entered. You know
why it won’t work with lowercase letters so you can quickly
correct your mistake and go on. It’s just a minor nuisance.
Now change line 20 to read:

CALL KEY(3,A,B)

With this simple change you have eliminated the problem
altogether. Using a three as the first argument returns upper-
case characters only, so there is no chance of error. You may
remember reading this in the users manual, maybe you even
use it sometimes. But now let’s go a step further, into some-
thing they don't tell you in the manual. Try this simple
program:

19 INPUT As
29 PRINT A%
38 CALL KEY(3,A,B)
49 INPUT BS%
S@ PRINT B$
6@ GOTO 119

34

L R B

3

-

3

=

A A 2SS RS T h e B as i CS

Run this program using lowercase letters (it doesn’t matter
what you enter). You will see that your first input will be
lowercase, just as you typed it, but all the following entries
will be returned as uppercase characters. Line 30 puts the
computer in key unit three, and it will stay in that mode even
when it performs an INPUT statement. Now add this line, and
run it again:

SS CALL KEY(S5,A,B)

You are now switching back and forth between key units three
and five. Key unit five is the mode the computer is in nor-
mally. You can use this to ask a question, such as YES or NO,
and have it come back as uppercase to simplify verification, no
matter how it is entered. You may then switch back to key
unit five to enter information such as names, where both upper-
and lowercase letters may be desired. Note that control keys
are inactive in key unit three, and that numeric and punctua-
tion keys work normally with the SHIFT key.

If you need to switch back and forth often in a program
you may wish to make the CALL KEY statements a separate
subroutine. You can use dummy CALL KEYs, as we did in
lines 30 and 55, or you can use an active CALL KEY using the
key unit you wish. Any following INPUT statements will react
accordingly. Once you have the keyboard mapped the way
you wish, any following CALL KEYs may use a key unit of
zero. Key unit zero will not change the keyboard mapping.

Take the time to learn this simple programming trick. Its
easy to learn, will help make your programs easier to run, and
in many cases can make them simpler to write and debug.

35

fl
! @
Siline

C. Regena

One of the functions of a computer is to organize data. You
may want to alphabetize lists, arrange events by date, or list
a class in order by test scores. There are a variety of sort
routines or algorithms to arrange data.

Computer programmers and analysts often enjoy looking at
sort routines and comparing speed and efficiency. Usually the
amount of time it takes a computer to sort depends on how
many items are in the list and how out-of-order the items are.
Different computers vary in speed also. (Although the TI-
99/4A computer is slower than other microcomputers in
PRINTing or LISTing, it’s just as fast or faster in calculations
and comparisons.)

Here are four different sort routines written in BASIC for
you to try, and to implement in your own programs. They will
work on a TI with regular or Extended BASIC.

In the listings, line 100 tells the type of sort being used.
Lines 110-170 randomly choose 50 integers from 1 to 100. Or-
dinarily, you would INPUT, READ, or calculate the numbers
used. The actual sorting starts at line 200. Lines 500 to the end
print the final sorted list of numbers in the example.

Bubble Sort

The Bubble Sort (or simple interchange sort) is probably the
most common and easy to understand sort. It’s fine for small
numbers of items or for a list of items that is not much out of
order. The program compares each number to the next num-
ber and exchanges numbers where necessary.

If one switch has been made during a pass through all the
numbers, the loop of comparisons starts over. In this example,
if the 50 numbers happened to be in exact opposite order, the
maximum number of passes would be necessary, and the pro-
cess would take longer than if only a few numbers were out of
place. For larger numbers of items, this sort can seem to take
forever.

36

L D R RN B

= The Basics

Shell Sort

The Shell Sort is considerably faster than the Bubble Sort. In
general, for a random order of 50 numbers, the shell sort is
about two or three times as fast as the Bubble Sort. The Shell
Sort speeds up execution because the number of comparisons
that need to be made is reduced.

In an array of N numbers, it first determines B so that
28<N<28*! and then the variable B is initialized to 28*!. The
loop varies the counter I from 1 to N — B. First, it checks if
A(D)<A(I+B). If so, it increments I and continues with the
comparisons. If not, it exchanges A(I) and A(I+B) and changes
the subscript.

When I reaches the value of N, it reduces B by a factor of
two and starts the loop again. When B = 0 the sort is com-
plete. I've used a couple of extra variables in the example for
clarity.

Sort C

The third kind of sort routine offered here is also faster than
the Bubble Sort if the numbers are quite mixed up. The pro-
gram goes through all the numbers and places the minimum
value in the first spot of the array. The loop keeps finding the
minimum of the numbers remaining and replaces it in order.

Sort D

This sort is similar to the previous one, except that with each
pass through the numbers, both the minimum and the maxi-
mum numbers are found and placed at the appropriate end
spots.

The way these sorts are listed, the given numbers will be
arranged in ascending order. To change to descending order,
simply exchange the less than or greater than signs in the sort
comparisons.

If you are alphabetizing, the variable terms will be string
variables, such as A$(I).

You may have several items which need to be associated
as they are sorted. For example, suppose you have names and
scores to be arranged by score. The names and scores are first
arranged as N$(1), S(1); N$(2), S(2); etc. In the interchange
you would need to sort the S values, and then switch both
terms, like this:

37

The Basics ==

§8=8(1)
NN&=N®(I)
S(I)=8(1I+1)
NS (I)=N$(I+1)
S(I+1)=8SS§
NE(I+1)=NNS$

Program 1. BASIC Bubble Sort

1aa
114
129
13¢
146
159
160
179
290
219
229
230
240
259
269
279
289
299
300
oaa
S19
9249
S3a

REM T1 BASIC BUBBLE SORT
DIM A(Sa)

FOR I=1 TO Sg
RANDOMIZE
A(IY)=INT{(RNDX1G8+1)
PRINT A(I);

NEXT I

PRINT = =

LIM=49

SW=¢a

FOR I=1 TO LIM

IF A(I)<=R(I+1)THEN 299
AAR=A(I)

A{I)=A(I+1)
A(I+1)=AA

Sk=1

LIM=I

NEXT I

IF SW=1 THEN 2190
FOR I=1 TO 59
PRINT A(I);

NEXT I

END

Program 2. BASIC Shell Sort

199
119
120
139
149
150
169
179
200
21¢@
2209
23@
249
259

38

REM TI BASIC SHELL SORT
DIM A(S9)

FOR I=1 TO Sg
RANDOMIZE
A(IY=INT(RNDX14g+1)
PRINT A(I);

NEXT 1

PRINT : :

B=1

B=2%R

IF B<=5¢ THEN 21¢
B=INT(B/2)

IF B=¢g THEN S@d
FOR I=1 TO Sg9-B

L B B |

-

=

I R

= The Basics

268 C=1

279 D=C+B

289 IF A(C)<=A(D)THEN 349
299 AA=A(C)

399 A(C)Y=A(D)

314 A(D)=AA

328 C=C-B

338 IF C>@ THEN 27g
340 NEXT 1

356 GOTO 239

368 FOR I=1 TO S@
S16 PRINT A(I);

S28 NEXT 1

S36 END

Program 3. BASIC Sort C

199 REM{3I SPACES}T! BASIC SORT C
116 DIM A(Sd)

126 N=5¢

136 FOR I=1 TO N

13353 RANDOMIZE

14 A(I)=INT(RNDXx14g+1)

158 PRINT A(I);

163 NEXT 1
17@ PRINT :
263 M=A(1)
216 IM=1
22¢ FOR I=2 TO N

230 IF A(I)<M THEN 2&9
249 M=A(1)

258 IM=1

268 NEXT I

279 AA=A{(N)

288 A(N)=A(IM)

299 A(IM)=AA

308 N=N-1

318 IF N>1 THEN 20¢
S¢@ FOR I=1 TO Sg

S18 PRINT A(I):

S28 NEXT 1

536 END

Program 4. BASIC Sort D

1d@ REM{4 SPACES3TI BASIC SORT D
119 DIM A{(Se)

128 N=5S¢g

138 FOR I=1 TO N

39

The BaSiCS e)

135
140
1Sa
1640
179
209
216
22¢
234
24@
250
269
273
28a
290
I0a
J1a
320
330
I4¢
358
368
374
384
394
400
410
420
43
S
S19
S20
539

40

RANDOMIZE
A(I)=INT(RNDX1@@+1)
PRINT A(I);

NEXT 1

PRINT : :

s=1

MN=A (5)

IMIN=S

MX=MN

IMAX=S

FOR I=S TO N

IF A(I)<=MX THEN 298
MX=A(I)

IMAX=1

IF A(I)>MN THEN 328
MN=A (1)

IMIN=I

NEXT I

IF IMINC>N THEN 358
IMIN=IMAX

AA=A (N)
A(N)=A(IMAX)
ACIMAX) =AA

N=N-1

AR=A(S)
A(S)=AC(IMIN)
ACIMIN) =AA

S=8+1

IF N>S THEN 218
FOR I=1 TO S0
PRINT A(I);

NEXT I

END

B R B B

1

2 Y 7

rit]

Doug Hapeman

Searching through data using BASIC can be very slow. Some
searching algorithms can be much faster than others.

The word algorithm is derived from Al Khuwarizmi, a ninth-
century Arabic mathematician. He was interested in solving
certain problems in arithmetic, and devised a number of meth-
ods for doing so. These methods were presented as a list of
specified instructions, and eventually his name became at-
tached to such methods.

An algorithm is simply a formula to use for getting done
what you want to accomplish. It's a sequence of operations that,
when applied to given information, will produce a desired result.
Algorithms are used unknowingly everyday. For instance, the
instruction sheet for assembling your child’s new bicycle,
directions for opening a combination lock, kitchen recipes for
cooking, the rules for playing a game, and road maps are all
examples of algorithms. An algorithm, then, is a precisely de-
scribed set of directions to follow in order to accomplish a
stated task. The algorithms we have in mind are the set of
procedures that can be used in searching through data lists.

In many program applications you will be storing a wide
variety of information, from inventory management, member-
ship and address files, genealogical records, meteorological
data—the list is endless! Most lists are stored in a data struc-
ture called a one-dimensional array, or subscripted variable.

Storing Information
An array is a block of storage locations in computer memory
which is reserved for a collection of variables. Each variable in
the list is called an element of the array. TI BASIC permits
you to use one-, two-, or three-dimensional arrays, in addition
to simple variables.

If you assign a numeric value or string expression to a
simple variable, then a specific memory location with an ad-
dress that is unique is set aside. For example, LET A=12; the

41

The Basics

value of 12 is placed in a memory location and its address is
the variable A. If you ask the computer to PRINT A, it will
print 12, the value assigned to it. If you assign a second value
to A, LET A = 100, the first value is then forgotten. A simple
variable can hold only one value or expression at a time.

An array brings new dimensions to the variable. In an ar-
ray the variable is subscripted, A(I)=12, and you may assign
many values or expressions to it. TI BASIC permits 11 ele-
ments without any special dimensioning. If the number of ele-
ments exceeds 11, then extra room must be allocated with the
use of the DIMension statement. The array then sets aside a
big enough block of memory locations for the number of ele-
ments you set in the DIM statement.

What is in the space set aside for these elements? Try
these two short programs:

198 FOR I=¢ TO 19
116 PRINT "A("3;I3")="3;A(I)
126 NEXT I

1gg FOR I=6 T0 19
116 PRINT "A${("3;I3")="3A%(I)
126 NEXT I

Notice that each element in the string array is a null string
and each element in a numeric array is a zero until you re-
place them with values during the program. When the array is
accessed, each element within the block must be given an ad-
dress that is unique. For example, A(1)=12; A(2)=100. The A
is the name of the array, and the specific address is the
subscripted number given to the array A. As an illustration of
a one-dimensional string array, let’s set up an array called
NAMES$ that will hold the names of people. To INPUT a
number of names and fill in the array, you can key in the
following code:

1986 CALL CLEAR

116 1I=90

126 INPUT "ENTER THE NAMES: ":NAME$(I)
136 I=1+1

149 GOTO 120

This program will fill array NAME$ until 11 names are
entered and then end with an ERROR MESSAGE**BAD SUB-
SCRIPT, because we did not DIMension a larger array.

42

1 I T T Rt

T Y)T

s The Basics

The one-dimensional array is often called a list, and has
only one integer value following its name A(6). The two-
dimensional array is referred to as a table, or matrix, because it
can represent any two-dimensional condition, such as charts,
graphs, or any tabular display that uses rows and columns. It
is described with two integer values which define the number
of rows and columns A(12,3). The three-dimensional array has
three integer values defining its characteristics A(5,2,11).

Comparing Using ASCII Codes

A very common problem in working with lists stored in one-
dimensional arrays is the need to search the array to access a
particular item or to determine whether it is in the array.
Some of the slowest procedures in BASIC (and other computer
languages) are searching and sorting, because the process in-
volves time-consuming comparisons, whether string or
numeric.

In order to understand how strings are processed, some
background about ASCII character codes is necessary. ASCII
stands for American Standard Code for Information Inter-
change, and it is an established standard for computers. There
are 128 different codes defined in the ASCII standard to repre-
sent alphabetic, numeric, special characters, and control codes
(see “All About the Character Set” elsewhere in this book).

The way the ASCII codes are ordered—the space (32),
punctuation, numbers and other special characters (33-64),
uppercase alphabet (65-90), more special characters (91-96),
and then the lowercase alphabet (97-122)—makes it possible
to compare strings by using the same relational operators that
are used to compare numbers. The computer compares two
strings by comparing one character at a time, moving in a left-
to-right direction until a difference is found. Here are some
examples:

Is JORDEN greater than JORDAN?
ORDEN>] ORDAN?

74 79 82 68 69 78 74 79 82 68 65 78

69 is greater than 65, therefore JORDEN is greater than JORDAN.
Is GREENE equal to GREEN?
G R EENE=GREEN ?

71 82 69 69 78 69 71 82 69 69 78 32
69 is greater than 32, so GREENE is not equal to GREEN.

(Note that 32 is ASCII for a space.

43

The Basics e

In data processing most of the time you will be working
with alphabetically ordered lists of information. There are
times though when you will have to work with unordered
lists. The program listing at the end of the article will dem-
onstrate how much faster a list can be searched when the
information is ordered (alphabetized).

The Linear Search

When processing unordered data the most common algorithm
is the linear search. The linear search takes the item you are
searching for and compares it with each succeeding item in
the list until it finds a match (this process can be very time
consuming). If the item is not in the list, the search cannot de-
tect it without passing through the entire array. Only then can
it verify that the item is not present. Line 340, IF C$=B$(l)
THEN 660, where C$ is the item you are searching, is com-
pared to each element in the array until it finds the item being
searched.

The time required to search unordered data varies
depending on the length of the list and where exactly in the
list the item being searched for is located.

If you want to reduce the searching time, the first step
would be to order the list. How do you get an ordered list?
You could INPUT all the information alphabetically when
using the given application program, but that would not be
feasible or practical. Much easier would be to include a sorting
routine in the program. A sorting routine will alphabetize or
arrange numerics in ascending or descending order (see “All
Sorts of BASIC Sorts” elsewhere in this book).

The Alphabetical/Linear Search

How can an ordered list be searched efficiently? Once the list
is alphabetized it immediately becomes easier to process,
particularly when searching for items that are not in the list.
In the case of the unordered list, the entire list had to be
searched to determine that an item was not there. For a list of
one hundred items that meant one hundred comparisons. But
when the list is ordered, the search only needs to move for-
ward until an item is found whose value is greater than the
item being searched. This is done in line 400, IF C$=B$(I)
THEN 660, and line 410, IF C$<B$(I) THEN 640. These two
lines make comparisons with each item in the array until the
item is located or an item of greater value is detected.

44

I S N

A

7

1

3

sy The Basics

The Binary Search
The third search routine in the program listing is called a bi-
nary search and is a very efficient search for long lists of
ordered data. It is called binary not because it uses machine
code, but because the maximum number of comparisons that it
needs to make is represented by the power of 2 that results in
a number greater than the number of items in the list. For ex-
ample, in the program listing, there are 100 names taken from
the phone book. 217 is the next power of 2 larger than 100;
therefore, the binary search will take a maximum of seven
comparisons to locate the item in the list.

The first comparison is made with the middle item in the

list. If the item being searched is greater than that item, then

the upper half of the list becomes the new list. The second
comparison is then made with the middle item of the upper
section. This procedure of dividing the list in half is repeated
until the item is located.

Here is an example of how it works. Suppose you want to
locate the name ““Usher” from the data in the program listing.
There are 100 items in the list.

1. Comparison at item 50.
Usher>]Jones, so the new range is 50 to 100.
2. Comparison at item INT((100—50)/2+.5)+50 = 75.
Usher>Peverill, so the new range is 75 to 100.
3. Comparison at item INT((100—75)/2+.5)+75 = 88.
Usher>Stewart, so the new range is 88 to 100.
4. Comparison at item INT((100—88)/2+.5)+88 = 94.
Usher<Ward, so the new range is 88 to 94.
. Comparison at item INT((94—88)/2+.5)+88 = 91.
Usher>Thomas, so the new range is 91 to 94.
. Comparison at item INT((94—91)/2+.5+91 = 93.
Usher<Vickruck, so the new range is 91 to 93.
. Comparison at item INT((93—91)/2+.5)+91 = 92.
Usher=Usher, so GOTO 660.

Either of the linear searches would have required 92
comparisons to locate Usher. You can see, therefore, that the
binary search is quite powerful. You will discover that as lists
become longer and longer, the binary search algorithm be-
comes much more powerful and efficient than the linear
methods.

NN O

45

The Basics =

Explanation of the Program

100-220 Read and Display Data

230-300 Print Main Menu

310-360 Linear Search Routine

370-430 Alphabetical /Linear Search Routine
440-620 Binary Search Routine

630-760 Common Print Routines

770-840 Data Statements

Searching Algorithms

188 REM XXSEARCHING ALGORITHMSkX
12¢ DIM B&(160)

13¢ N=16d

149 REM XXREAD AND DISPLAY DATAXX
156 CALL CLEAR

166 FOR I=1 TO N

176 READ A%

180 B&(I)=A%

19¢ PRINT B&$(I),

200 NEXT 1

219 FOR T=1 TO 49¢

220 NEXT T

23@ REM xX¥PRINT MAIN MENUXX

249 CALL CLEAR

2589 PRINT X¥XSEARCHING ALGORITHMS*tu. : =
: :"PRESS{3 SPACESIFOR": : :" 1 LIN
EAR SEARCH": :

268 PRINT » 2 = ALPHA/LINEAR SEARCH": ="
3 = BINARY SEARCH": =" 4 = FINISH
SESSION": = : = ¢ :

278 CALL KEY(@9,KEY.,S)

289 IF KEY<49 THEN 274

299 IF KEY>S5S2 THEN 274

308 IF KEY=52 THEN 750 ELSE 7@¢9

319 REM XXLINEAR SEARCHXX

320 FOR I=1 TO N

338 PRINT I

348 IF C$=B$(I1)THEN 663

359 NEXT 1

360 GOTO &4a9

37¢ REM xxALPHABRETICAL LINEAR SEARCHXX

389 FOR I=1 TO N

39¢ PRINT I:

406 IF CE=B$ (1) THEN &68

419 IF CH<B%(I)THEN 649

426 NEXT 1

43¢ GOTO &40

46

=~

449
45@
469
479
4809
499
Sag
Si@
S20
S34
S4a
S5O
Séa
S7¢@
589
S9a
636
614
620
6308
6490

659
668

&7a
6806
690
700
710
720
739
749
750
769

765

770

789

799

8aa

REM $3¥BINARY SEARCHXX

LOW=9

HIGH=N

K=1

X=INT(N/2+.5)

X=INT(X/2+.5)

K=K+1

IF X>1 THEN 49g

I1=0

FOR J=1 TO K

I=I+1

X=INT({(HIGH-LOW) /2+.5) +LOW

PRINT X3

IF C$=B$(X) THEN &6

IF C$<B$(X)THEN &10

LOW=X

GOTO 620

HIGH=X

NEXT J

REM $3GENERAL PRINT ROUTINESXX

PRINT : : : :"SORRY,";C$:"IS NOT IN THE
LIST."

GOTO &79

PRINT : : : :C$;",":"FOUND IN";I;"COMPAR
ISONS. "

PRINT : :"%*PRESS ANY KEY TO CONTINUEX"
CALL KEY(#,KEY,S)

IF S=9 THEN 680 ELSE 240

CALL CLEAR

PRINT "THE NAME YOU ARE SEARCHING:": :
INPUT C$

PRINT : :"COMPARING WITH NAME #";

ON KEY-48 GOTO 32¢,389,450,750

CALL CLEAR

PRINT "{& SPACESI}HAVE A NICE DAY!'": : :

STOP

DATA ACKER,AINSLIE,ALLEN, ANDERSON, ARMSTR
ONG, BANCROFT, BAULD, BEATON, BEATTIE, BLACK,
BOWER, BROOKS, BROWN

DATA BURKE,CHANG,CHRISTIAN,CHU,COCHRANE,
CODNER,COLL INS, COMEAU, COOK, COOPER, COX, DA
RROW,DAVIS, DAY

DATA DELONG,DICKIE,DOGGETT,DOUGLAS,EBBET
T.ELLIS,EMBREE,EULOTH,FIELD,FIFIELD,FOY,
GAMMON, GREENE , HAFEMAN

DATA HARPELL ,HARTLIN,HILL,HUBLEY,HUSKINS
., JAMES, JAMIESON, JOHNSON, JONES, KENDALL , KE
TCHAM, KILLAWEE,KILLORAN

47

48

DATA LAMFORTH,LANGILLE,LERUE,LLOY,LYSEN,
MACDONALD, MACFADYEN, MACFAWN, MACLACHLAN, M
AILLET,MARSHALL , MASKELL

DATA MATTHEWS,MCCONNELL ,MCDOWELL , MERCER,
MOULTON, NAGLE ,NAPER, NICKERSON, PEVERILL,P
RESTON, PRICE, PROCTOR, RODDAM

DATA RONALDS,RUSSELL,SCHOEMAKER, SCHOFIEL
D,.SHERIDAN,SMITH,STARRATT,.STEVENS, STEWAR
T,SYKES, TAYLOR, THOMAS

DATA USHER,VICKRUCK,WARD,WEBB,WHITE, WHIT
ING,WILBUR,WINTER, ZACHARY

A

3

A

3 1

T 1T Y T

Patrick Parrish

Variables can be passed from one program to another in most
microcomputers by POKEing them into memory. But on the
T1-99/4A, standard PEEKs and POKEs can't be used. Here's
a way to transfer variables in TI Extended BASIC that uses
redefined characters.

The TI-99/4A has outstanding graphic capabilities. With its
subprogram CHAR, you can readily redefine characters within
the standard ASCII character set (character codes 32-126). Or,
you can create additional characters using codes 127-159
(codes 127-143 in Extended BASIC).

But there’s a potentially more powerful application for the
CHAR subprogram. Variable data can be passed from one pro-
gram to another using CHAR and CHARPAT, an Extended
BASIC subprogram. So, if you use up the TI's memory, it's
now possible to write a program in two parts and send vari-
ables to a second program. Even the user’s name could be
among the variables transferred. But first let’s take a brief look
at the traditional use of the CHAR subprogram.

Defining Characters

On the TI-99/4A, characters are defined by a 16-character
hexadecimal string expression known as a pattern-identifier.
Pattern-identifiers are dot codes for depicting each character in
an eight by eight grid (see the TI-99/4A User’s Reference Guide
pp- II-76 through II-79 for more).

Changing the pattern-identifier in memory for a character
enables you to define that character to suit yourself. For ex-
ample, suppose you wanted to represent the ASCII character
65 (normally, an A) as a box in a program. You could do this
with the CHAR subprogram as:

CALL CHAR(65,"FFFFC3IC3C3C3FFFF")

49

The Basics cmmrmmmmmmmmn

Within the parentheses following CALL CHAR is the ASCII
character number (65) and the new pattern-identifier for the
character (“FFFFC3C3C3C3FFFF”). By redefining characters in
this manner, you can produce figures which greatly enhance
and enliven screen displays in your programs.

Protected Memory

CHAR, within a program, can also be used to store variable
data in the form of a pattern-identifier. Once stored, a second
program can fetch this variable data with the CHARPAT
subprogram.

CHARPAT is the converse of CHAR. Rather than specify-
ing the pattern-identifier for an ASCII character, it returns
from memory the pattern-identifier assigned to a particular
character. For instance, CALL CHARPAT (65,A$) returns the
pattern-identifier for ASCII character 65 as A$.

When you interrupt a TI program using redefined char-
acters, certain character codes retain their redefined con-
figuration while others return to their standard definitions. If
you haven’t seen this before, enter and run the following
program:

188 CALL CLEAR

1186 CALL CHAR(126,"FFFFFFFFFFFFFFFF")
126 CALL CHAR(127,"FFFFC3C3C3C3FFFF")
1386 PRINT CHR${(126),CHR$(127)

149 FOR I=1 TO 1600

158 NEXT 1

Here, we redefined character 126 (it's normally a tilde) in
line 110 as a solid block and defined character 127 in line 120
as a hollow box. Next, we PRINTed both characters in line 130.

When you run this program, the two characters we’ve de-
fined will appear on the screen momentarily. Once the pro-
gram ends, the block character will change to a tilde while the
box character remains.

Why does this happen? When a program is interrupted,
only the standard character set on the TI (ASCII characters
32-126) is restored. Pattern-identifier data stored in ROM for
characters 32-126 is copied to RAM (this process also occurs
when the TI is first powered up or reset). As a result, ASCII
character 126, seen as a block during program execution, be-
comes a tilde when our program ends. But character 127 (the
box) retains its redefined shape.

50

A

3 3y ¥ 3

11

s] he Basics

Indeed, all characters above 127 will keep their defined
form even if another program is run (provided these characters
are not defined differently by this subsequent program).

Normally, the RUN command clears all variables in mem-
ory—both numeric and string. That is, all numeric variables
become zero while string variables are set to null. So, if you
chain to another program with RUN “device.program-name”’,
the variables will be cleared. The fact that certain character
codes remain intact even after a RUN will enable us to pass
variables between programs by storing them as pattern-
identifiers.

Storing Variable Data

The variable data that we wish to pass must be in hexadecimal
form so that it can be stored as a pattern-identifier. Once it
has been converted to hexadecimal form, it can be placed in
the character codes beginning at 127 for retrieval by a second
program.

Program 1 is a sample program which demonstrates the
necessary routines for storing variable data in character codes.
In this program, variables to be passed are generated in the
main portion of the program (lines 100-798). In this case,
we've simply assigned values to the three variables we want
to transfer (line 500).

Two of these variables are numeric (X and Y) while the
third is a string variable (NAMES$). In line 800, the numeric
variables are converted to string variables, and then all three
variables are stored in the array D$. (Note in line 100 that
we’ve DIMensioned D$ for the number of variables we intend
to pass.) In line 900, we concatenate all values of D$() and
store them in E$.

Seventeen character codes (codes 127-143) are available
for variable storage. Each pattern-identifier is 16 hexadecimal
characters in length, so we have room to store 272 (17 X 16)
hexadecimal characters. Since 2 hexadecimal digits will be re-
quired to encode each character of E$, the length of E$ is lim-
ited to 136 characters (actually, 135 characters because the end
of E$ is marked with an additional CHR$(255) in line 930).

After each D$() is concatenated to E$ and CHR$(255) is
added as a separator between variables, a check of E$’s length
is made in line 910. If the last variable added to E$ causes it
to exceed 135 characters in length, the program will terminate,

51

The Basics L O

and the computer will display the number of variables you are
allowed to transfer.

As mentioned, pattern-identifiers must be stored as hexa-
decimal code. Our best approach here is to represent each
character of E$ by its ASCII value before converting it to
hexadecimal.

Lines 1000 to 1020 contain routines for doing this. In line
1010, each character of E$ is converted to its ASCII equiva-
lent. These ASCII values are, in turn, converted to a hexa-
decimal string expression, M1$, in line 1020.

Once M1$ reaches a length of 16 characters (or the end of
E$ is reached), it is assigned as a pattern-identifier (line 1025).
At this point, if M1$ is less than 16 characters long, TI Ex-
tended BASIC automatically fills the remaining characters in
the pattern-identifier with zeros.

Recovering Variable Data
Variable data stored with Program 1 can be recovered with
Program 2. Both programs serve as examples.

Again, you would place the main portion of your program
in lines 100-798. Be sure to DIMension D$() and D() in line
100 for the number of variables you stored with Program 1.

Lines 800 to 980 contain routines for recalling each vari-
able. In line 800, each pattern-identifier used to store data is
assigned as A$ using CHARPAT. In line 910, if the end of
variable data is detected as signified by “FFFF” (sequential
CHR$(255)’s), a flag variable FL is set to 1.

Line 920 looks for the delimiter “FF” (CHR$(255)) follow-
ing each variable D$. If a delimiter is seen, the length of the
prior D$() is calculated as D().

Two characters of A$ are set equal to M$ in line 930. The
two-digit hexadecimal number contained in M$ is sub-
sequently converted to a decimal value in line 940. These
decimal values are then converted to CHR$s in line 960 and
stored as F$.

In line 1000, F$ is divided into D$()’s using lengths D().
As before, D$() represents the string form of each variable.
Finally, as a demonstration, our original variables are
PRINTed in line 1030. Of course, this may not be necessary in
your program.

52

N

N

-

1

mremmsmm | he Basics

Program 1. Passing Variables

1¢ REM PROGRAM 1 (VARIARLE ORIGIN PROGRAM)
99 REM IE., LINES 14¢-798 = MAIN FPORTION OF
YOUR PROGRAM
160 OFPTICGN BRASE 1 : DIM Ds(3):: REM DIMENSI
ON D$ FOR NUMBER OF VARIAELES 7O TRANSFE
R
499 REM VYARIABLES IN LINE S@¢g ARE ASSIGNED W
ITHIN THE MAIN FPROGRAM
S5ag X=14@ :: Y=-5.45 :: NAME$="JEFF TUDOR"
799 REM DEFINE STRING AND NUMERIC VARIARLES
AS D% ()
849 DH(1)=STR$(X):: D$(2)=STR&{(Y):: DE(3I)=NA
ME®
810 HEX$="@123456789ARCDEF"
899 REM CONCATENATE D$()°S TO E4$ AND DELIMIT
WITH CHR$(255) ’
9@a E$="" :: FOR I=1 TO 3T :: E$=E$&D$ (1) &CHR
$(235)
9¢9 REM CHECK TO MAKE SURE LENGTH OF E4 DOES
NOT EXCEED 136(272/2)
P18 IF LENC(E$) >135 THEN E$=SEG$(E$,.1,LEN(ES$)

—LEN(D$(I))—-1):: PRINT "ONLY "3;I-1 :: PR
INT "VARIARLES CAN BE TRANSFERRED." :: S
TOP

928 NEXT 1

229 REM FLACE ADDITIONAL CHR$(255) AT END OF
Es

938 EF$=EHLCHR$ (255)

999 REM CONVERT E$ TO ASC'S AND THEN TO HEX
- CONCATENATE EVERY 16 AS M1$ OR END OF

Es
1680 J=127 :: Mis="" :: FOR K=1 TO LEN(ES$)
19118 D=ASC(SEG$(E®.K,1))
1920 MH=INT(D/16):: ML=D-MHXx16 M&=SEG$ (HE

X, MH+1,.1)USEGS(HEX$ ML+1,1):: Mis=M

15%MSE

1824 REM STORE HEX STRING M14$% AS CHAR FATTER
N-IDENTIFIER

1825 IF L{LEN(M1I$)=16)+ ((LENC(E$)Xx2)=(J-127)%1
6+LEN{M1%)) THEN CALL CHAR{(J.M1$):: J=J+
1 :: Migs=""

193d NEXT K

1849 CALL CLEAR :: PRINT "NOW RUN PROGRAM 2.

53

The Basics

Program 2. Receiving Variables

14 REM PROGRAM 2 (VARIABLE RECEPTOR FPROGRAM)
99 REM IE., LINES 148-798 = MAIN FORTION OF
THE PROGRAM

1050

114
799

80a
899

a0
a9
914
919

40

954
959
P60
979
9275
7849
999

180

119
1929

1a3a
1440

54

OFTION BASE 1 :: DIM D{(3),D${(3):: REM DI
MENSION D AND D% FOR NUMBER OF VARIABLES
TO RECEIVE

GOSUR 8¢¢ :: STOP

REM RECALL PATTERN IDENTIFIERS USED FOR
VARIABLE STORAGE

K=1 z: P=1 :: FOR L=127 TO 143 :: CALL C
HARFPAT(L,A%)

REM SEPARATE A%$°S INTO M$°S AND CONVERT

BACK TO D$()’°S

FOR I=1 TO LEN(A$)STEP 2

REM CHECK FOR END OF STRING AND SET FLAG
IF SEG$(A$,1.4)="FFFF" THEN FL=1

REM CHECK FOR DELIMITER . FROM THIS, DET

ERMINE LENGTH OF EACH D$() - STORE AS D(
)

IF SEG$(A%$,I1,2)="FF" THEN D(K)=(L-127) %1

6+I-P :: K=K+1 :: P=(L-127)%x14&+1+2 z: IF
FL=1 THEN I=LEN(A$):: GOTO 97¢

REM TAKE TWO CHARACTERS OF A% AND CALL T
HEM M%

ME=SEGH(A%$,1,2)

REM CONVERT HEX STRING TO DECIMAL,., THEN
TO CHR$°S

M=@ :: FOR J=1 TO 2 :: M1=ASC(M$)
1-48+(M1>64) X7 :: M$=SEGS(M$,2,1)
XM+M1

NEXT J
REM CONCATENATE ALL CHR$°S TO Fs
F$=F$%CHR$ (M)
NEXT I

IF FL=1 THEN L=143
NEXT L
REM DEFINE D$()°S USING D()°S AND F%, TH
EN PRINT EACH D$ ().

P=g :: FOR I=1 TO 3 :: D$(I)=SEG$(Fs$,P+
1.DCI1)/2):: P=P+D(I)/2+1

NEXT I

X=VAL(D$(1))z: Y=VAL(DH{(2)):: NAME$=D%(
3

PRINT X,Y,NAMES$

RETURN

M1=M
M=16

A

I

N

msmsmsssmmmm Richard D. Jones and Howard Alvir

Use your microcomputer to create effective visuals.

We give many presentations to groups of all sizes and have
found that good graphics increase understanding of theoretical
concepts and capture the interest of the audience. Recently the
TI-99/4A joined the overhead projector and flipchart in our
arsenal of visual aids.

Because of its small size, the TI-99/4A is very portable. A
briefcase holds the computer, power cord, RF modulator, por-
table cassette recorder and cable. Rigging a snap connection
for the RF cable and an extension cord will make setup a little
easier. The television monitor is not as easily transported, so
it's best to arrange to have it at the meeting site before you
arrive.

Usually it takes 5-10 minutes prior to the meeting to set
up (it usually takes that long to set up an easel tripod!). Make
a few connections, load your program and begin. Since a 25-
inch monitor can be easily seen from 30 feet, we have used
the microcomputer with audiences of up to 75 people. Mul-
tiple monitors work well for larger audiences.

There are several advantages to using the computer
visuals. First, visuals can be changed frequently and easily.
(We are always changing presentations). Second, information
is presented one point at a time. Third, since our presentations
usually focus on technology, we practice what we preach.
Fourth, the system is inexpensive and of high quality.

The following is a simple program illustration for present-
ing visuals. The routine organizes ten screens of information
with words stored in DATA statements. Each screen can be
called up a line at a time or the entire screen at once. The title
screen is displayed initially and is set for full screen display.
Each of the following screens is displayed in this sequence,
unless called by the “F” key.

During display there are several function keys. These are
as follows:

C—clear screen
F—display entire screen

55

The Basics ==

space—scroll up

T—input additional words during display
1-9—calls appropriate screen

0—calls title screen

All other keys advance the screen a line at a time.

Color is added by the CALL COLOR command. As a re-
sult any character in character set 2 is displayed as color.
Thirty-two characters will display a colored line.

Experiment with numerous screen variations (e.g., color
combinations, larger letters, and speech to introduce major
points). We have even experimented with using the speech
synthesizer to open the presentation. Adding commands in
Extended BASIC can improve graphics but it adds complexity
to the equipment.

Generating visuals by computer opens exciting possibil-
ities for the future. Certainly improvements in video display
and microcomputers will expand the application of computer
visuals. In the meantime, you can enter a new arena of pro-
fessional computer use and discard your image as a hobbyist.

Computer Visuals

189 REM XXXKXXXKAKKKKKAKKKKK
114 REM X COMPUTER VISUALS %
1200 REM XXKKKKKKRXKKKXKKXKKK
130 REM

149 REM

158 REM

168 REM

176 CALL CLEAR

18¢ PRINT TAB(4);"PRESS ANY KEY TO BEGIN"
199 CALL KEY(@,K,S)

208 IF S=@ THEN 196

214 CALL CLEAR

22¢ CALL COLOR(2,5,5)

2306 CALL SCREEN(12)

24¢ RESTORE 16S@

256 REM FULL SCREEN ROUTINE
260 CALL CLEAR

276 READ LINES

280 IF LINE$="END"” THEN S@¢
298 IF LINE$="#" THEN 978
3@@ IF LINE$="2" THEN 51@
318 L=LEN(LINES$)

F20 M=L/2

I3Z@ I=15-M

56

S S R I

== The Basics

o= 340 PRINT TAB(I);LINES
3568 PRINT
368 GOTO 276
) 378 REM
{ 384 REM LINE ROUTINE
394 CALL CLEAR
40¢ READ LINES
D 41¢ IF LINE$="END" THEN S5g9
: 429 IF LINE$="#" THEN 979
43¢ IF LINE$="3" THEN 379
440 L=LEN{(LINES$)
4S8 M=L/2
468 I=15-M
473 PRINT TAB(I):LINES
489 PRINT
49¢ GOTO Si19
Se@ END
S1¢ CALL KEY(@,K,5)
S20 IF K=32 THEN 5334 ELSE SS9
STF PRINT
S44 GOTO Si1g
SS@d IF K=67 THEN S6@¢ ELSE 5849
568 CALL CLEAR
576 GOTO Si19
584 IF K=84 THEN 59@ ELSE 6490
S9¢ PRINT
6@a INPUT LINES
61¢ GOTO 4149
6200 PRINT
63@ GOTO Sig
644 1IF K=78 THEN 274@
656 IF K=48 THEN 249
669 IF K=49 THEN 929
679 IF K=5¢ THEN 9@a¢
688 IF K=51 THEN 884

694 IF K=52 THEN 86¢

798 IF K=353 THEN 844

719 1F K=54 THEN B82d

726 1IF K=55 THEN 8gg
Wﬁ 736 IF K=56 THEN 784@
- 749 IF K=357 THEN 760

759 IF S=¢ THEN 514 ELSE 935¢
s 769 RESTORE 1599

| 779 GOTO 4460
78¢ RESTORE 153g
79¢ GOTO 40
89@ RESTORE 147@
81¢ GOTO 499
829 RESTORE 1419

57

The Basics mmmmrmmrmmm

83d
840
85a
869
87¢
88¢
894
9aa
914
29
3@
449
EA17
60
78
E4=17]
Foa

1aaa
1816
1620
1a3@
14
1459

1060
1070

1484a
1896
1100
11te
1120
113¢@

1140
1150
1169
1179

118¢
1194
1204
1214

GOTO 49w
RESTORE 13Sg
GOTO 499
RESTORE 1294
GOTO 409
RESTORE 123g
GOTO 4ag
RESTORE 117@
GOTO 4499
RESTORE 1114
GOTO 4449
GOTO0 9Sg
IF S=¢@ THEN 519
GOTO 4aa@
CALL SOUND{1@@,294,5)
GOTO Si@
REM DATA FOR SCREENS
REM
REM
REM
REM .
REM TITLE SCREEN
bATA -
—————————————————————— . COMPUTER VISUAL
S.USING THE :
DATA T1 99 4A COMPUTER,
DATA ———

DATA #,3

REM SCREEN 1

DATA ADVANTAGES

DATA ———— e

DATA EASY TO EDIT,INEXPENSIVE,ORGANIZED
.EFFICIENT, COLORFUL ., PORTABLE,ATTENTION
GATHERING

DATA

DATA #,d

REM SCREEN 2 .

DATA EQUIFMENT NEEDED,-——-~——————————————
——————————— .T1 99 4A,CASSETTE RECORDER,
TELEVISION OR MONITOR, ~=——=—=m=——— o —

DATA REALLY THAT IS5 ALL !'!

DATA #,3

1229 REM SCREEN 3

1230

1244

58

DATA HOW TO USE
DATA — = mmmmm e

A

)

.J

o

L

A

|

The Basics

= 125@ DATA DUTLINE PRESENTATION,ENTER KEY POI
| NTS IN DATA,.SAVE THE PROGRAM,SET UP YOU
R COMPUTER AND TV
‘ 1266 DATA LOAD AND RUN PROGRAM, IMPRESS YOUR
= AUDIENCE, ~——————————m o mmm e ——
1278 DATA #,9
12868 REM SCREEN 4
= 1298 DATA SCREEN 4
‘ 136@ DATA
1316 DATA
1328 DATA
1330 DATA #.9
1346 REM SCREEN 5
1350 DATA SCREEN 5
1364 DATA
137¢ DATA
1384 DATA
139% DATA #.9
14686 REM SCREEN &
1416 DATA SCREEN &
1423 DATA
1438 DATA
1449 DATA
1458 DATA #,9
1466 REM SCREEN 7
1478 DATA SCREEN 7
1486 DATA
1498 DATA
1S¢@ DATA
1519 DATA #,9
1S2¢ REM SCREEN 8
153@% DATA SCREEN 8
1548 DATA
155¢ DATA
1560 DATA
o 157¢ DATA #,9
1586 REM SCREEN 9
1598 DATA SCREEN 9
1608 DATA
P 1616 DATA
1628 DATA
1630 DATA #,9
1648 DATA END

59

t C. Regena

These tips will give you a good start on adding a printer to
the TI-99/4A. Here are the fundamentals, from the RS-232
Interface to PRINT # statements.

Texas Instruments has a thermal printer which attaches to the
side of the TI. It's a small unit which uses a special thermal
printer paper and can print a 30-column line. A number of
other printers may also be used with your TI. The price de-
pends on whether the printing is dot-matrix or letter quality,
on various options available, and on how the printer is built.

To connect your printer to your TI-99/4A, you will need
the RS-232 Interface. You may use either the “‘old-style” in-
dividual RS-232 Interface peripheral or the RS-232 Interface
Card which fits in the TI Peripheral Expansion Box. You will
also need a cable to go from the interface to the printer, and
the cable should be sold with the printer. If you want to wire
your own cable, the plug is a standard DB-25, and the pin
connections are given in the manual that comes with the RS-
232 Interface.

Configurations
Manuals are important. The manual that comes with the RS-
232 Interface describes how you list parameters for your
“printer configuration” so you can give instructions to your
computer to access the printer through the RS-232. The man-
ual that comes with the printer should describe how to
achieve various type styles (fonts) and how to set margins,
line lengths, and the top of the form. Be prepared to spend
some time experimenting with the different switches and fea-
tures of your printer.

When you use the printer configuration in a command, it
is set off in quotes. Parameters may be chosen for baud rate,
stop bits, and number of nulls. Some examples are:

“RS232.TW.BA=110" (teletype)
“RS232.BA=600" (TI 825 or TI 840 printer)
“RS232.BA=9600.DA=8" (Epson MX 80)

60

B

2y

1

N

4)

3

B

.

3

parrmrrmem 1 he Basics

One of the primary uses of a printer is to obtain a
hardcopy listing of a program. Using your own printer
configuration in the quotes, the following commands may be
used:

LIST “RS232.BA=600"

Lists whole program
LIST “RS232.BA =600":-250

Lists program lines up to line 250
LIST “RS232.BA =600":300-330

Lists program lines 300 to 330
LIST “RS232.BA =600":700-

Lists program from line 700 to end

Another valuable use for a printer is to print a report from
your program. Before you print, an OPEN statement is nec-
essary. The OPEN statement designates a device number and
your printer configuration. You may have several devices, and
you may number your devices in any order. An example state-
ment is:

120 OPEN #1:“RS232.BA =600"

After the OPEN statement, you may print to the printer
by a statement such as:

130 PRINT #1:“MY NAME IS REGENA.”

When you’ve finished printing or you're at the end of the
program, you should close all devices. This can be done with
the following statement:

550 CLOSE #1

Here is a short sample program that illustrates printing to

a printer:
100 OPEN #1:“RS232.BA=600"

Opens device 1 for printer.
110 OPEN #2:“SPEECH”,OUTPUT

Opens device 2 for speech (Terminal Emulator II required).
120 PRINT “HERE IS A SAMPLE.”

Prints message on screen.
130 PRINT #1:“TEST REPORT

Prints on printer.
140 PRINT #2:“HELLO”

Speaks the word using synthesizer.
150 CLOSE #1

Closes device 1.

61

The Basics ===

160 CLOSE #2
Closes device 2.
170 END

The print list following the colon in a PRINT # statement
follows the same rules as regular printing to the screen. Since
the length of lines may be longer on the printer (the screen
has 28 columns in a print line), you may use the TAB function
to arrange your printing:

100 OPEN #1:“RS232.BA =600"

110 PRINT #1:TAB(25):'MONTHLY PAYMENTS"
You may use a variable in the TAB function:
200 PRINT #1:TAB(T + A;MONTHS$;X

You may also use colons to print blank lines:
220 PRINT #1:::

If you have adjusted your printer properly for vertical
tabs, you may go to the top of the next page by using:
300 PRINT #1:CHR$(12)

62

A

S B B

N B

4

Applications

3

a A BN B = A B B A =
(Bl s T L s 42 e e ek AP B RS S L By i i (Y A A A iy =SS Seana ey o P s At e R fe) cond ol ¢ FOSLSISGRe” b T ST 0 RSl {0 Ui T TR

o Eaamnm 2 E e ean

3

3

Doug Hapeman

This program can be used for developing small mailing lists,
for families or for organizations. There are ten options,
including printing a single label or an entire alphabetized
mailing list.

Have you ever kept a file of addresses on index cards, hoping
to organize them someday in an orderly fashion? It sounds
simple, but in practice you know how difficult it is to organize
and update a paper-based filing system. “Mailing List” offers
you an easy method of creating, maintaining, and utilizing a
mailing list file.

Without any programming experience you can keep an
up-to-date, well-organized file. The program will prompt you
step-by-step through the entry of names, addresses, and
phone numbers. Then, with a few simple keystrokes, you can
update your file, print lists in two different modes, or save
your file on a storage device. It's that easy.

Mailing List is designed specifically as a family mailing
list, but is flexible enough to accommodate a number of
applications. The program will store last names, first names,
children’s names, addresses, and phone numbers.

The program is written in a Canadian format—that is,
province and postal code. However, the format can be easily
adjusted to the American system as you type in the program.

Program Environment

The program is set up for 45 entries. After 45 entries you will
be given the message *DATA FILE IS FULL*. This feature will
prevent your program from crashing with a MEMORY FULL
error message. If you have more than 45 addresses to enter,
you may easily divide your list into two or more files—for ex-
ample: (A-L) and (M-Z).

When you run the program, the initial title screen ap-
pears. The next display permits you to initialize the printer. Be
sure to enter the proper name and spelling of the device
you're using, because an improper name will cause the pro-
gram to break when you attempt to address the device later in
the program.

65

Applications e

Ten Options
Once the computer “environment” is established, you are
taken to the Main Index. Here you will discover ten options:

1 View Names List

2 Search for a Name

3 Add Names

4 Change Names

5 Delete Names

6 Alphabetize List

7 Save Data File

8 Load Data File

9 Print Labels/List
10 Finish Session

Of course, to create a mailing list you would first choose *
option 3 (Add Names). The other options will enable you to
update, maintain, and utilize an existing file. The program will
guide you step-by-step through the procedure for each option.
There are many helpful features, such as the Search, Change,
and Delete. You can also enter names and addresses in any
order, and then, by choosing the Alphabetize option, have the
computer sort them for you.

The Data File

The program is written to both save and load data files for
either cassette or disk storage. When you choose either the
Save or Load option, you will be given any further step-by-
step instructions.

Print Options
The program offers you two print options—one for mailing
labels, and the other for the mailing list.

The Print Labels option will print the first name, followed
by the last name, and then the address on lines two and three.
For example:

John Doe
1234 Street Address
City Province Postal Code

The Print Mailing List option will print the last name first,
followed by the first name and children’s names, with the ad-
dress on line two, and the phone number on line three. For
example:

66

S B R N

I

A

==mn Applications

Doe, John Mary Joe Sally
1234 Address City Province Postal Code
(p)-444/4456

Line spacing between addresses is flexible via a minor pro-

gram change. If you wish to alter the line spacing, program

lines 497 (labels) and 517 (list) may be adjusted by either

increasing or decreasing the number of colons (:) at the end of

each line. Each colon represents one line space. For example:

497 PRINT #2:TAB(S;;NAS(I);” ";LN$():TAB(5); AD$(I):TAB(5);
CP3$(I);” ";PC$(I):::: (Add or delete colons here.)

In the Print Labels option, you may wish to print two la-
bels per line instead of one. If so, you should adjust the line
listing as follows:

Change line 487 to:
87 FOR I=1 to N STEP 2
Change line 497 to:

497 PRINT #2:TAB(5;NAS$(I);” ";LN$(I); TAB(45;NAS$(I+1);
“ ";LN$(+1):TAB(5);AD$(I;; TAB(45);AD$(I1+1)

Add line 498:

498 PRINT #2:TAB(5);CP$(I);” ";PC$(I); TAB(45);CP$(1+1);
“rPCS(I+1)::::

The Search option permits the printing of a single mailing
label. After finding the name you are seeking, the display asks
if you would like a mailing label printed. If yes, the program
branches to the print routine and then returns to the search
option.

Mailing List Program Structure

1-21 REMs and computer environment.
23-47 Main loop, main index.

49-73 Subroutine to view names.
75-109 Subroutine to search for a name.
111-181 Subroutine to add names.

- 183-285 Subroutine to change data.

287-331 Subroutine to delete names.
333-423 Subroutine to alphabetize list.
425-441 Subroutine to save data.
443-471 Subroutine to load data.
473-521 Subroutine to print.

523-533 Subroutine to finish session.

67

Applications =

Mailing List

13
135
17

19
21

23
235
27

31

33

&3
&5
&7

68

REM XXCOMPUTER ENVIRONMENTXX
DIM LN&(45),NA$(45),CH$(45) ,ADS(45) ,CP$(45
),PCHE(43) , TPH(45)
CALL CLEAR
PRINT * ¥x{3 SPACES}>99/4A MAILING LIST
{3 SPACES>%”: 2 z =2 =2 3 = : = 3 :
INPUT " {4 SPACES3}PRESS ENTER TO BEGIN":X$
€AaLL CLEAR
PRINT "{S SPACESX3WHAT IS THE NAME OF":"
{4 SPACESIYOUR PRINTING DEVICE?": " (EX
AMPLE: RS232.BA=48¢66)": = : = : : 3 & 3

INPUT PS$

G6$="(7 SPACES3PLEASE WAIT...{7 SPACES>WHI

LE THE PRINTER IS WORKING"

REM *xMAIL LIST MENUXX

CALL CLEAR

PRINT " {8 SPACESIMAIN INDEX": : : =

PRINT “PRESS{3 SPACES3>TO": =& :

PRINT * 1 = VIEW NAMES LIST":" 2 =

SEARCH FOR A NAME":" 3 = ADD NAMES":"
4 = CHANGE NAMES"

PRINT » S = DELETE NAMES":" & = ALP

HABETIZE LIST":" 7 = SAVE DATA FILE":"
8 = LOAD DATA FILE"

PRINT * 9 = PRINT LABELS/LIST":" 18 =
FINISH SESSION": : : :

INPUT P

IF P>1g THEN 37

IF P<{1 THEN 37

CALL CLEAR

ON P GOSUB S51,77,113,185,289,335,427,445,

475,525

GOTO 25

REM{3 SPACES3¥xVIEW NAMES LISTx%xX

T=0

FOR I=1 TO N

T=T+1

PRINT NASCI) LNS(I):CHSE(I):ADS(I):CPH(I):

PCE(I):"(P)-";TPH(I): :

IF T<2 THEN 649

PRINT " %PRESS ENTER TO CONTINUEXx":" x""R

*",ENTER FOR MAIN INDEXx%x"

INPUT X&

IF X$="R” THEN 73

T=g

3

L R N R

L R

N

7

B

3

69

73
75

79
81
83

85
87
89

91

93
95
97

181
163
165

147
189
111
113
115
117
119

121
123
125
127
129

131
133
135S
137

139
141
143
145
147
149

e Applications

NEXT I

INPUT " ({7 SPACES>*END OF FILEX{9 SPACES3%
PRESS ENTER TO CONTINUExXx":X&

RETURN

REM{3 SPACES> fXSEARCH NAMESXX

INPUT "LAST NAME? ":Y$

FOR I=1 TO N

IF LN$(I)<>Y$ THEN 163

PRINT = : =" IS THE PERSON:": :°" "sNAS(
Iy):" "sLN$(I): =
INPUT * (Y/N)?": X8

IF X$="N" THEN 183
PRINT = =2 :sNA${(I), LN${(I):CH$(I):ADE(I):CP
5(1):PCS(I)-"(P)-"-TP$(I)- :

INPUT "{3 SPACESX>DO YOU WISH TO PRINT

{6 SPACES}A MAILING LABEL? (Y/N)":Z%

IF Z&<>"Y"” THEN 97
GOSUB 495

INPUT "SEARCH MORE NAMES? {Y/N)": X%

IF X$="Y" THEN 77

GOTO 199

NEXT I

PRINT = = =" THE "3;Y&:" YOU ARE SEARCH
ING FOR":" IS NOT IN THIS FILE.": : =
GOT0O 97

RETURN

REM{3 SPACES>XxX¥ADD NAMESXX¥{S SFACES>
A=N+1

FOR I=A TO 45

CALL CLEAR

PRINT : = : :"ENTER DATA: "3"#"3;1I;" {MA
X=:45)": = =

PRINT * ILAST NAME: "

INPUT LNS$(I)

PRINT =" IFIRST NAME(S):"

INPUT NA$(I)

PRINT :=* SCHILDREN:":"{3 SPACESINOTE—-D
0 NOT USE COMMAS!'”

INPUT CH$(I)

PRINT =" SSTREET ADDRESS: "

INPUT AD$(I)

PRINT :* XCITY/PROVINCE: ": " {3 SPACESINO
TE-—-DO NOT USE COMMAS!'"

INPUT CPs$(I)

PRINT =" *POSTAL CODE:"

INPUT PCS$(I)

PRINT =" SPHONE: "

INPUT TPS$(I)

v=I

69

Applications

151 REM $xVERIFY ENTRIESkX

133 CALL CLEAR

155 PRINT "ENTRY";"#";V: : :

157 PRINT "YOU ENTERED:2": :" L NE(VY3®, "3
NAS (V) ™ "iCHs (V)Y " ":ADE (VI " " CP%(
V)

159 PRINT *© ":PCE(V):" PHONE: ";TP$(V): =

161 INPUT "CHANGE ANYTHING? {(Y/N)": X%

163 IF X$<>"Y" THEN 171

165 C=N+1

167 CALL CLEAR

169 GOSUB 281

171 INPUT "ADD MORE NAMES? (Y/N)": X%

173 N=N+1

175 IF X$="N" THEN 181

177 NEXT I

179 INPUT “ {4 SPACES>*DATA FILE IS FULLX
{6 SPACES3*YPRESS ENTER TO CONTINUEXx":X$

181 RETURN

183 REM{3 SPACESIxXCHANGE DATAXX

185 PRINT " LAST NAME OF THE PERSON
{3 SPACESIWHOSE DATA IS TO BE CHANGED:":

187 INPUT C%

189 CALL CLEAR

191 FOR C=1 TO N+1 .

193 IF LN$(C)=C¢$ THEN 195 ELSE 239

195 PRINT "1S THE PERSON:":" "sNAS(C):2 " "3
ENS(C): =

197 INPUT *© (Y/N)2?2":X$

199 IF X%="Y" THEN 281 ELSE 239

2¢1 PRINT : 33 = : = : :"PRESS{3 SPACES}TO CH
ANGE": :

203 PRINT 1 = LAST NAME”:" 2 = FIRST

NAME(S)":" 3 = CHILDREN":" 4 = ST
REET ADDRESS”

285 R=C

207 R&=" XENTER THE NEW DATA:"

209 PRINT * S = CITY/PROVINCE":" & = P
OSTAL CODE»:" 7 = PHONE®":" 8 = NO
CHANGE": =z = = : : :

211 INPUT P

213 CALL CLEAR

215 IF P<i1 THEN 211

217 IF P>8 THEN 211%

219 IF P=8 THEN 229

221 ON P GOSUB 245,251,257,263,269,275,281

223 PRINT : :"MORE CHANGES FOR:":? ":NAS$(R)

70

i "sLN$(R): :

4

S S B A

-3

o

4

B

3 1

3

[

2235
227
229

231
233
235
237
239
241
243
245
247
249
251

253
255
257
259
261
263
265
287
269

271
273
2795
277
279
281

283
285
287
289
291
293
295

297
299
381
383
385
387
389
311
313

INPUT (Y/N)?":¥$
IF Y$<>"N" THEN 201

Applications

PRINT : : :"CHANGE DATA FOR OTHER NAMES?

INPUT " (Y/N)Y":Z%
CALL CLEAR

IF ZH<>"N" THEN 185
RETURN

NEXT C

RETURN

REM *xCHANGE LOOPSxX

PRINT "LAST NAME WAS:": :LNE(R): : :R$

INPUT LN$(R)
RETURN

PRINT "FIRST NAME(S) HWERE:": :NA%(R): :

:R$
INPUT NAS$(R)
RETURN

PRINT "“CHILDREN WERE:": :CH$(R)

INPUT CH$(R)

RETURN

PRINT "ADDRESS WAS:": :AD&H(R):
INPUT AD$(R)

RETURN

s :R$

:R%

PRINT "CITY/PROVINCE UWAS:": :CP&s{(R): : :

R$
INPUT CP$(R)
RETURN

PRINT "POSTAL CODE WAS:": :PC%{(R): : :R¢$

INPUT PC$(R)
RETURN

PRINT "PHONE NUMBER WAS:": :TP$(R): : :R

E

INPUT TP$(R)

RETURN

REM{3 SPACES>*tDELETE NAMESXX
INPUT "LAST NAME? ":X$

FOR I=1 TO N

IF LNS(I)<>Xs THEN 325

PRINT : = :"IS THE PERSON:":"
" "sLN$(I): =

INPUT " (Y/N)?":Y¥Y$
IF Y$<>"Y" THEN 32S
A=1

FOR D=A TO N-1
LNS(D)=LN&(D+1)
NAS (D)=NA$(D+1)
CH$ (D)=CH$(D+1)
ADH (D) =ADS (D+1)
CP$(D)=CP$(D+1)

"sNAH(I) 2

71

Applications =

315 PC&H(D)=PC&s{(D+1)

317 TP&{(D)=TP%$(D+1)

319 NEXT D

321 N=N-1

323 GOTO 327

323 NEXT I

327 INPUT "MORE DELETIONS? (Y/N)":X$%

329 IF X$="Y" THEN 289

331 RETURN

333 REM **ALPHABETIZE LIST*%x{(3 SPACES>

335 PRINT "{7 SPACES}PLEASE WAIT...":
HE LIST IS BEING ARRANGED": : : :

337 B=1

339 B=2%B

341 IF B<=N THEN 339

343 B=INT(B/2)

345 IF B=¢ THEN 3569

347 FOR Y=1 TO N-B

348 X=Y

349 I=X+B

351 IF LN$(X)=LN&(I)THEN 363
353 IF LNS(X)<LNS(I)THEN 365
355 60SUB 381

357 X=X-B

359 IF X>@ THEN 349

361 GOTO 365

363 GOSUB 373

3463 NEXT Y

367 GOTO 343

369 RETURN

371 REM Xx%ORDER FIRST NAMESX¥{3 SPACES?
373 IF NAS{X)<NAG(I)THEN 377
3753 GOSUB 381

377 RETURN

379 REM **CHANGE ORDERXX
381 N$=LN$(X)

383 LNS(X)=LN$(I)

385 LN&(I)=N$

387 NE=NAS{(X)

389 NAS(X)=NAS(I)

391 NAS(I)=NS$

393 N$=CH$ (X)

395 CH$(X)=CH%(I)

397 CH$(I)=N$

399 N&$=ADE (X)

481 ADS(X)=ADS(I)

493 ADE(I)=N$

4035 NE=CP$(X)

497 CPE(X)=CP$(I)

72

4

R B R B

I

499
411

413
8415
417
419
421

423
42S
427
429
431
433
435

437
439
441
433

445
447

449
451
453

435S
457
459
461

463
4635
467

4469
471
473
475

477
479
481
483

== Applications

CP$(I)=N$

N&=PC& (X)

PCs (X)=PC& (1)

PC$(I)=N$

N$=TP$ (X)

TPE(X)=TP$(I)

TP$(I)=N$

RETURN

REM *¥SAVE DATA FILEX*%x{(S SPACES3>
GOSUB 467

OPEN #1:L4$,INTERNAL,OUTPUT,FIXED 1350
PRINT #1:N

FOR I=1 TO N

PRINT #1:LN$(I) ,NA$(I),CHs(I) ,ADS(I),CPs
(I),PC$(1) ,TPS(I)

NEXT 1

CLOSE #1

RETURN

REM{3 SPACES>¥*xLOAD DATA FILEXX

{6 SPACES3

GOSUB 447

OPEN #1:Ls, INTERNAL, INPUT ,FIXED 1S4

INPUT #1:N

FOR I=1 TO N

INPUT #1:LN$(I),NASC(I), CH$(I),ADS(I), . CP$
(I),PCH(I) . TPE(I)

NEXT 1

CLOSE #1

CALL CLEAR

PRINT "sbLéd: THIS FILE HAS";N; "ENT
RIES.": " ¥45 ENTRIES IS MAXIMUMX": :

INPUT " ¥PRESS ENTER TO CONTINUEX": X%
RETURN

PRINT {5 SPACES>WHAT IS THE NAME OF":"
{4 SFACES2YOUR STORAGE DEVICE?": :"(EXAM
PLE: €St OR DSK1.FILE)": = = = : : : : :

INPUT LS

RETURN

REM ¥%¥SUER TO FRINT LABELS/LIST*x
PRINT "PRESS{3 SPACESX}TO FRINT":
{S SFACESIMAILING LARELS": ="
{S SPACESIXMAILING LIST": : : =
INPUT F

IF P<1 THEN 477

IF P>2 THEN 477

PRINT = : = = = = = = =z = 3 :B6%:

.

"
t-4

-

N

73

Applications ==rE————

4835
487
489
491
493
495
497

499
S¢t
Sa3
S90S
Sa7
Sa9
S11
S13
S51S

Si17
S19
521
5923

525

S27
529
531

533

74

IF P<>t THEN 585

FOR I=1 TO N

GOSUR 495

NEXT I

RETURN

OFEN #2:P$%

PRINT #2:TAB(S)i;NAS(I):" ":LN$(I)
:ADS(I) : TAB(S):CP$(I) ;" ":PC$(I)
CLOSE #2

RETURN

REM{3 SPACES}¥*PRINT MAIL LISTXX
FOR I=1 TO N

GOSUE 513

NEXT I

RETURN

OPEN #2:F$

PRINT #2:TAB(S);LN$(I):", ":NAS(I):"
(6 SPACES3":CH$(I):TAB(S):ADS(I);: "
(3 SPACESI":;CP$(I):" ":FCs$(I)

PRINT #2:TAB(6@) ;" (F)-":TF$(I): :
CLOSE #2

RETURN

REM XXFINISH SESSIONX%(S SFACES?
INPUT "(7 SFACES3DO YOU WISH TO

{16 SPACES>TERMINATE THIS SESSION?
{S SPACESI(Y/N)":X$

CALL CLEAR

IF X$<>"Y" THEN 25

PRINT "{& SFACES}HAVE A NICE DAY!":

- - - - - - -
- - - H H - -

STOrF

LU 1]
-
wp

L B

4

L.
[}
" o

3

,

A

S B

I I

1

A. Burke Luitich
TI Translation by Patrick Parrish

Basic statistical methods can help you make logical decisions
in everyday situations.

For the most part, elementary statistical methods measure a
group of similar things to see how these measurements vary
when compared to some standard. Another use for statistics is
to see how creating a group of objects can cause variations in
these objects.

This program, “Statistics,” takes your raw data and re-
turns figures which you can use to make everyday decisions,
for example, about the best way to build a wall or how much
cash you’ll need when you go shopping.

As a first example, let’s look at two ways to cut a two-by-
four by using a power table saw and a handsaw. We set the
table saw guide to one foot and cut five pieces. We cut five
more pieces using a handsaw, then measure the actual lengths
of all ten pieces to see how accurately we made the cuts.

If nothing unusual is allowed to affect the cutting, we can
expect the length of the pieces to vary depending on the pro-
cess used. Statisticians call this an unbiased random sample.

Assume the measurements are as follows:

Table saw lengths Handsaw lengths

(feet) (feet)
1.05 1.22
0.98 0.91
1.03 0.80
1.07 1.28
0.96 0.88

The Same Mean

A look at the values alone suggests that cutting with the
handsaw is a far less consistent method than using the table
saw. However, if you add up the lengths for each method and

75

Applications T

divide by 5 (the total cuts for each) you will find that both
methods give the same mean (average) length of 1.018 feet.

Just finding an average length doesn’t tell us much. What
we need to know is how widespread the values are likely to
be, and which method gave us the most lengths that were
nearer our standard of one foot. In statistical terms, we need
to calculate the range and the standard deviation.

We find the range by subtracting the shortest length from
the longest, for each cutting method. For the handsaw the
range is .48 feet (1.28—0.80), and for the table saw the range
is .11 feet (1.07—0.96). Immediately, we can see that the table
saw cut more consistently, because the range, or variation, is
smaller.

We can use the standard deviation and the mean length
to predict how often a given length is likely to occur. You
don’t have to worry about how to calculate a standard de-
viation: The program does this for you. If you type in the
above lengths for the handsaw, the program will return a
standard deviation of 0.217 feet. The standard deviation for
the table saw is 0.047 feet.

Degree of Accuracy

If we made a large number of cuts, then measured and
graphed the lengths, the graph would form a bell curve, or
normal distribution. By combining the standard deviation and
the mean length, we get a range of lengths that includes 68.3
percent of all lengths (again, you don’t have to know the the-
ory; just use the number). To illustrate, first take the mean
length, 1.018 feet, and subtract from it the standard deviation
for the handsaw, 0.217 feet, to get 0.801 feet. Then add the
standard deviation to the mean length to get 1.235 feet. This
means that 68.3 percent of our lengths fall in the range be-
tween 0.801 and 1.235 feet.

By adding and subtracting the standard deviation (0.047
feet) with the mean length of the table saw cuts (1.018 feet),
we find that 68.3 percent (roughly two-thirds) of these lengths
fall in the range from 0.971 to 1.065 feet.

If you want a wider sample, you must increase the num-
ber of standard deviations. To include 95.4 percent of all
lengths, use two standard deviations. For the handsaw, we
now have 0.434 feet, two standard deviations. Combining it
with the mean length, we get a range of 0.584 to 1.452 feet.

76

L

A

.

N I D R

N

=

rm
?NM@

mmmm Applications

Our table saw range becomes 0.924 to 1.102 feet (1.018 =
0.094).

Food For Thought

You can use the same methods to calculate a food budget. In
this case, your data consists of the amounts you spent on
groceries over a 13-week period (one-fourth of a year):

Week Amount Week Amount

1 $42 8 47
2 50 9 65
3 75 10 49
4 37 11 43
5 51 12 52
6 45 13 54
7 56

If you type this data into the Statistics program, you will find
that your mean amount spent was about $51; that your spend-
ing varied from $37 to $75, for a range of $38; that you spent
more than $50 (your medium amount) as often as you spent
less than that; and your standard deviation is about $10.

Applying the Statistics

Combining one standard deviation and the mean (or average)
amount spent, we find that two-thirds of the weeks you spend
between $41 and $61 at the grocery store. One-sixth of the
time you spend less than $41; one-sixth of your bills are more
than $61. So, if you budget $61 for groceries, you'll have
enough 84 percent of the time.

16% 68% 16%
—\ ~—
|
less $10 I $10 more
than |e { — | than
$41 one standard : one standard $61
deviation | deviation
minus | plus
$41 $51 $61
(mean)

77

Applications c=——mms—

If you want to be sure you'll have enough in case prices
rise, you might want to use two standard deviations. By add-
ing two standard deviations ($20) to the mean amount ($51),
you will find that, to be about 98 percent sure, you should
budget $71 each week.

~ There are other factors to be considered, of course, such
as vacations, birthday parties, or visiting relatives, that can af-
fect your food budget. The Statistics program does not take
these kinds of things into account. But it does give you a tool
which takes some of the guesswork out of everyday decision
making.

Statistics

168 DIM SA(IAd)

119 CALL CLEARR

120 PRINT TAR(1@) :"STATISTICS"

138 PRINT : : :

149 PRINT TAER{(13):"FOR"

158 PRINT : : :

1680 PRINT TAR(7):”"NON-STATISTICIANS”

178 PRINT : = : : : =

188 FOR K=1 TO 44¢

199 NEXT K

2% CALL CLEAR

210 PRINT "THIS FROGRAM CALCULATES THE": =
220 PRINT "FOLLOWING VALUES FROM DATA": :
233 PRINT "YOU INPUT:"

249 PRINT =@ :

259 PRINT TAB{(4):"1. MEAN"

269 PRINMNT :

2749 PRINT TAE{(4):"2. STANDARD DEVIATION"
289 PRINT :

294 PRINT TAR(4):"3. MEDIAN"

3a8 PRINT =@
314 PRINT TAR{4)
I2¢ PRINT : :
33¢ PRINT TAR{(2):;"PRESS ANY KEY TO CONTINUE"
34¢ PRINT :

35¢ GOSUER 2179

360 SUM=g

376 MEAN=g

389 DFF=¢

39@¢ SDDEV=¢g

408 RG=g

414 REM INSTRUCTIONS REQUEST

429 PRINT TABR(&6);"INSTRUCTIONS (Y/N)2"

430 PRINT = : : : : : : : : =

"4. RANGE"

78

A

14

A D B

.

440
4546
4460
47 @
489
499
Sa0
S14
S29
530
549

550
569
579
589
5998
&80
619

620
639
640
659
669
679
&80
6998
700
710
720
736
740
758
768

770
789@
790
899
810
829
83¢
849
859
860
879
889
899
ki1

=a Applications

GOSUB 217@

IF (K<>»89)x(K<>78)YTHEN 444d
IF K=78 THEN 49d¢

GOSUR 133¢@

REM DATA ENTRY

CALL CLEAR

FRINT TAR(I):"ENTER SAMPLE SIZIE ":
INFUT N

IF (N>388)+(N<{=1)THEN 499

CALL CLEAR

PRINT TAB(3);"ENTER YOUR DATA ONE VALUE"

PRINT "AT A TIME, THEN PRESS": :

PRINT "RETURN.": : : =

PRINT TAB(3);"IF YOU MAKE AN ERROR,": :
PRINT "CONTINUE WITH DATA ENTRY.": =
PRINT "YOU WILL BE ABLE TO MAKE":
PRINT "CORRECTIONS LATER.": : : =
PRINT TAB(2);"PRESS ANY KEY TO CONTINUE"

GOSUB 2179

FOR I=% TO N

CALL CLEAR

PRINT "DATA ENTRY #"31;

INPUT R$

SA(1)=VAL (R%$)

NEXT I

REM ERROR CORRECTION REGUEST

CALL CLEAR

PRINT TAB(3);"ANY CORRECTIONS (Y/N) 2"
PRINT = = 3 = 2 = = 3 3 :

GOSUB 2179

IF K<>89 THEN 778

GOSUB 1800

REM CALCULATION OF MEAN AND STD. DEVIATI
ON

PRINT TAB(9); "PLEASE WAIT": : :
PRINT "STATISTICS BEING CALCULATED"
PRINT = =2 = =2 = 23 3 =

FOR I=% TO N

SUM=SUM+SA(I)

NEXT I

MEAN=SUM/N

FOR I=1 TO N

DFF=DFF+{(SA(1) -MEAN) "2

NEXT 1

SDDEV=SAGR(DFF/ (N—-1))

REM SORT OF DATA INTO NUMERIC ORDER
FL=9

FOR I=1 TO N-1

79

Appli

919
920
939
940
959
60
970
9808
994
1809
18106
18620
1630
1649
1459
1060
1979
1080
1999
1100
1110
1129
1139

1149
1156

1169
1179
1180

1196
1209
1210
122¢
1234
1240
1256

1269
1279
12890
1299
13606
1319
13209
1339

80

cations ===

IF SA(I)<=8SA(I+1)THEN 9&@

2=8A(1)

SA(I)=SA(I+1)

SA(I+1)=@Q

FL=1

NEXT 1

IF FL=1 THEN B89¢

REM CALCULATION OF RANGE

RG=SA(N)-5A (1)
LR=8SA(1)

HR=SA (N)

REM CALCULATION OF MEDIAN
IF N/2<>INT(N/2)THEN 1098
IF SA(N/2)<>SA(N/2+1)THEN 10&0
MDD=SA(N/2)
IF SA(N/2)=SA(N/2+1)THEN 1080
MDD=(SA(N/2)+SA(N/2+1))/2

GO0TO 1119

MDD=SA{(INT(N/2+1))

REM PRINT RESULTS TO SCREEN

CALL CLEAR

PRINT TAB(S5);"CALCULATION RESULTS": :
PRINT "XXXEXKXXXEEXAXRXEXRAEIREAKAK": =
PRINT "SAMPLE SIZE";TAB{(19)3N: :

PRINT "MEAN (X BAR)";TAB(19): INT{(MEANX1
G900+ .3) /190083 : =

PRINT "STD. DEVIATION";TAB{19);:;INT{(SDDE
VX10006+.5) /10080: =

PRINT "MEDIAN";TAB(19); INT{MDDX10GGG+.5
Y/ 10000

PRINT "RANGE"; TAB(19); INT(RGX18886+.5) /
19000:
PRINT "LOWEST VALUE";TAB(1%);LR: :
PRINT "HIGHEST VALUE";TAB(I‘?) HR: = = =
PRINT TAB(8);"PRESS ANY KEY"

GOSUB 2179

REM REBUEST TO CONTINUE OR END

PRINT " WISH TO PROCESS MORE DATA": :
PRINT TAB(12)3"(Y/N)?2": = : 2 = 3 2 s 3
GOSUB 2179
IF K=78 THEN 1329
FOR I=1 TO N
SA(I)=g

NEXT 1

GO0TO 369

END

PRINT TAB(3);"THE MAXIMUM NUMBER OF EN-

Ay

N

N

;l

A

1349
1356
1369

1379
13809
1399

1400
1416
1429
1439
1449
1458

1469
1476
148¢
149@
1506
1514

1529
1538

1544
1559
15609
1579
1589
1599

1600

1619
1629
1630
1640
1650
16608
1679
1680
1699
1780
1719
1720
1739

PRINT
PRINT
PRINT

PRINT
PRINT
PRINT

PRINT
PRINT
PRINT
GOSUB

o Applications

"TRIES YOU CAN MAKE IS 3866.":
"THE MINIMUM NUMBER IS 2.": :
TAB(3)3; "THE MEAN IS THE ARITH-

LY
H

"METIC AVERAGE OF THE NUMBERS": :
"YOU ENTER.": = =
TAB(3) ; "STANDARD DEVIATION IS5 A":

"MEASURE OF HOW WIDELY YOUR": :
"NUMBERS SPREAD FROM THE": =
"AVERAGE.": = =

2160

CALL CLEAR

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
GOSUB
RETURN
REM DI
GOSUB
IF (K<

TAB(3) ; "SINCE THE VALUES YOU ENTE

"TEND TO FORM A BELL CURVE": :
" {NORMAL DISTRIBUTION), THE":
»STD. DEVIATION IS A MEASURE":
"OF THE AREA UNDER THE BELL":
"CURVE.": = =

TAB(4):;"NO. OF STD.{4 SPACES}Z AR

TABR(S); "DEV. (+/—)"

TAB{(4) 3" ——————————— {4 SPACES}-———
TAB(8);"1{11 SPACES>68.3"
TAB{(8):;"2(11 SPACES}95.5"
TAB(8);"3(11 SPACES}99.7"

TAB(B8);"4{11 SPACES}99.9": : :
2160
TAB(3); "THE MEDIAN IS THE VALUE A

"THE MID-POINT OF YOUR DATA.": :

TAB(3) ; "THE RANGE 1S THE DIF-":
"FERENCE BETWEEN YOUR LOWEST":
"DATA VALUE AND THE HIGHEST.":
"IT IS A BUICK-AND-DIRTY": =
"ESTIMATE OF THE SPREAD.": :
"STANDARD DEVIATION IS MORE": =
"RELIABLE, HOWEVER.": : : :
TAB(3) ; "PRESS ANY KEY TO START"
217¢@

SPLAY CORRECTION OPTION
2179
>67)X(KL>T78) X (K<>8B1)THEN 172¢

81

Applications m=mmwmprmmmm

1749
175a
1763
1779
1789
1799
18aa
1810

1829
1834
1840
1850
1869
1874
1889

1899
1906
1916
1926
1939

1949
1959
1969
1974
1989
1999
2000
2019
20209
2936
2049
2050
2060
2070
2080
2098
2199
2119
2129
2139

82

FL=0

IF K<>78 THEN 17868

FL=1

GOTO 198@

IF K=B1 THEN 778

REM ERROR CORRECTION SUBR

PRINT "REMEMBER INCORRECT SAMPLE #":
PRINT TAB(11);"(Y/N) 2”2 = = = : 3 :

GOSUR 2179

IF K=78 THEN 1989

INPUT "WHAT IS THE SAMPLE # ? ":EN$
EN=VAL (EN$)

IF (EN>N)+(EN<K1)+{EN<C>INT(EN))THEN 184@
PRINT = :

PRINT "SAMPLE";;EN;"(3 SPACES>"; "VALUE="
s SA{EN)

PRINT : :

PRINT "ENTER YOUR NEW VALUE : "

INPUT SA(EN)

PRINT = : = = :

FRINT TAB(3)3;"ANY MORE CHANGES (Y/N)?":

GOSUB 2179

CALL CLEAR

IF K=78 THEN 779

GOTO 1899

IF FL=1 THEN 2029

PRINT "THESE ARE THE FIRST TEN":
L=1

GOTO 284a@

CALL CLEAR

PRINT "THESE ARE THE NEXT TEN": :
PRINT "VALUES.": : :

PRINT TAB(S);“ENTRY";TAB(lS);"VALUE": :
FF=9

FOR L=L TO L+9

FF=FF+1

IF L>3006 THEN 779

PRINT TAB(3);L; TAB(15);8A(L)

NEXT L

PRINT :

PRINT "C=CHANGE DATA(3 SPACESIN=NEXT TA
BLE":

-

A

2149
2159
2169
2179
21890
2199
2200

(=28

PRINT TAB(12);"@=QUIT"
6070 1729

A A O T T T

Applications

PRINT TAB(3);:"PRESS ANY KEY FOR MORE";

CALL KEY(8,K,S)
IF S=6 THEN 2179
CALL CLEAR
RETURN

83

e Raymond]. Herold

Spreadsheets are exceptionally useful tools: for calculating,
modeling, or predicting. This program creates a spreadsheet
of ample size (26 rows by 14 columns). For the TI-99/4A
with Extended BASIC.

“Tlcalc” is an electronic spreadsheet program for the TI-99/4A
computer with Extended BASIC. Electronic spreadsheets, use-
ful and popular programs, allow the user to answer a mul-
titude of “what if”” questions in areas such as budgeting, sales
projections, cost estimating, scheduling, and more.

Spreadsheets allow you to enter a set of values and
calculation rules for a given application, such as budgeting.
The program will then calculate the projections, estimates, to-
tals, or whatever, based on the calculation rules. Changing one
or more of the original values results in a complete recalcula-
tion of the figures. The special utility of spreadsheet programs
lies in their ability to do, in a few seconds, what a human—
with pencil, paper, and calculator—would need hours, or even
days, to do.

Program Requirements

Before explaining how to use Tlcalc, let’s establish the ground
rules for the program. First, it requires at least a 16K TI-99/4A
with Extended BASIC. Although the Tlcalc spreadsheet is 26
rows by 14 columns, with 16K of memory built into the TI
console, you are limited to roughly 150 “slots.” For example,
you could have a spreadsheet that is 12 X 12, 15 X 10,

20 X 7, or 10 X 14. You will find this adequate for almost all
applications. Those of you who have the 32K memory expan-
sion can use the complete 26 X 14 spreadsheet. When using
the program, you should leave the ALPHA LOCK key
depressed.

Spreadsheets can be saved and loaded from tape. If you
have a disk drive, you can change the OPEN statements in
lines 1950 and 2000 accordingly. The use of a printer is op-
tional, but the program does provide the option of making a
printout of your results.

84

UL N R R

TR A L i T BT

Applications

The Tlcalc spreadsheet is 26 rows by 14 columns (see Fig-
ure 1). The rows of the spreadsheet are defined by the letters
A-Z. The columns are defined by A-N. Note that any slot in
the spreadsheet is referred to by row and column. For ex-
ample, slot CD would be the entry at row 3, column 4; AF
would be row 1, column 6. It's important that you keep this
sequence in mind.

The TI-99/4A is not capable of displaying the entire 26 X
14 array. What will appear on your screen is a 10 X 3 “win-
dow” on the spreadsheet. Just as looking into different win-
dows of a house shows different things, the computer’s
window shows different “views” of the spreadsheet, depend-
ing on where the window is positioned. A window’s position
is defined by its top-left slot. Looking again at Figure 1, notice
that the shaded area marked A is the 10 by 3 spreadsheet
window at AA (remember, row and column). The shaded area
marked B is the window at IH. By moving the window, the
entire 364-slot spreadsheet is accessible 30 slots (a window) at
a time.

The best way to demonstrate Tlcalc is by example. You
should spend a few minutes getting acquainted with the com-
mand summary shown in Table 1. Also, you might want to
examine the list of major program variables shown in Table 2.
The following paragraph will detail a somewhat simplistic sce-
nario for our demonstration.

Starting a Business

We are starting a small manufacturing business and want to
estimate our net profit or loss for the first four months. We are
anticipating sales of $2,700 the first month and a 10 percent
growth rate for each succeeding month. Space is being leased
for $800 a month, and there are two employees making a total
of $1,200 a month. Cost for materials is based on sales and is
expected to be 30 percent, while utilities are expected to run at
roughly 5 percent of sales.

When the program begins, it displays the window with a
HOME position of AA. That is, it is displaying rows A through
J and columns A, B, and C. The COMMAND —> prompt is
displayed, and the program is awaiting your reply. Since the
first thing we want to do is enter spreadsheet data, reply IN-
SERT. This places the cursor (actually two sprites at line 860)
at the top-left slot in the window, in this case AA. The prompt

85

Applications L TS T Td

Figure 1: Windows on the Spreadsheet

ABCDEFGHI JKLMN

A 7

B(//

cj//

D 1] /

E | AV

FLK//

G [V,

H_///

I 7

;L v

K //

L

M 18y

N A V]

P bos
%

Q %

R A

S

T

U

\'

w

X

Y

z

asks for an INSERT COMMAND?. Figure 2 shows the data we
plan to enter (refer to it as we go along). As you can see, there
isn’t any data for AA, so we press X({) to move the cursor
down to CA.

At this point we want to place the label SALES in the CA
slot, so we press L. The prompt then asks us what the label is
and we type SALES. When we press ENTER, the label is
placed in CA. We then press X(!) again to get to DA and enter
the label RENT. Continue this for all the labels in column A.
Then use the arrow keys (really E, S, D, and X) to place the
cursor at AB, where you enter the label JANUARY. Then
move the cursor down to CB.

86

!

3

}

S R R R B

s Applications

This slot is to be the amount of our first month’s sales, so
press N for numeric value. The prompt asks for the number;
respond 2700 and press ENTER. Do the same for RENT at DB
and SALARY at EB. At FB we come to the first calculation, so
press C. Remember that material costs are expected to be 30
percent of monthly sales. Therefore, we need to multiply
SALES by .30. The .30 will have to be stored as a value in a
“workfield” outside the main body of the spreadsheet. We will
arbitrarily make this B] and make a note to ourselves to add
the value after finishing the main portion of the spreadsheet.
So, the calculation becomes JANUARY SALES (CB)*.30(B]J) or
CB*BJ. Refer to Table 3 for examples of valid calculations. An
error detection routine enforces valid syntax.

We then position the cursor at GB, which is January util-
ity costs. This is similar to material costs, and we make a note
to store the 5 percent figure at CJ. Press C and then enter
CB*CJ. The cursor is then positioned at IB, which is the slot
for total January expenses. This is again a calculation, so press
C. Enter the calculation command SUMCOLDG, which means
sum this column starting at row D (RENT) and ending with
row G (UTILITY) and place the result in this slot. The cursor
is then placed at JB, which is the NET PROFIT/LOSS for
January. This is simply SALES (CB) minus TOTAL
EXPENSES(IB) or CB—IB.

Next, position the cursor at AC and enter the February la-
bel. When you position the cursor at February SALES, you’ll
see that you no longer have a number, but rather a calcula-
tion. Sales are assumed to be 10 percent greater than each pre-
vious month, so make a note to store 1.10 at AJ and enter the
calculation CB*AJ, which is January SALES*1.10. The remain-
der of the column is entered in a manner similar to the entries
for January, adjusting for the proper row/column designators.

At this point, all the slots for the window being displayed
have been entered, so you'll need to move the window. First
press Q to exit from INSERT mode. When the command
prompt is displayed, enter HOME and press ENTER. When
asked for row and column, enter AD. The window will be
moved to view rows A through J, columns D, E, and F. Type
INSERT and press ENTER to get back into INSERT mode. The
columns for March and April can now be entered as were the
columns for January and February. Column F, the total col-
umns of the calculation, is a little different. The SUMROWBE

87

Applications

A T B TR

4f%4D 41-40 q1-3d ar-ad J1-20 41-90 —/+ 13N
d1%4D S5AT0ONNS |9ATOONNS [9AT0DANS |DATOINNS | DATODNANS |dXA LOL
49%4D FAMOYNNS |[D.3D 0. 5.0 .90 ALITILA
44%4D IgMOYNNS | 4.3 14.ad> {8.00 [(:%8: ») TVINALVIN
43%4D IgMOYNNS |oozL 00zt 0o0z1 00T1 X4V1VS
1a%3D FIgGMOUNNS |oo8 008 008 008 INTA

s0° 1EMOYNNS |[v.ad v+ V.40 0042 SATVS

o

o't STTVS % ~IVLOL- 44V HOYVI AMVNYEad | KIVANVI

{ H o 4 a a) : A4

- e

< m O Q0 mw O I

3oayspeaids Jjdwexy ‘g danS1d

88

=ma Applications

command tells Tlcalc to total the row starting at column B
(January) and ending at column E (April), and place the result
in the current slot.

We have again filled the window being displayed, so
press Q to exit INSERT mode. Typing the HOME command
and then AG gives us slot AG in the top left of the screen.
Type INSERT again and enter the calculation rules to give
each expense, the total expense, and net as a percent of sales.
Finally, exit (Q), HOME on A]J, INSERT, and enter the
workfield values for A, B], and CJ. Type Q to get back to
command mode. At this point, you've completed your work-
ing copy (MODET1) of the spreadsheet.

Procedures

Now you can use the CALC command to calculate the result
of the working copy. The calculation will take anywhere from
a few seconds to a few minutes, depending on the size of the
working copy and the number of calculations. When the
calculation is complete, the program will automatically go into
MODE?2 and set the HOME row and column to AA. You can
then view the results by moving the window, using the
HOME command. Figure 3 shows the results from the sample.
If you want to see the calculation that gave a particular result,
you can type MODE]1 to see the original working copy as
shown in Figure 2. Typing MODE2 will return you to the “re-
sult copy.” This is particularly useful in finding errors.

Figure 3. Printout of Example Worksheet

Results

JANUARY FEBRUARY MARCH APRIL -TOTAL- % SALES

SALES 2700 2970 3267 35937 12530.7
RENT 800 800 800 800 3200 25.53
SALARY 1200 1200 1200 1200 4800 38.3
MATERIAL 810 891 980.1 1078.11 3759.21 30
UTILITY 135 148.5 163.35 179.68 626.53 4.99
TOT EXP 2945 3039.5 3143.45 3257.79 12385.74 98.84
NET +/— —245 —69.5 123.55 335.91 144.96 1.15

The Daisychain Effect

Anytime Tlcalc encounters a calculation it cannot complete
when in its calculation mode, it will fill the current slot with
all *. This kind of error is usually caused by one of two con-
ditions. The first is when a calculation refers to a slot which is
not defined as a number or calculation, For example, if our

89

Applications m==

sample had a calculation CB*AH, the result would be an error
because slot AH has no value. If a slot contained a label, the
same error would occur. The second type of error occurs when
a current calculation points to a slot that contains a calculation
which previously contained an error. In this case, the current
calculation is correct, but the calculation it refers to must be
corrected. This type of error tends to have a daisychain effect.

All calculations are taken to a maximum of two decimal
places. There is no provision for rounding. Also, all calcula-
tions are carried out in row/column sequence. That is, AA is
processed first, then AB, AC, AD, then BA, BB, BC, and BD.
This is very important to understand since errors will be gen-
erated if you reference a slot which has not yet been pro-
cessed. For example, if slot AC contains the calculation
AB*BC, an error will occur since BC has not yet been pro-
cessed. Thus, the selection of AJ, B], and CJ for workfields is
not as arbitrary as it first appears.

Printing and Saving

You can print the result of the calculation by using the PRINT
command. It will print all rows for the beginning and ending
columns you specify. Figure 3 was produced by PRINTing for
columns A through G. You may have to adjust the OPEN
command at line 2070 for your particular printer.

You may save a spreadsheet or load one from tape. Note
that if you load a spreadsheet from tape, only the working
copy is loaded. You will have to issue the CALC command to
compute a result copy.

The usefulness of Tlcalc may be demonstrated by using
our sample. If, after the first month, there were any deviations
from the assumptions made at the outset, or if you wanted to
see what a higher or lower sales figure would do, you would
merely need to change the desired variable(s) and recalculate.

Table 1. Ticalc Command Summary

Command Action

HOME Aligns the Tlcalc window to the desired row/column.

INSERT Places Tlcalc in INSERT mode; defaults to MODEI1 (see
subcommands below).

MODE1 Displays the working copy; automatic for INSERT.

MODE2 Displays the result copy; automatic after CALC
command.

90

4

S RS R R

CALC

LOAD
SAVE
PRINT

LG T L

Calculates the results for the values and calculations in
the working copy; invokes MODE2 at completion.

Load a spreadsheet from tape.
Save a spreadsheet to tape.
Print spreadsheet.

INSERT Subcommands

Subcommands Action

~S)
~(D)
(E)

HX)
L

N
C

Q

Table 2. Major Program Variables

Variable

A$(r,c)
B$(r,c)
COMMS$
ROW
COL
RC$
MODE
LOC$
R

C

X

Y

SR

SC

L$

N$

C$
RM
CM
RLIM
CLIM

Move cursor left.
Move cursor right.
Move cursor up.
Move cursor down.

Applications

Indicates a label is to be placed in the current cursor

position.

Indicates a numeric value is to be placed in the cur-

rent cursor position.

Indicates a calculation is to be placed in the current

cursor position.

Quit; return to command mode.

Use

Working copy array

Result copy array

Command entered

Row shown at top left of window

Column shown at top left of window

A through Z values
MODE]1 or MODE2 indicator

Row/column desired by HOME command

Loop control—row

Loop control—column

Row DISPLAY AT position
Column DISPLAY AT position
Cursor row position

Cursor column position

Label entered

Number entered

Calculation entered

Highest row number used
Highest column number used
Row limit for display window
Column limit for display window

91

Applications

s T T e

Table 3. Valid TIcalc Calculations

OPERATORS +,—.%,/,%
SUMROWXY Where X is the beginning column and Y is the end-

ing column

SUMCOLXY Where X is the beginning row and Y is the ending

row

Examples

AB*CG

AL—AI

EF+AH

BC/CA

AB+CB*BC

AB+CB+CA Processed left to right
CB/AB—CH

SUMROWCF

SUMCOLAH

Ticalc

1aa
110

124
1350
149

150
160

170

189
199
200
214
220
230
249
259
269
270

289

92

DIM A$(26,14) ,B$(26,14)

CALL CHAR(946,"FFFFFFFFFFFFFFFF"): s CALL
COLDR(?2.13,1)

ROW=1 :: COL=1 :: RLIM=1ig :: CLIM=3

RC$="ABCDEFGHIJKLMNOFPBRSTUVWXYZ"

CALL CHAR(1@4,"FFFFEQOEGEGEGFFFF"):: CALL
CHAR (185, "FFFF@7@707@7FFFF"):: CALL COL

OR(14,7,1)

CALL CLEAR :: CALL SCREEN(9)

DISPLAY AT<(S.7):"E A S Y C A L C" z: DIS

FLAY AT(9,9):"ELECTRONIC" :: DISFLAY AT(
11,9): "SPREADSHEET"

FOR DELAY=1 TO 2d@8 :: NEXT DELAY

CALL CLEAR :: CALL SCREEN(8)

CALL HCHAR(4,3,96,29)

CALL VCHAR(5,4,96,19)

CALL VCHAR(5,13,96,19)

CALL VCHAR(5,22,96,19)

GOSUR 3I4¢ :: MODE=1

DISPLAY AT(1,1):"COMMAND: ——-~-3>" :: ACCEP

T AT(1,15)SI1ZE(6)BEEF:COMMS

IF SEG$(COMMS$,.1,4)="HOME" THEN 410

IF SEG$(COMME,1,.6)="INSERT"” THEN 72¢

IF SEG$(COMM$,1.5)="MODE1"” THEN GOSUR 52

g :: GOTO 244

IF SEG$(COMM$,1,5)="MODE2" THEN GOSUE &2

@ = GOTO 2449

i

)

290
Iag
310
324¢
3I3g
340
350

J60
370
384

3¢
aao
419

420
43
440

459
469

470
489
49@
Sog
S19
S2a
S3@
S49
550
S60
S79
S84
Sod
(-3 217
61a@
&20
639
649
bS@
66¢
67¢
6840
690
70
710

2 Applications

IF SEG$(COMMS$,1,4)="CALC" THEN 1374

IF SEG$(COMM$,1,4)="SAVE" THEN 1950

IF SEG$(COMMS$,1,4)="L0OAD" THEN 2404

IF SEG$(COMMS$,1,S)="PRINT” THEN 2d5&
GOTO 249

FOR LOOP=2 TO 26 STEF 2

DISPLAY AT(3+L0O0OP,1):SEGS (RC$,ROW+ (LDOF/
2)-1,1)3

NEXT LOOF

FOR LOOP=6 TO 2& STEP 9

DISPLAY AT(3,L00F):SEG$(RC$,COL-1+(LOOF/
8),.1)

NEXT LOOF

RETURN

DISPLAY AT(1.1):"ROW/COL ---3 .." :: ACC
EPT AT(1,14)VALIDATE (RC$)SIZE (-2)BEEP:LO
C$

IF SEB$(LOC$,.2,1)="." THEN 41d
IF SEG#(LOC$,.2,1)>"N" THEN 41d
ROW=(ASC(SEG${LOC%,1.1))—-64):: IF ROW>17

THEN ROW=17

RLIM=ROW+9
COL=(ASC(SEG$(LOC$,2,1))-64):: IF COL>12
THEN COL=12

CLIM=COL+2

GOSUR 3449

IF MODE=1 THEN GOSUER S2d

IF MODE=2 THEN GOSUER 624

GOTO 249
X=5 :: FOR R=ROW TO RLIM
Y=3

FOR C=COL 70O CLIM

DISPLAY AT(X.,Y):"{8 SPACES:>";
DISPLAY AT(X,Y):SEG$(A$(R,C),3.8);
Y=Y+9

NEXT C

X=X+2

NEXT R

MODE=1 :: RETURN

X=5 :: FOR R=ROW TO RLIM

Y=3

FOR C=€0L TO0 CLIM

DISFPLAY AT{(X,Y):"{8 SPACES}":
DISPLAY AT{X,Y):EBHs(R,C)
Y=Y+9

NEXT C

X=X+2

NEXT R

MODE=2 :: RETURN

93

Applications commmmmmms

720
730

740
756

769

770
789
790
8090

819
820
839
849
859
860

870
889

899
900
9106
920
938

49
959
960

978
9806
99ad
1000
1010
1929
1930

1840
1959

IF MODE=2 THEN GOSUB 528

SR=32 :: SC=32 :: R=ROW :: C=COL :: X=5
:: Y=3

GOSUB B&9

DISPLAY AT(1,1):"INSERT COMMAND?" :: CAL
L SOUND(2¢9,1199,4)

CALL KEY(3,KEY,STATUS):: IF STATUS=¢ THE
N 769

IF KEY=76 THEN 88¢

IF KEY=78 THEN 939

IF KEY=67 THEN 1939

IF KEY=81 THEN CALL DELSPRITE{(ALL):: GOT
0 2490

IF KEY=83 THEN 125¢g

IF KEY=68 THEN 128¢

IF KEY=469 THEN 1319

IF KEY=88 THEN 1349

GOTO 759

CALL SPRITE(#1,164,7,SR,S5C,0,0,#2,1085,7,
SR,5C+56,0,9)

RETURN

DISPLAY AT(1,1):"LABEL: —-->" :: ACCEPT
AT(1,13)SIZE(B)BEEP:L$

DISPLAY AT(X,Y):L%$;

AR, C)="L:"&LS

RM=MAX (RM,R):: CM=MAX{(CM,C)

GOTO 749

DISPLAY AT{(1,1):"NUMBER: --->" :: ACCEPT
AT(1,14)SIZE(B8)VALIDATE("@1234546789. —+"
YBEEP:N$

WE="" 2: W=g

FOR Z=8 TO 1 STEP -1

IF SEGE(N$,Z,1)<{>"" THEN Ws=SEGE (N%,Z, 1)

&Wes ELSE W=W+1

NEXT 2z

WE=RPTSH{(" ",W)&WS

DISPLAY AT(X,Y):W$;

AS (R, C)="N:"&W$

RM=MAX(RM,R):: CM=MAX(CM,C)

GOTO 749

DISPLAY AT(1,1):"CALCULATION: ———>" ::

ACCEPT AT(1,19)S1ZE(8)BEEP:C$
IF SEG4(C%,1,56)="SUMROW" THEN 119¢
IF SEG$(C%,1,6)="SUMCOL" THEN 119¢g

1668 AAS=SEGS(CH,3,1)

1970

94

IF AAS$="+" OR AA®="-" OR AAEt="%" OR AAS$
="/" 0OR AA$="7%Z" THEN 18699

I B B

B

1989

1690

11006

1110

1120

11306
1149

1159
1160

1179

1180

1199

1200

1219
12206
1239
1246
1250
1269
127@
1289
1290
1300
1310
1328
133¢
1349
135@
1360
13798

1389
139a

Applications

DISPLAY AT(1,1):"%%x% ERROR ¥%x" :: FOR
DELAY=1 TO 1266 :: NEXT DELAY :: GOTO 1
830

AAS=SEG$(C$,1,1):: IF AAS<"A" OR AAS>"Z
" THEN 1080

AA$=SEG$(C$,2,1):: IF AASI"A" OR AAS>"N
" THEN 1080
AAS=SEG$(C$,4,1):
" THEN 1980
AAS=SEG$(CS$,5,1):
* THEN 1080
AAS=SEG$(C$, 6, 1)

IF AAS<"A" OR AAS>"Z

IF AAE<"A" OR AAS>"N

IF (AA%S="" OR AA%$=" ")AND(SEGS$(CS$,7,2)<
>** AND SEGS(Cs,7,2)<>" ")THEN 1980

IF AA%E="" OR AA%=" " THEN 1219

IF AAS$S="+" OR AA%="-" OR AAHs="%" OR AAS

="/" OR AA$="7%" THEN 1179 ELSE 1989
AAS=SEGH(CSs,7,1):: IF AAE<"A" OR AAS>"Z
" THEN 1089

AAS=SEGH(C%,8,1):: IF AAE{"A" OR AA$>"N
" THEN 1086

IF SEG$(C%,4,3)="ROW" THEN IF SEG$(C$,7
+1)<"A" OR SEG$(C$,7,1)>"N" OR SEG®(CS%,
8.,1)<"A” OR SEG%(C%,8,1)>"N" THEN 108¢
IF SEG$(C$,4,3)="COL"” THEN IF SEG$(C&%,7
s 1)<"A" OR SEG${(C$,7,1)>"2Z" OR SEG$(CS,
8,1)<"A" OR SEG%(C$,8,1)>"Z" THEN 1986
DISPLAY AT(X,Y):Cs%;

AS(R,C)="C:"%C$

RM=MAX(RM,R):2: CM=MAX{(CM,C)

GOTO 749

IF SC-72<32 0OR C-1<1 THEN 759

SC=5C-72 :: C=C-1 :: Y=Y-9

GOTO 749

IF SC+72>176 OR C+1>26 THEN 759
SC=8C+72 :: C=C+1 :: Y=Y+9

GOTO 749

IF SR-16<32 OR R-1<1 THEN 759

SR=SR-16 :: R=R-1 :: X=X-2

GOTO 749

IF SR+16>176 OR R+1>26 THEN 75¢g
SR=8R+16 :: R=R+1 :: X=X+2

GOTO 749

DISPLAY AT(1,1):"CALCULATION IN PROGRES
sll

FOR R=1 TO RM

FOR C=1 TO CM

95

Applications cer=—mmr—

1466

1419

1429
143¢@
1440
14359
1464
147@
1489

14908

1509

1520

1530
1549

1559
1569

1579
1584
1598
16798

16149
1620
1636
1648
1650
1669
1679
1689
146949
1766
1714

1729

96

A

IF SEGH(AS(R,C),1,2)
Cr,1,2)="Nz"
3.8

IF SEG$(A$(R,C),1,2)
70

NEXT C

DISPLAY AT{(1,.25):R
NEXT R
MODE=2 ::
GOTO 449
IF SEG$H(AS(R,C),.3,3)
Ri1=ASC(SEG$ (A% (R,C) ,

LOCs="AA"

="L= n

OR SEG${A% (R,

THEN B$(R,C)=SEG%(A%(R,C),

THEN GOSUB 14

=" n

THEN 177¢
C1=A8C(

- " SUM ”
3.1))-64 ::

SEG$(A$(R,C),4,1))-64

R2=ASC(SEGSs (AS(K,C) ,

6.1))-64 :: C2=A5C(

SEGH(A$ (R, C),7,1))-44

IF SEG$(A$(R,C),9,1)

EG$ (A$(R,C),9,1))-564

R,C),18,1))-64
IF SEG$(A$(R1,C1),1,
$(R1,C1),1,2)<>"Cz"
XX%" :: RETURN
IF SEG$(A$(R2,C2),1,
$(R2,C2),1,2)<>"C:"
¥X%" :: RETURN
IF SEGS(A$(R,C),9,1)
IF SEG$(A$(R3,C3),1,
$(R3,C3),1,2)<>"C: "
X¥X" :: RETURN
ON ERROR 1924
Wi=VAL(B$(R1,C1))::
IF SEG${A%$(R,C),9,1
$(R3,C3))

Wa=9 :: F$=(AS(R,C))
IF SEG$(F$,5,1)="+"
IF SEGS(F$,5,1)="-"

IF SEGH{(F$,5,1)="%"

IF SEG$(F$,5,1)=","
IF SEG$(F$,5,1)="%"
IF SEG$(F$,8,1)="4+"
IF SEG${F%,8,1)="-n
IF SEG$(F%,8,1)="x%"
IF SEG$(F$,8,1)="/"
IF SEG$(F$,8,1)="%"
IF INT{(W4)<>W4 THEN
R$=STRE(W4):: WE=""
FOR Z=8 TO 1 STEP -1
IF SEG$(R$,Z,1)¢>""
YUWS ELSE W=W+1

NEXT Z

>="A" THEN R3=ASC(S
t: C3=ASC(SEGH (A%

2)<>"N:" AND SEG$(A
THEN B$(R,C)="%%%¥x

2)C>"N:" AND SEG$ (A
THEN B${R,C)="%%x%x%xX

<"A" THEN 1559
2)<>"N:" AND SEG&(A
THEN B$(R,C)="%%%x%xX

W2=VAL (B&(R2,C2))::
)X"AY THEN W3I=VAL{(RB

THEN
THEN
THEN

THEN
THEN
THEN
THEN
THEN

Wa=W1+W2
W4=W1-W2
WaA=W1ikW2
Wa=W1/W2
WA=W2/W1 X100
WA=WA+W3
WA=W4-W3
WEA=W4%XxW3
THEN W4=W4 /W3
THEN W4=W3I/W4a4Xx100
WA4=INT (W4 X153) /1083
:: W=g

THEN W$=SEGH(R$,Z,1

N S N

1730
1749
1750
1769
17708
1780
17968
1800
18198

1820
1839

1849
1859
1860
1879

1889
1899

1909
1910
1920
1930
1949
1959

1969
19789
1989

1999
20909

20190

2029
2030

29049
20509

2060

rE— Applications

WS=RPTS (" ", W) LWS$

B$(R,C)=Ws

ON ERROR STOP

RETURN

IF SEG$(A$(R.C),6,3)="ROW" THEN 1848

IF SEB$(A$(R,C),6,3)="COL" THEN 1860
RETURN

Wa=@ :: ON ERROR 1920

V=ASC (SEG$ (At (R,C),9.1))-64 :: W=ASC(SE
GE(AS(R,C),18,1))-64

FOR Z=V TO W

IF SEG${(A$(R,Z),1,2)="N:" OR SEGS$ (A% (R,
2),1,2)="C:" THEN WA=W4+VAL (B$(R,Z))
NEXT Z

GOTO 1686

Wa=¢ :: ON ERROR 1920

V=ASC(SEG$ (A$(R,C),9,1))-64 :: W=ASC(SE
G$(AS(R,C),168,1))-64

FOR Z=V TO W

IF SEG$(A$(Z,C),1,2)="N:" OR SEG$(A$(Z,
C),1,2)="C:" THEN W4=W4+VAL(B$(Z,C))
NEXT 2

GOTO 1680

BS(R,CI="2XEXKALX"

RETURN 1940

RETURN

CALL CLEAR :: OPEN #1:"CS1",0UTPUT, INTE
RNAL,FIXED 192

PRINT #1:CM;RM

FOR Z=1 TO RM

PRINT #1:A%(Z,1)3A$(Z,2):AS(Z,3);AS(Z,4
):A(Z,5);AS(Z,8);A(Z,7)AS(Z,B):A$(Z,
9);AS(Z,18);A$(Z,11);AS(Z,12);A$(Z,13);
AS(Z,14)

NEXT Z :: CLOSE #1 :: GOTO 184

CALL CLEAR :: OPEN #1:"CS1",INPUT ,INTE
RNAL,FIXED 192

INPUT #1:CM,RM

FOR Z=1 TO RM

INPUT #1:A%$(Z,1),A$(Z,2),A$(Z,3),A$(Z,4
), A$(Z,5) ,AS(Z,6) ,AS(Z,7),AS(Z,8) ,A$(Z,
9),A$(Z,19) ,A$(Z,11) ,A$(Z,12) ,AS(Z,13),
AS(Z,148)

NEXT Z :: CLOSE #1 :: GOTO 188

DISPLAY AT(1,1):"BEGIN/END COLUMN .." :
: ACCEPT AT(1,18)SIZE(-2)BREEP:C$

IF SEG$(C$.1,1)<"A" OR SEG$(C$,1,1)>"Z"
OR SEG$(C$.2,1)<"A" OR SEG$(CH,2,1)>"N
“ THEN 2859

97

Applications ermmmrmmm—

2073
26849

2099
2199
211a
2129
2139
2140
2150
2169
2170

98

OPEN #2:"RS232",0UTPUT,DISPLAY
I=ASC(SEG$(C%,1,1))~464 :: J=ASC{(SEGH(CS
22:,1)) 64

FOR L=1 TO RM

FOR M=1 TO J

P$=RPT$(" ",186-LEN(B$(L,M)))&BS$ (L, M)
PRINT #2:Ps$;

NEXT M

PRINT #2:" " :: PRINT #2:"

NEXT L

CLOSE #2

GOTO 249

=y

)

A

|

]

Doug Hapeman

Interest rates can be a disappointment or a pleasant surprise
if you are paying interest on a loan or earning interest on
your savings. “Financial Interests” can help you make sense
of such mysteries as amortization and compound interest
before you sign on that bottom line. You'll also learn a few
things about finance in general. For the TI-99/4A, with Ex-
tended BASIC, and 16K memory.

“Financial Interests” allows you to calculate both the value of
investments and the cost of borrowing.

You may be considering a savings investment fund. This
program helps you examine savings and annuities with vari-
ous compound periods and rates, letting you see the future
value of your money. Or, if you're considering a loan, you can
weigh the options of various amounts, rates, and amortization
periods, and then choose the best alternative.

Simple and Compound Interest

To understand finance, you must grasp the idea of interest.
There are two types: simple (or fixed) interest and compound
interest.

For instance, if you borrowed $1000 and agreed to repay
it with 12 percent interest, you would repay the principal
amount ($1000) plus the 12 percent ($120)—regardless of the
length of the repayment period. However, if you agreed to re-
pay the loan at 12 percent per annum, the loan has compound
interest. Now, 12 percent interest will be added onto the
outstanding debt each year during the repayment period.

The more frequent the compounding, the more costly to
the borrower. Today, most banks compound the interest
monthly on personal loans for cars, household items, vaca-
tions, etc.

For once, wouldn't it be nice to sit down with the loan
officer in the bank and know what your options are before
you sign on the dotted line? One of the frustrating things
about negotiating a loan is having to make a decision when
you don't fully understand all the options.

99

Applications coswmmmmmmx

For instance, when you're buying a new car, contrasting
the differences between a 36-month and a 48-month repay-
ment period can be helpful. How will the different periods
affect the size of the monthly payment? How much more in-
terest is paid in a 48-month amortization than in a 36-month
period? What portion of each monthly payment is for interest?
For principal?

This program, Financial Interests, will help you examine
all those options and will even print them out on paper for
you. The calculations used in the program are based on the
assumption that the interest is compounded monthly and that
payments will be made monthly.

The Dead Pledge

The word mortgage comes from two French words, mort (dead)
and gage (pledge). The pledge becomes dead when the loan is
paid off. To amortize means to deaden. To amortize a mort-
gage or a loan is to extinguish it by means of a “sinking
fund”—a series of payments over a period of time which will
reduce the debt to zero.

By the way, a mortgage deed is sometimes called an
indenture. The word simply means an agreement between two
or more parties, but its etymology is pretty interesting.

Many years ago, (before carbon paper and photocopiers)
such an agreement would be penned in two original copies.
The copies would be placed evenly, one on top of the other. A
wavy line, or indentation, would literally be cut along one side
of the copies. Each party would then receive one of the
papers. When the two were later placed together, the wavy
cutting would match. Thus, authenticity was established. The
indentation matched.

Loans Vs. Mortgages

Everyone knows the difference between a loan and a mort-
gage, right? They're the same thing except you amortize a
mortgage over a longer period, such as a 20- or 30-year
period? No. Most personal loans compound the interest
monthly, but the Federal Interest Act (in Canada) requires
that, for a mortgage, interest can only be “calculated half-
yearly, or yearly, not in advance.” Therefore, the primary dif-
ference between a mortgage and a loan is that mortgage
interest cannot be compounded as frequently, which means

100

R

A

Applications

lower payments. Of course, there are other differences: Mort-
gages usually offer much lower interest rates, they have stiff
penalties for paying against the principal in advance, and they
require the involvement and expense of a lawyer.

Financial Interests calculates mortgage payments on the
assumption that the interest is compounded semiannually, not
in advance. If you compare the figures from Financial Interests
with the figures from a mortgage interest guidebook, you may
find the figures vary slightly. This is because the 13-digit ac-
curacy of the 99/4A gives a more exact calculation than most
guidebooks.

No More Than a Million

When either the Loans analysis or the Mortgage analysis is
chosen, the program first asks the size of the loan you are
considering. The program will accept amounts up to, but not
including, one million dollars. If you are considering more
than that, adjust the program to accept larger amounts by
changing the SIZE variable of the ACCEPT statement in line
420. Second, you are asked the annual interest rate, and third,
the length of the loan in months. The information is then cal-
culated and the screen displays the monthly payment needed
to pay off the principal during the life of the loan.

At this point, you are given two options: a month-by-
month analysis of the loan, or return to the main index. When
you choose the analysis, you are asked whether you would
like the amortization schedule printed. If yes, the printer
configuration is requested. The printout shows the current
state of the loan after each payment. The information includes
the month number, the monthly payment, the monthly in-
terest and principal, the remaining balance, total interest to
date, and total payments to date.

When the printer is bypassed, the monitor screen displays
one month at a time, and you can proceed month by month
by pressing any key other than M or T. Pressing M permits
you to jump ahead to any month you select, and pressing T
jumps to the final breakdown totals following the last
payment.

Savings Analysis
The Savings analysis lets you examine a combination of two
investment procedures: investments (the future value of a

101

Applications s==

one-time deposit) and annuities (the future value of regular
deposits).

The Savings option first asks for the present amount in
your savings account, then the rate of interest and the number
of compound periods per year. Following this, you are asked
whether you wish to make regular deposits, and if so, how
often and how much. From there the calculations are per-
formed and displayed, showing the beginning principal, the
total deposits, the accumulated balance, and the total interest.
Analysis is displayed on a yearly basis with the option of
returning to the main menu at any time.

The two procedures, annuities and investments, can be
analyzed in conjunction with each other, or individually. If
you wish to examine just the future growth of a one-time
investment, press N (No) in response to the question ‘“Make
regular deposits?”’ Calculations will then be made based solely
on the future growth of a single deposit over a designated pe-
riod of time. The growth of this fund depends upon the in-
terest paid. The interest is compounded each period. This is
interest earned on interest.

If you wish to analyze only an annuity, enter 0 in re-
sponse to “Present amount in savings:”, and then continue
with the remaining information. This will give you calcula-
tions for the future growth of a regular contribution to an
annuity fund, that is, the regular periodic investment, plus in-
terest earned on the interest and on the continuing
investment.

These investment factors are all based on the assumption
that no funds will be withdrawn throughout the investment
period.

For Formula Buffs
In case you want to know how it is done or would like to
work it out the hard way, here are the formulae:

Compound Savings (Investment)

S = Amt*(1+I)'N

Amt = Amount deposited

S = The future value of amount deposited
I = Interest rate per period

N = Number of compounding periods

102

I B R B

_}

e Applications

Annuities
S = Amt*(1+I)’N)—1
I

Amt = Amount deposited per period

S = The future value of amount deposited per period
I = Interest rate per period
N = Number of compounding periods

Loan Payments
FR = (1+R/1200)—1

Amt*FR
S = 1—(1/1+FR)"N)
FR = Loan amortization factor
R = Annual interest rate
S = The monthly payment
Amt = Amount to be borrowed
N = Length of loans in months

Mortgage Payments
FR = ((1+R/200) (1/6))—1
Amt*FR

S = 1—(1/((1+FR)'N))

FR = Mortgage amortization factor
R = Annual interest rate

S = The monthly payment

Amt = Amount to be borrowed

N = Length of mortgage in months

Program Outline

100-300 Initialization and title screen
310-340 Main menu

350-360 Finish session

370-430 Get loan and mortgage information
440-510 Calculate and display monthly payment
520-560 Month-by-month analysis

570-630 Analysis calculations

640-680 Print amortization schedule
690-790 Display calculations

800-900 Get savings information

910-940 Savings analysis

950-970 Analysis calculations

980-1020 Display calculations

103

Applications ===

Main Program Variables
Title Screen Variables

V = Vertical sprite motion

H = Horizontal sprite motion
R = Dot-row sprite location

C = Dot-column sprite location

RR = Row-character position
CC = Column-character position
J = Flag

Loan and Mortgage Calculation Variables

AMT = Beginning principal
Annual interest rate
M = Months in length of loan

~
M

FR = Working factor for mortgage and loan amortization
PA = Monthly payment

TP = Total payments

IN = Interest

TI = Total interest

BA = Remaining balance

Savings Calculation Variables
AMT = Amount in savings

R = Annual interest rate

C = Number of compound periods

D = Amount of deposits

ND = Number of deposits

Y = Number of years in analysis

CP = Interest rate per compound period
B = Future value of amount in savings

MA = Working variable for annuity
DE = Working variable for annuity
BP = Future value of annuity
Total amount of deposits
Accumulated balance

TI = Total interest

=
»
0

Financial Interest

100 REM XxXFINANCIAL INTERESTSXX

116 REM EXTENDED BASIC REGUIRED

1286 DIM AL(D)

139 CALL CLEAKR

149 REM XXXxxxxxINITIALIZATION & TITLE SCREEN
KXXkXx%x

104

A

L I B B

176

1809

269
270

289
299

300

319

315
329

ST TR 0 o S g T 28

Applications

FOR I=¢ TO 18 :: READ C$:: B$(I)=C% ::
CALL COLOR{(I.2,8):: NEXT 1
FOR I=9 7O 14 :: CALL COLOR(I,I,I):: NEX

T I :: CALL VCHAR(1,31,.128,96):: CALL SC
REEN(12)

C=96 :: X=8 :: Y=10 :: GOSUER 189 :: C=12
g 23 X=12 :: ¥Y=14 :: GOSUB 189 :: GOTO 1
3

FOR I=X TO Y :: DISPLAY AT(1,1):RPT$(CHR
$(C),10):;TAB(18);RPTS(CHRS$(C),11):: C=C+
8 :: NEXT I :: RETURN

FOR I=6 TO 16 :: DISPLAY AT(I,12)S1ZE(-5
YeBS(I-6):: NEXT 1

DATA * & "." dEE ",.T"E $ E”,."E $ $",." @
$ ” . " $ 3 . 11} $$ ”

DATA "4 & &","$ & $"," $$$ ", " 3 "
CALL SPRITE(#1,36,2,188,12@¢):: CALL MAGN
IFY(2):: V=—14 :2: H=—13 :: R=786 :: C=16
:: J=¢g :: GOSUB 284

V=@ :2: H=27 :: R=76 :: C=24g :: RR=11 ::
CC=3 :: J=1 :: C$="FINANCIAL{I SPACES:s$
{3 SPACES>INTERESTS" :: GOSUR 289

J=@ :: R=172 :: =24 :: V=12 :: ==-27 =3
GOSUB 284

C=256 :: V= 22 H=27 =2: RR=23 :: CC=4 ::
J=1 :: C$="%PRESS ANY KEY TO BEGINX" ::

60SUB 2869
CALL DELSPRITE(#1)

CALL KEY(8,K,S):: IF S=¢ THEN 2796 ELSE 3
20
CALL MOTION((#1 .,V ,H):: IF J=9 THEN 309

FOR I=1 TO LEN(C$):: X=ASC(SEG$(C$,I1,1))
:: CALL HCHAR(RR,CC+I,X):: NEXT I

CALL COINC(#1,R,C,12,2):: IF Z=6 THEN 36
6 :: CALL MOTION(#1,8,08):: CALL LOCATE (#
1.R,C):: RETURN

REM XXXXXXXMAIN MENUXXKXXXX

CALL VCHAR(1,3,32,672):: RETURN

GOSUB 315 :: DISPLAY AT(S,S5)BEEP: "FINANC
IAL INTERESTS": : : :"PRESS{(3I SPACES}FOR
": = :" 1 = LOAN ANALYSIS": :» 2 =
MORTGAGE ANALYSIS"

DISPLAY AT(16,3):"3 = SAVINGS ANALYSIS
": 2" 4 = FINISH SESSION" :: CALL KEY
(B,K,8):: IF K<49 OR K>52 THEN 3308

ON K-48 GOTO 380,406,810, 360

REM XXXXXXXFINISH SESSIONXKIXXXX

DISPLAY AT(14,7)ERASE ALL:"HAVE A NICE D
AY'" :: STOP

REM SXX3¥X%GET LOAN INFORMATIONXXKXXXXKX

105

Applications ==

394

403

410

439
449

459

4460
479

489

49¢@

Sag

S1¢9

S29

S4¢

5S¢

S6¢

B&(@)="THE AMOUNT OF LOAN:" :: B$(1)="TH

E RATE OF INTEREST:" :: B$(2)="LENGTH OF
LOAN IN MONTHS:" :: GOTO 419

REM XXXxXXxXXGET MORTGAGE INFORMATIONK(XXXX
L&

B$(@)="THE AMOUNT TO BE MORTGAGED:" :: R

$(1)="THE RATE OF INTEREST:" :: B${(2)="M

ORTGAGE LENGTH IN MONTHS: "

GOSUB 315 :: J=¢6 :: FOR I=5 TO 13 STEP 4
:: DISPLAY AT{(I,1):B$(3):: JI=J+1 =2: NEX

I

=@ :: FOR I=7 TO 1S STEP 4 :: ACCEPT AT
1.3)SIZE(&6)VALIDATE (NUMERIC)BEEFP:A(J) :

J=J+1 z: NEXT I :: AMT=A(@):: R=A(1)::

M=A(2)

IF K=49 THEN 470

REM XXX XXXCALCULATE MORTGAGE FAYMENTXXX

XXXX

FR=(1+R/268)"~(1/6)-1 :: PA=INT(AMTXFR/ (1
—1/((1+FR) M) X10@+.5) /168 :: BGOTO 49¢
REM XX¥XXXXXkCALCULATE LOAN PAYMENTXXXKXKEX
FR=(1+R/1206) -1 :: PA=INT({(AMTXFR)/(1-(1
/CL+FRY“M)) X188+.5) /190

REM XXXxXxXxx¥DISPLAY LOAN AND MORTGAGE PAY
MENTXXKXXXK

GOSUB 315 :: DISFLAY AT(S5,3)REEP:"TO BOR
ROW $":AMT: :" FOR";M;"MONTHS AT":R:"%"
: : :"MONTHLY PAYMENT WILL BE:"

DISPLAY AT(12,2):USING "H##H#4#4.48":PA ::
DISPLAY AT(22,5):"%¥PRESS I FOR INDEXX":
"XANY OTHER KEY FOR ANALYSISX"

CALL KEY(@,KEY,S):: IF S=@ THEN 518 :
F KEY=73 THEN 3290

REM XXXXXXXMONTH BY MONTH ANALYSISKXXXXX
%

GOSUR 315 :: DISPLAY AT(1,7):"MONTHLY AN
ALYSIS": : :"{(7 SPACES}DO YOU WISH TO":"
PRINT THE AMORTIZATION? Y/N": :"PRINCIPA
L*: "REMAINING ="

DISFLAY AT(14,3):"MONTHLY":" PAYMENT ="
: :" PAYMENTS":" TO DATE =": :" INTERES
T*:“THIS MNTH =": :" INTEREST":" TO DAT
E =Il

ACCEPT AT(S5,28)SIZE(~1)VALIDATE("YN")BEE
P:C% :: CALL HCHAR(4,3,32,28):: CALL HCH
AR(5,3,32,28):: IF C$="N" THEN 588
DISFLAY AT(4,1):"ENTER PRINTER DEVICE NA
ME:" :: ACCEPT AT(S,3)BEEP:P$:: CALL HC
HAR(4,1,32,64):: OPEN #1:F$%

REM XX¥XXXXKANALYSIS CALCULATIONSKXXXXXXX

T
J
(

1

L R IO B

.

589
S99
oaa
5140
L2¢

&40

659

660

&70

&840

699

7003

716

720

7306

74%

mm Applications

F.TI.TPF.MON=@" :: PA=FPAX14d :: BEA=AMT X190

FOR Z=1 T M

IN=INT(BAXFR+.5):: IF Z=M THEN FA=RBA+IN

TP=TP+PA :: BA=BA-PA+IN :: TI=TI+IN

IF BA>® THEN 638 :: PA=FA+ERA :: TP=TF+BA
:: BA=g

DISPLAY AT{(4.1):"{4 SPACESIMONTH =

{7 SPACES3"3;Z :: IF C$="N" THEN 7486 :: I

F F=1 THEN &7@

REM XXXXXXXPRINT AMORTIZATION SCHEDULEXX
Exkxx

PRINT #1:TAB(27):"AMORTIZATION SCHEDULE"
: : :TAB(1@):"PRINCIFPAL:";AMT:TAR(3IS): "R
ATE: ":R: TAB(S55) ; "MONTHS: ";M: =

PRINT #1:" MONTH{(4 SPACESI}PAYMENT

{4 SPACESIINTEREST{(3 SPACESIPRINCIPAL

{55 SPACESI}BALANCE{S SPACES>TOT/INT

{3 SPACES3ITOT/PAYMT": : :: F=1
A{B)Y=PA/186 :: A{1)=IN/10G :=:: A(2)=PA/10
G-IN/L1GE :: A(I)=BA/160 :: A(4)=TI1/1969 :
: A(S)=TP/1086

PRINT #1,USING "#####":7Z3;:: FOR I=0 T0O S
:: PRINT #1.USING "####88488# _ #8":A(I1);5:
: NEXT I :: PRINT #1:"" :: GOTO 719

REM XxXx%Xx¥X¥DISPLAY CALCULATIONSXkXXXXXX
IF Z=MON OR Z=M THEN 716 :: IF K=84 0OR K
=77 THEN 760

A(B)=BA/19G :: A{(1)=PA/1960 :: A{(2)=TF/10
B :: A(3I=IN/190 =2: A(4)=TI1/100

J=9 :: FOR I=8 TO 26 STEPFP 3 :: DISPLAY A
T(1,14):USING "######48_ #4":A(J):: JI=J+1
3 NEXT 1

IF Z=M THEN 779 :: IF C¢="Y" THEN 76469
DISPLAY AT(23,1)BEEP: "T=FOR TOTALS M
ELECT MONTH":"xANY OTHER KEY TGO CONTI
E*ll

cCALL KEY{(@#,K.S):: IF S=0 THEN 748 :: 1I

K<>77 THEN 760

DISPLAY AT(4,1):"SELECT WHICH MONTH:" =:
ACCEPTY AT(4,21)VALIDATE(DIGIT)SIZE(3)BE

EP:MON :: IF MON<C<=Z THEN 759

NEXT Z

IF C$="N" THEN 786 :: CLOSE #1

DISFPLAY AT(23.1)BEEF:"PRESS ANY KEY FOR

MAIN INDEX":RPT$(" ".28)

CALL KEY(@#,K,S):: IF S=¢ THEN 794 ELSE 3

29

REM XXXk XXxGET SAVINGS INFORMATIONXXXXXX

X

=S
NU
F

107

ST

Applications c=m==ms

819 B${(0)="PRESENT AMOUNT IN SAVINGS:"” :: B$%
(1)="RATE OF INTEREST:" :: B$(2)="TIMES
COMPOUNDED PER YEAR:"

829 B4 (3)="MAKE REGULAR DEPOSITS? (Y/N)"
B (4)="HOW MANY DEPFPOSITS PER YEAR:" :
${(3)="HOW MUCH PER DEPOSIT:" :: BOSUR 3

S

839 J=¢ :: FOR I=3 TO 21 STEF 4

849 DISPLAY AT(I.1):EB&(J):: J=TJ+1 :: IF I<>1
S THEN 85S¢ :: I=17 :: GOTO 849

850 NEXT 1I

868 J=0 :: FOR I=5 T0 23 STEF 4 :: IF 1<>17
THEN 89¢

879 ACCEPT AT(1S.23)VALIDATE("YN")SIZE{—-1)ERE
EP:C$:: IF C%$="N" THEN 88% :: I=19 :: G
CTO 899

889 A(3).,A(4)=@ :: GOTO 99@

899 ACCEPT AT(I.3X)SIZE(6)VALIDATE(NUMERIC)BE
EP:A(J):z: J=J+1 :: NEXT I

988 AMT=A(B):: R=A{1):: C=A(2):: ND=A(3):: D
=A(4)

719 REM XXXXXXXSAVINGS ANALYSISEXXXXXX

?2¢ GOSUR 3135 :: DISPLAY AT(3,7):"SAVINGS aN
ALYSIS": : :"YEARS IN THIS AMALYSIS?": :

:"BEGINNING”: "PRINCIPAL =": :0
{4 SPACESITOTAL":" DEPOSITS ="
938 DISPLAY AT(15.3):"ACCRUED":" BALANCE ="
: :"{4 SPACES>TOTAL":" INTEREST ="
94@ ACCEFT AT(6.25)VALIDATE(DIGIT)ISIZE(4)BEE
P:Y =:: IF Y= THEN 944 :: DISPLAY AT (23,
2):" {3 SPACESIONE MOMENT FPLEASE...":RPTS$
(" l”28)
959 REM XXXXXXXANALYSIS CALCULATIONSXXXX%x¥
P68 CP=(1+R/(1GBXC))"~(YXC):: B=INT{(AMTXCPX1d
G+.5) /183 :: MA=(CP-1)/(R/(1688%C)):: DE=
DAND/C :: BP=INT{(DEXMAX10G+.5)/100
9?78 TD=DXNDXY :: BA=K+RBP :: TI=RA-AMT-TD
988 REM XXXXXXXDISFLAY CALCULATIONSY¥YXX¥XX
298 A(G)=AMT :: A{1)=TD :: A{(2)=EA =2: A(I)=T
1
19@¢¢ 3=¢ :: FOR I=1@ TO 19 STEP X :: DISPLAY
AT(TI.14):USING "H#H8#488888. 88" :8(T)
J=J3+1 :: NEXT I

19019 DISPLAY AT(23.2)BEEF: "*¥M=MORE SAVINGS A
NALYSISXx": "ANY OTHER KEY FOR MAIN INDEX
n

= m

1628 CALL KEY(@®.KEY,.S):: IF S=6 THEN 1628 ::
IF KEY=77 THEN 94¢ ELSE 32¢ :: STOF

108

_J

A

.

Raymond J. Herold

A Data Base Management System (DBMS) is, in its simplest
form, a system for managing large amounts of diversified
data. These two programs will allow you to store, update or
delete records, sort data, save files to tape, and print reports.
Requires Extended BASIC.

This Mini Data Base Management System (DBMS), which ac-
tually consists of two programs, was written for the TI-99/4A
in Extended TI BASIC. Most of the people who purchase a TI
computer are first-time computer owners. In addition, most TI-
99/4A owners do not have disk drives and memory expansion
for their systems. My purpose in writing “MINI-DBMS” was
to provide a useful software tool that was relatively powerful,
easy to use, and would run on a minimum TI-99/4A
configuration. This minimum configuration consists of the
basic 16K TI-99/4A, monitor or TV, cassette player and Ex-
tended BASIC (which I consider essential).

Roadblocks
The first obstacle to writing a program such as this was the
16K memory limitation. How do you include all the features
the program should have to make it useful, yet still leave
enough memory for the data? The first trade-off required split-
ting MINI-DBMS into two programs. The first, MINI-DBMS,
would be responsible for defining new files, adding and up-
dating records and sorting the file. The second, “MINI-REPT,”
would handle the summarization and reporting requirements.
Then came the question of the records themselves. Trade-
off number two: there would be a maximum of eight data
fields per record. This should be enough for most home
applications. In considering the data fields, a maximum of
20 characters per field seemed reasonable. The above two

109

Applications

B s L BT G L

trade-offs then determined the third: a maximum of 80 records
per file, depending on the record size. Again, this seemed
reasonable for the typical home application.

Consequently, the MINI-DBMS parameters break down
like this: two programs with the features deemed essential; up
to 80 records per file; 1 to 8 fields in each record; and 1 to 20
characters for each field. Not too bad for a 16K machine!

The programs are written so that they can easily be
merged if you have more memory and a disk drive. These two
items will allow you to expand the basic parameters of MINI-
DBMS. The major program subdivisions are outlined below in
Table 1. Should you decide to make modifications to the pro-
gram, Table 2 lists the variable names and their use.

MINI-DBMS

Program 1 is MINI-DBMS. This program allows you to define
new DBMS files, add records to a file, display, update or de-
lete records, sort a file, and save a file to tape. When you first
type in RUN the program displays the introduction banner
then displays the main menu:

1—DEFINE NEW DBMS RECORDS
2—LOAD RECORDS FROM TAPE
3—ENTER NEW RECORDS
4—DISPLAY/UPDATE RECORDS
5—SORT BY SPECIFIED FIELD
6—SAVE DATA ON TAPE

Define new DBMS records. This is where you define
what a particular file will look like. The information you must
supply includes: filename (up to eight characters); numbers of
data fields in each record (maximum allowed is eight); and de-
fine each field.

Field definition involves a number of steps. To start, give
each field a 1-to-6-character field name. This name (including
the periods if you leave them in) will be used to identify the
field when requesting functions such as search, sort, or sum-
marize. You must then define the field length (maximum
length is 20 characters). Finally, you will tell the program
whether the field is alpha or numeric format. Alpha fields per-
mit any character to be entered; numeric fields will only allow
0-9, comma, and period. In addition, only a numeric field can
be summarized. Figure 1 is an example of field definition.

110

1

I R R B

1

rr——n— Applications

Although the new file has now been defined this step is
not quite complete. The program will allow you to set an ini-
tial value, or mask, for each field. These masks allow you to
format fields for data input. They will override the default val-
ues which are period for alpha fields and zeros for numeric
ones. You can see in Figure 2 that the DATE field was given a
mask of 00/00/00 rather than periods, and the AMOUNT
field was given a decimal point. The remaining fields use the
defaul* value. You can override the periods with a mask of
blanks if you so desire, but the periods are useful in showing
whoever is entering data how many characters they have to
work with.

Figure 1. Create New DBMS Files
FIELD LENGTH TYPE

NAME (1-20) (N/A)
NAME.. 20 A
ADDR.. 20 A
CITYST 20 A
ZIP... 05 N
DATE.. 08 A
AMOUNT 08 N
FOR... 20 A

Figure 2. Set Initial Values

SET INITIAL VALUES
NAME.. «iiiiiiiiiiiiiiieeeannns
ADDR.. .oiiiiniiiiiaiiiiieaannn,
CITYST oonriiieaainnneaannn.
Zip... 00000

DATE.. 00/00/00
AMOUNT 00000.00
170 W

Load records from tape. This option will allow you to
load an existing file on tape into the MINI-DBMS program.
The program will first read the filename on the tape and ask
you if it is the one you wanted.

Enter new records. Here is where you begin with a
newly defined file, or add to an existing file loaded from tape.
The program will display a screen with the name of each field

111

Applications 720 ST T A T I

in the record and its associated mask. You simply enter the
data you want for each new record. After the record is added
a display will show how many records are currently in the file
and the maximum number allowed for that file. At this point
you can add another record or return to the main program
menu. Figure 3 shows a record that has just been added.

Figure 3. Add New Record

ADD NEW RECORD
NAME.. COMPUTE!
ADDR.. P.O. BOX 5406
CITYST GREENSBORONC
ZIP.. 27403
DATE.. 10/04/84
AMOUNT 00024.00
FOR... SUBSCRIPTION

Display /update records. There are two methods avail-
able for displaying records. The first displays each record start-
ing at the beginning of the file. Pressing the ENTER key
displays the next record. Pressing M will return you to the
program menu from anywhere in the file. Pressing U will put
the program in update mode for the record being displayed.
The cursor will appear in the leftmost position of the first data
field. You can change the data in the field or press ENTER to
put the cursor in the next field. This process continues until all
fields have been updated or bypassed.

If you want to completely delete the record from the file
enter $DEL into the first four positions of the first data field.
This assumes that the first field is alpha format and at least
four characters long. If you want to use a different control
code or field you can change the IF statement in line 4146.

Method two displays and updates the records in the same
manner as method one. The difference lies in which records
are displayed. This second method allows you to search the
file for a desired value in a particular field. Only records meet-
ing the search criteria are displayed, thus eliminating the need
to scroll through unwanted records. The search argument may
be a generic value. That is, the argument ““SMI” would display
records for SMITH, SMITHERS, SMILEY, etc.

Sort by specified field. You can sort the file into ascend-
ing sequence on any field. Just provide the name of the field

112

3

b3

)3

S R .

N

N

3 3

= Applications

you want sorted. BASIC is a slow language for routines such
as sorts, but the exchange sort which starts at line 5000 will
sort most files in less than five minutes. The program will
continually display the number of sort passes left. You can
change the sort to descending sequence by changing the less
than sign in line 5065 to a greater than sign, and by changing
the A$ assignment in line 5050 to A$(0,Z)=""".

Save data on tape. Depending on the size of the file,
saving data to tape may be even slower than the sort. But
then, no one purchases a home computer for its tape 1/O
speed.

MINI-REPT

MINI-REPT handles the summarization and reporting
responsibilities of the MINI-DBMS system. The program menu
provides the following options:

1—LOAD RECORDS FROM TAPE
2—DISPLAY RECORDS
3—SUMMARIZE BY FIELD(S)
4—PRODUCE PRINTED REPORT

The first two options function the same way as in Pro-
gram 1, except that there is no update capability for DISPLAY
RECORDS.

Summarize by field(s). You can summarize (total) a field
based on the value of one or two search fields. To summarize
using one search field you provide the name of the field to be
searched, the search argument (which may be generic), and
the name of the field to be summarized. The value of the
search field and summary field for all records meeting the
search criteria will be displayed. Once the entire file has been
searched, the program will display the number of records
meeting the search criteria and the total for the summary field.

It is possible to search on two fields. By providing the
name of the two fields and their respective search arguments,
you can have the program summarize only those records
meeting the search criteria for both fields.

If you specify the second search field argument as $ALL,
the program will qualify all records meeting the first search
field criteria only. This allows you to display the second search
field value as an identifier.

Produce printed report. This option is for those of you
with printers. It allows you to produce a report of the data in

113

Applications mmmmr—rmm—

the field. You first provide the program with the number of
fields you want printed, and the name of the fields. You may
summarize a field if desired, and you may selectively print
based on the value of a search argument. The report to be
printed may be given a title. The program checks for a maxi-
mum 80 columns of print data, but allows you to print more if

desired.

If you request this option but don’t have a printer you
will get a syntax error. Also, you may have to adjust the
OPEN statement in line 8006 to accommodate your particular

printer.

Table 1.

Line
Number
10-30
100-190
1000-1400
2000-2060
3000-3200
4000-4440
5000-5220
6000-6050
7000-7450
8000-8200

Table 2.

AS$(s,8)
ARGS$
ARG2%
FIELDS
FLD
FLD$
FNM$(s)
KEY
LN(s)
MASKS$(s)
NAME$
NF
NUMREC
OPT$

P(s)

P$(s)

114

Program Subdivisions

Introduction banner

Menu display

Define new DBMS file

Read data from tape

Add records to file

Display /update records

Sort routine

Write data to tape

Search, summarize and display
Produce printed report

Program Variables

File data array (record, field)

First search argument

Second search argument

Number of fields in record

Field number of user-entered field name
User-entered field name

Field name array

Value of key pressed

Field length array

Initial field value array

Filename

Number of fields to be printed
Maximum number of records in file
User-entered option (Y or N)

Field to be printed

Name of field to be printed

_}

B R R B

1 R R R

1 7

m==m Applications

RECS Number of search fields

Number of search fields

STATUS CALL KEY status
SUM Number of field to be summarized
SUM$ Name of field to be summarized

TC Total characters per line in print function
TI Items selected in summary function
TOT Accumulator for summary field

TOTCHR Total characters per record
TYP$(s) Field type array
X,L,.2,Q Loop control

Program 1. MINI-DBMS

1 R
2 R
14
20
22
24
39
49
100

119

139

149
15¢@

17@
194
400

410
100

100

EM TI MINI-DEMS

EM

CALY CLEAR :: CALL SCREEN(9)

DISPLAY AT(3I,1):RPTS("%x",28):: DISFPLAY AT
(4,1):"%x" :: DISPLAY AT{(4,28):"%x"

DISPLAY AT{(S5,1):"¥x{4 SPACESIM I N I - D B
M S{5 SPACES>x"

DISPLAY AT{(6,1):"%x" :: DISPLAY AT(6,28):"

¥" :: DISPLAY AT(7,1):RPTS("%x",28)

FOR X=1 TO 28@@¢ :: NEXT X
DIM A$(81,8)
CALL CLEAR :: CALL SCREEN(B):: DISFLAY A

T(2,18):"xx MENU xx”

DISPLAY AT(6,1):"1 - DEFINE NEW DBMS REC

ORDS" :: DISFLAY AT(8,1):"2 - LOAD RECOR

DS FROM TAPE"

DISPLAY AT(14,1):"3 — ENTER NEW RECORDS”
:: DISPLAY AT(12,1):"4 - DISPLAY/UPDATE
RECORDS"

DISPLAY AT(14,1):"3 — SORT BY SPECIFIED

FIELD"

DISPLAY AT(16,1):"&6 - SAVE DATA ON TAPE"

DISPLAY AT(23,.3):"ENTER SELECTION---3" =

: ACCEPT AT(23,23)VALIDATE("123456") BEEP

:CHOICE

ON CHOICE GOTOD 100e,2000,3000,4000, 5000,
6Baa@ .

GOTO 149

FOR X=1 TO 244@ :: NEXT X

GOTO 199

@ CALL CLEAR :: DISPLAY AT(3,1):"DEFINE R
ECORD FORMAT FOR" :: DISPLAY AT(4,1):"N
EW DBMS. YOU MAY DEFINE UP"”

S DISPLAY AT(S,1):"TO B FIELDS IN THE REC
OKrRD. "

115

Applications c=mm——m==s

18096

1697

1910

1615

1916
1218

19020
1822

1923
1038
1632
1634

1836

1638
1940

1842

18506
1852
1654

1956
1860
1862

1964
1970
1872
1974
16746
1978
1989

116

IF RECS>@ THEN DISPLAY AT(8,.1):"DELETE
CURRENT FILE? Y/N"
IF RECS>@ THEN CALL KEY{3,KEY,STATUS)::
IF STATUS=¢ THEN 1467 ELSE IF KEY<{>
89 THEN 149
DISPLAY AT(8,1):"NEW DBMS NAME:
." 2: ACCEPT AT{(B,146)SIZE(-8)BEEFP:NAMES$
DISPLAY AT{(92,1):"NUMBER OF FIELDS (1-8)
" 3: ACCEPT AT{(9,25)VALIDATE(DIGIT)SIZE
(2)BEEP:FIELDS
IF FIELDS>8 THEN 1615
DISPLAY AT(11,1):" FIELD{S SPACESILENG
TH{3 SPACES3}TYPE™ :: DISPLAY AT(12,1):"
NAME{&6 SPACES3> (1-28){3 SPACESX (N/A)"
FOR L=1 TO FIELDS
DISPLAY AT(13+L,1): " P e e {6 SPACES®
@{7 SPACES>."
NEXT L
FOR L=1 TO FIELDS
ACCEFPT AT(134L.3)8I1ZE(-4)BEEP:FNMS$ (L)
ACCEPT AT{(13+L,1S)VALIDATE(DIGIT)SIZE (-
2)BEEP:LN{L):=: IF LN(L)<@1 DR LN{(L)>20
THEN 1434
ACCEPT AT(13+L,24)VALIDATE("AN")SIZE (-1
)BEEP: TYP$(L):: IF TYP${(L)="_" THEN
1636
NEXT L
CALL CLEAR :: DISPLAY AT(2,2):"%xx SET I
NITIAL VALUES x%¥" :: DISPLAY AT(4,1):"K
EY IN THE DEFAULT VALUE FOR™
DISPLAY AT(S,1):"EACH FIELD OR PRESS EN
TER TO" :: DISFLAY AT(6,1):"ACCEPT AS 1
S."
FOR L=1 TO FIELDS
DISPLAY AT(16+L,1):FNMS$ (L)
IF TYPS(L)="N" THEN GOSUE 11#¢ ELSE GOS
UB 1290
NEXT L
FOR L=1 TO FIELDS
IF TYPS{(L)="N" THEN GOSUE 13¢¢ ELSE GOS
UB 1460
NEXT L
TC=@¢ :: FOR L=1 TO FIELDS
TE=TC+LN({L)
NEXT L
NUMREC=INT (4368/TC):: IF NUMREC>8¢ THEN
NUMREC=80
CALL CLEAR :: DISFLAY AT(4,1):"YOUR FIL
E WILL HOLD " ;NUMREC; "RECORDS"
FOR X=1 TO 26dg@ :: NEXT X

L IS R N

B R D B B

B

i

16906
11069

12008
139
1400
2000
2019
2029
2022
2024

2026
2039

2035
2843

2045
2939
29069
30900

3004
3395
3014
3029
3022

3924
363a
3932

3Ia34
336

3040
3642

3044

B Y B 8 L A T

m Applications

RECS=¢ :: GOTO 149

DISPLAY AT{(18+L,8):RPT$("@" ,LN{(L)):: RE
TURN
DISPLAY AT(1@+L,.8):RPTSH(". " ,LN(L)):: RE
TURN

ACCEPT AT(19+L,8)VALIDATE("#123456789, .
")SIZE(-LN{(L))BEEP:MASK$(L):: RETURN
ACCEPT AT(19+L,8)SIZE(-LN(L))BEEP:MASKS
(L):: RETURN

CALL CLEAR

OPEN #1:"CS1",INPUT ,INTERNAL,FIXED 192
INPUT #1:NAME$,FIELDS,RECS,NUMREC

PRINT :: PRINT "INPUT FILE - "3;NAMES$::
PRINT "CONTINUE? Y/N"

CALL KEY(3.KEY,STATUS):: IF STATUS=8 TH
EN 2024

IF KEY<>89 THEN 2659

FOR L=1 TO FIELDS :: INFUT #1:FNM$(L).T
YP$ (L) ,LN{(L) ,MASK®$(L):: NEXT L

FOR X=1 TO RECS

INPUT #1:A%(X.1),.A%(X,2),A$(X,.3),A%(X, 4
) AS(X.5),A$(X.8) ,A$(X.7) ,AS(X,8)

NEXT X

CLOSE #1
GOTO 160
IF NUMREC<1t THEN CALL CLEAR :: DISPLAY
AT(4,1):"NO FILE DEFINED." :: GOTO 4 60

RECS=RECS+1

IF RECS>NUMREC THEN CALL CLEAR :: DISPL

AY AT{(4,.1):"RECORD MAXIMUM EXCEEDED" =::
GOTO 499

CALL CLEAR :: DISPLAY AT(F,7):"%%x ADD N

EW DATA Xxx"

FOR L=1 7O FIELDS

DISPLAY AT(S+L,.1)SIZE(LEN(FNMS (L))) :FNM
$(L)z: DISPLAY AT{(S+L.9)SIZE(LEN(MASKS(
L))) :MASKS (L)

NEXT L

FOR L=1 70O FIELDS

IF TYPS(L)="N" THEN GOSUER Ji¢g@d ELSE GOS
UB 3240

NEXT L

DISPLAY AT{(17.1):"# RECORDS:":RECS;"

{3 SPACESXMAX:": NUMREC

CALL HCHAR(18.1,95,31)

DISPLAY AT(2d,1):"1 - TO ENTER ANOTHER
RECORD™ :: DISPLAY AT(21,1):"2 - TO RET
URN TGO MENU" :=:: DISPLAY AT(23,3):"ENTER
YOUR CHOICE ---3»"

ACCEPT AT(23,26)VALIDATE("12")REEF:0PT

117

Applications ===

3046
3948
3950
3100

4000

49010

4015

4320

4938
4850
419a
4119
4115
4120
4130
4132
4134
4136
4138
4140
4142

4144
4144

4159
4155
4160
4200

42835

IF OPT=1 THEN 3000

1IF OPT=2 THEN 100

GOTO 3044

ACCEPT AT(5+L,9)VALIDATE("9123456789,."
)SIZE(-LEN(MASKS$ (L)))BEEP: A$ (RECS,L) ::
RETURN

ACCEPT AT(S+L,9)SIZE(-LEN(MASKS$(L)))BEE
P:A$ (RECS,L):: RETURN

CALL CLEAR :: DISPLAY AT(3,2):"%x DISPL
AY/UPDATE DATA %x*

DISPLAY AT(&.1):"1 — DISPLAY ALL RECORD
S* :: DISPLAY AT(7,1):"{4 SPACES}FROM B
EGINNING OF FILE."

DISPLAY AT(9,1):"2 — DISPLAY BY VALUE I
N" :: DISPLAY AT(18,1):"{4 SPACES3SPECI
FIED FIELD"

DISPLAY AT(12,3):"ENTER YOUR CHOICE —--
>" :: ACCEPT AT(12,26)VALIDATE("12")BEE
P:OPT

ON OPT GOTO 4106,4260

GOTO 100

HOLD=RECS

FOR RECS=1 TO HOLD

IF RECS>HOLD THEN 4158

GOSUB 4309

CALL KEY(3,KEY,STATUS)

IF STATUS=@G THEN 4130

IF KEY=13 THEN 415@

IF KEY=77 THEN RECS=999 :: GOTO 4158

IF KEY<3>85 THEN 4130

FOR L=1 TO FIELDS

IF TYP$(L)="N" THEN GOSUB 31¢@ ELSE GOS
UB 3208¢

NEXT L

IF SEG$(A$ (RECS,1),1,4)="$DEL" THEN BOS
UB 4496

NEXT RECS

RECS=HOLD

GOTC 189

CALL CLEAR :: DISPLAY AT(2.1):"%x%x DISPL
AY BY FIELD VALUE #%x*

DISPLAY AT(S,1):"ENTER THE NAME OF THE
DATA" :: DISPLAY AT(6,1):"FIELD TO BE S
EARCHED AND THE"

DISPLAY AT(7,.1):"SEARCH ARGUMENT (VALUE
).ll

DISPLAY AT(12,1):"FIELD TO BE SEARCHED
...... " :: ACCEPT AT(12,22)SIZE(-6):FLD

S R R R

3

4222

4224
4226
4228

423 @
4232
4234
4250

4252
4260
42562
4264

/8270
4272
4274
4276
4289
4282
4284

4286
4299
4292
4294
43080

4310
4320

4330
4349

4359
4400

4413
4429
4439
4449
SEGa

a Applications

FOR L=1 TO FIELDS

IF FLD$=FNM$ (L) THEN FLD=L :: L=99

NEXT L

IF FLD=¢ THEN DISPLAY AT(14,1):"NO SUCH
FIELD NAME."” :: DISPLAY AT(1S5,1):"°R"”
TO RETRY - "M® FOR MENU" ELSE GOTO 4250
CALL KEY{(3.KEY,STATUS)

IF STATUS=¢ THEN 4234

IF KEY=82 THEN 4209 ELSE 10@

DISPLAY AT(14,1):"ENTER SEARCH VALUE

{S SPACES:"

ACCEPT AT(15,1):ARGS

HOLD=RECS

FOR RECS=1 TO HOLD

IF ARG$=SEGH (A$(RECS,FLD),1,LEN(ARGS))T
HEN GOSUB 43d49 ELSE 429@

CALL KEY(3.,KEY,STATUS)

IF STATUS=9 THEN 427@

IF KEY=13 THEN 42948

IF KEY=77 THEN RECS=99% :: G0TO0 4299

IF KEY<{>8S THEN 427¢g

FOR L=1 70O FIELDS

IF TYP$(L)="N" THEN GOSUER 3148 ELSE GOS
UR 3240

NEXT L

NEXT RECS

RECS=HOLD

GOTO 199

CALL CLEAR :: DISPLAY AT(2,1):"xx DISPL
AY/UPDATE RECORDS xx*

FOR L=1 TO FIELDS

DISPLAY AT(S+L,1):FNM$S(L):: DISPLAY AT(
S+L,.9):A$ (RECS,L)

NEXT L

DISPLAY AT(20.1):"PRESS ENTER FOR NEXT
RECORD" :: DISPLAY AT(22,.1):"PRESS -~u-
TO UFPDATE RECORD" :: DISPLAY AT(24,1):"
PRESS "M® FOR MENU"

RETURN

CALL CLEAR :: DISFLAY AT(3,1):"STAND BRY
n

FOR X=RECS 70O HOLD :: FOR Y=1 TO FIELDS

A (X,Y)=A$(X+1,Y)

NEXT Y :: NEXT X

RECS=RECS-1 :: HOLD=HOLD-1 :: RETURN
CALL CLEAR :: DISPLAY AT(3,9):"%x SORT
¥%x" :: DISPLAY AT(&6,1):"NAME OF SORT FI
ELD" :: ACCEPFT AT(6,28)SIZE(-6)B
EEP:FLD$

119

Applications

SgaS FLD=¢g

S¢919 FOR L=1 TO FIELDS

S912 IF FLD$=FNM$ (L) THEN FLD=L :: L=99

S@13 NEXT L

S@15 IF FLD=6¢ THEN DISPLAY AT(14,1):"NO SUCH
FIELD NAME."” :: DISPLAY AT{(1S5,1):"’R”
TO RETRY - "M® FOR MENU" ELSE GOTO 5049

5626 CALL KEY(3,KEY,STATUS):: IF STATUS=86 TH
EN Sg8208

S938 1F KEY=82 THEN S¢0¢ ELSE 14¢

S949 DISPLAY AT(26,1):"SORTING..."

S@SP Y=1 :: HX=@® :: FOR Z=1 TO FIELDS :: A%(
@,2Z)="____" :: NEXT Z

S@S5 SS=@ :: DISPLAY AT(26,1):"SORTING...":R
ECS-Y

S960 FOR X=Y TO RECS

S@635 IF AS{(X,FLD)<A$(G,FLD) THEN GOSUR Si14d@

S876 NEXT X

S875 IF S5=1 THEN GOSUB 5209

S@986 Y=Y+1 :: FOR Z=1 TO FIELDS :: A$(8,7Z)=A
${Y,2Z):: NEXT 2Z

5985 IF Y<RECS THEN 5@3S

S99¢ GOTO 1696

9196 FOR Z=1 TO FIELDS ::
NEXT Z :: HX=X :: S8S=

5206 FOR Z=1 TO FIELDS

52108 H$=A$(Y,Z):: AS(Y,Z)=AF(HX,Z):: A®(HX,Z
)=H%$

S22¢ NEXT Z :: RETURN

&08@ CALL CLEAR

6916 OPEN #1:"CS1",0UTPUT, INTERNAL,FIXED 192

6823 PRINT #1:NAME$;FIELDS;RECS; NUMREC

683¢ FOR L=1 TO FIELDS :: PRINT #1:FNM${(L);:T
YPE(L)sLN(L)Y3;MASK$(L)=: NEXT L

68335 FOR X=1 TO RECS

6848 PRINT #1:A(X,1);A%(X,2);AS{(X,3);AS{X,4
J3AS(X,.5)3AS(X,6)3AB(X,7):AH(X,8)

6845 NEXT X

685¢ CLOSE #1 :: GOTO 1g0@

AS(D,Z)=A% (X, Z):=:
1 :: RETURN

Program 2. MINI-REPT

1 REM TI MINI-REPT

2 REM

18 CALL CLEAR :: CALL SCREEN(9)

28 DISPLAY AT(3,1):RPTH("%",28):: DISPLAY AT
(4,1):"%x" :: DISPLAY AT(4,28):"x"

22 DISPLAY AT(S,1):"%{4 SPACESIM I N 1 - R E
P T{S SPACES>x"

120

23

.

-

4

.

24

30

49

199

119

149

159

179

e Applications

DISPLAY AT(6,1):"%x" :: DISPLAY AT(&,28):"
¥" :: DISPLAY AT(7,1):RPT$("x",28)
FOR X=1 TO 206¢ :: NEXT X
DIM A%$(81,8)
CALL CLEAR :: CALL SCREEN(8):: DISPLAY A
T(2,19):2"%%x MENU x12"
DISPLAY AT(46,1):"1 - LOAD RECORDS FROM T
APE" :: DISPLAY AT(8,1):"2 - DISPLAY REC
ORDS"
DISPLAY AT(19,1):"3 - SUMMARIZE BY FIELD
(S)" =2: DISPLAY AT(12,1):"4 - PRODUCE PR
INTED REPORT"
DISPLAY AT(23,3):"ENTER SELECTION--->" =
: ACCEPT AT (23,23)VALIDATE("12345")BEEP:
CHOICE
ON CHOICE GOTO 2009,409090,7000,8000

19¢ 60T0 1908
20906 CALL CLEAR

261

¥ OPEN #1:"CS1",INPUT ,INTERNAL,FIXED 192

2929 INPUT #1:NAME$,FIELDS,RECS,NUMREC
2922 PRINT =:: PRINT "INPUT FILE - ";NAMES ::

PRINT "CONTINUE? Y/N"

2924 CALL KEY(3,KEY,STATUS):: IF STATUS=8 TH

EN 20243

2926 IF KEY<>89 THEN 20659
2039 FOR L=1 70O FIELDS :: INPUT #1:FNM&(L),T

YPE(L) ,LN(L) ,MASKS (L)=2: NEXT L

28635 FOR X=1 TO RECS

204

6 INPUT #1:A$(X,1),A$(X,2),A$(X,3),A$(X,4
),AS(X,5) ,A6(X,6) ,A(X,7),AS(X,8)

29435 NEXT X
2958 CLOSE #1
29068 GOTO 199

4083 CALL CLEAR :: DISPLAY AT(3,6):"%%x DISPL

491

401

492

AY DATA 2"

9 DISPLAY AT(6,1):"1 — DISPLAY ALL RECORD
8" :: DISPLAY AT(7,1):"{4 SPACES3FROM B
EGINNING OF FILE."

S DISPLAY AT(9,1):"2 — DISPLAY BY VALUE I
N"” =:: DISPLAY AT(18,1):" {4 SPACES3}SPECI
FIED FIELD"

DISPLAY AT(12,3):"ENTER YOUR CHOICE ---
>" :: ACCEPT AT(12,26)VALIDATE("12")BEE
P:OPT

49390 ON OPT GOTO 4109,4200
4950 GOTO 199

121

Applications =

4199
4110
4115
4120
4139
4132
4134
4136
4138
4159
4155
4160
4290

4203

/4219

4220

4221
4222
84224
4226
4228

4230
4232
4234
4259

4252
4260
3262
4264

/4273
/4272
4274
4276
4289
4299
4292
4294
4309

122

HOLD=RECS

FOR RECS=1 TO HOLD

IF RECS>HOLD THEN 41S@

GOSUB 4399

CALL KEY(3,KEY,STATUS)

IF STATUS=6 THEN 4130

IF KEY=13 THEN 4150

IF KEY=77 THEN RECS=999 :: GOTO 4158
GOTO 413@

NEXT RECS

RECS=HOLD

GOTO 109

CALL CLEAR :: DISPLAY AT(2,1):"%x%x DISPL
AY BY FIELD VALUE *x"

DISPLAY AT(5,1):"ENTER THE NAME OF THE
DATA" =:: DISPLAY AT(6,1):"FIELD TO BE S
EARCHED AND THE"

DISPLAY AT(7,1):"SEARCH ARGUMENT (VALUE
).tl

DISPLAY AT(12,1):"FIELD TO BE SEARCHED
" st ACCEPT AT(12,22)SIZE{(-6):FLD

&

FLD=9

FOR L=1 TO FIELDS

IF FLD$=FNM$ (L) THEN FLD=L :: L=99

NEXT L

IF FLD=¢ THEN DISPLAY AT(14,1):"NO SUCH
FIELD NAME."” :: DISPLAY AT(1S,1):"*R”>
TO RETRY - "M” FOR MENU” ELSE GOTO 425¢

CALL KEY(3,KEY,STATUS)

IF STATUS=6 THEN 4239

IF KEY=82 THEN 42069 ELSE 106

DISPLAY AT(14,1):"ENTER SEARCH VALUE

{S SPACES:” '

ACCEPT AT(15,1):ARGS

HOLD=RECS

FOR RECS=t TO HOLD

IF ARG$=SEG$(AS(RECS,FLD),1,LEN(ARGS))T

HEN GOSUB 4390 ELSE 4299

CALL KEY(3,KEY,STATUS)

IF STATUS=G THEN 4279

IF KEY=13 THEN 4299

IF KEY=77 THEN RECS=99% :: GOTO 4299

GOTO 4270

NEXT RECS

RECS=HOLD

GOTO 199

CALL CLEAR :: DISPLAY AT(2,6):"x%x DISPL

AY RECORDS %xx”

3

-

i

A

3

) d

4

3

4310
4329

4330
4349

4359
70008

7001

78985
7918

7915
7616
7617
7029

7822
7924
7826
7928

78629

7836

7835
7936
7637
7949

7642
7844
7946
79598

78352
7934
78356
7960

=n Applications

FOR L=1 TO FIELDS

DISPLAY AT(S+L,1):FNM&E (L) DISPLAY AT(

S+L,18) :A$S(RECS, L)

NEXT L

DISPLAY AT (20,1):"PRESS ENTER FOR NEXT

RECORD" :: DISPLAY AT(24,1):"PRESS M~

FOR MENU"

RETURN

CALL CLEAR :: DISPLAY AT(2,1):"%Xx SUMMA

RIZE BY FIELDNAME xx* .

DISPLAY AT(4,1):"SEARCH 1 OR 2 FIELDS?
." == ACCEPT AT(4,23)VALIDATE("12")BEEP
: SF

TOT=0 :=:: TIiI=@

DISPLAY AT{(6,1):"FIELD TO BE SEARCHED .
cee.." :: ACCEPT AT(6,22)S1ZE{(-6)BEEP:F

LDs =:: FLD=@

FOR L=1 TO FIELDS

IF FLD$=FNM$ (L) THEN FLD=L :: L=99

NEXT L

iF FLD=6 THEN DISPLAY AT(6,1):"NO SUCH

FIELD NAME” :: DISPLAY AT(7,1):"°R”> TO
RETRY — °M”> FOR MENU" ELSE GOTO 7928

CALL KEY(3,KEY,STATUS)

IF STATUS=@ THEN 7822

IF KEY=82 THEN 7966 ELSE 160

DISPLAY AT(7,1):"ENTER SEARCH VALUE" ::
ACCEPT AT(8,1):ARGS

IF SF=2 THEN GOSUB 73986 :: IF FLD2=0 TH
EN 1990

DISPLAY AT{(17,1):"FIELD TO BE SUMMED ..

» +2» ACCEPT AT(17,28)SIZE(-6)BEEP:S
UMs =: SUM=8

FOR L=1 TO FIELDS

IF SUM$=FNM& (L) THEN SUM=L :: L=99

NEXT L

IF SUM=¢ THEN DISPLAY AT(17,1):"NO SUCH
FIELD NAME" :: DISPLAY AT(19,1):"’R*> T

0 RETRY - *M”> FOR MENU®" ELSE 6070 795¢

cAaLl. KEY(3,KEY,STATUS)

IF STATUS=0 THEN 7842

IF KEY=82 THEN 78398 ELSE 100

IF TYP$(SUM)<>"N" THEN DISPLAY AT{(17,1)
: "NOT A NUMERIC FIELD" :: DISPLAY AT(19
,1):"?R’” TO RETRY - "M’ FOR MENU" ELSE

GOTO 7069

CALL KEY(3,KEY,STATUS)

IF STATUS=0 THEN 7652

IF KEY=82 THEN 76396 ELSE 106

CALL CLEAR :: HOLD=RECS

123

Applications =

7962 FOR RECS=1 TO HOLD

7664 1F ARG$=SEG$ (A$(RECS,FLD),1,LEN(ARGS))T
HEN GOSUB 7490

7966 NEXT RECS

7868 RECS=HOLD

7478 PRINT :: PRINT :: PRINT USING "ITEMS ##
{4 SPACES:>TOTAL ###u#4#4#.##":T1,TOT

7672 PRINT :: PRINT "PRESS ANY KEY FOR MENU"

7874 CALL KEY(3,KEY,STATUS):: IF STATUS=@ TH

» EN 7874 ELSE 160

7108 H$="" :: FOR X=1 TO LEN(AS$(RECS,SUM))

7118 IF SEG$(A$(RECS,SUM),X,1)>="6" AND SEGS
(A$ (RECS,SUM) ,X,1)<="9" OR SEG$ (A% (RECS
+SUM) X, 1)="_" THEN GOSUB 7200

7120 NEXT X

7130 N=VAL(H$):: TOT=TOT+N :: TI=TI+1

7135 IF S=1 THEN RETURN

7144 PRINT A$(RECS,FLD);" ";A${RECS,SUM)

7145 IF SF=2 THEN PRINT

715@ RETURN

7208 H$=HSLSEGS(AS(RECS,SUM),X,1):: RETURN

730@ DISPLAY AT(1@,1):"2ND SEARCH FIELD
.-" 3: ACCEPT AT(16,18)SI1ZE(-6)BEEP:FLD
2% :: FLD2=9

7318 FOR L=1 TO FIELDS

73280 IF FLD2%=FNM$(L)THEN FLD2=L :: L=99

7325 NEXT L

733¢ IF FLD2=@ THEN DISFLAY AT(18,1):"ND SUC
H FIELD" :: DISPLAY AT(11,1):"°R" TO RE
TRY - °M° FOR MENU" :: GOTO 7344

7332 DISPLAY AT(11,1):"ENTER 2ND SEARCH VALU
E "

7334 ACCEPT AT(12,1)REEP:ARG2%

7336 GOTO 735¢

7349 CALL KEY(3,KEY,STATUS)

7342 IF STATUS=@ THEN 7349

7344 IF KEY=82 THEN 7366

735@ RETURN

7408 IF SF=1 THEN GOSUBR 7166 :: RETURN

7485 IF ARG2%$="$ALL" THEN 744¢0

7419 IF ARG2$=SEG$ (A$(RECS,FLD2),1,LEN(ARG2$
))THEN 7444

7420 RETURN

7443 PRINT A$(RECS,FLDZ):: GOSUB 716@

745@ RETURN

800@ CALL CLEAR :: DISPLAY AT(2.1):"%xx PRODU
CE PRINTED REPORT xx%x"

8005 TOT=@ :: P(g)=0

8006 OPEN #2:"RS232",0UTFUT,DISPLAY

124

B B R

A

A

o

3

4y)

IR

8819

8020
8922

8024
8m26
8428
843y
8932
8¢36

8a4¢

8442
8044
8045
8846
8¢48

845@

8a52
8054
8955

8456
84958
8459
8060

8062
8863
8a64

8a7a
8471
8a72

8974
8475

8976
8078
8479

Applications

DISPLAY AT(S,1):"NUMBER OF FIELDS TO PR
INT? ." :: ACCEPT AT(S5,28)VALIDATE("123
455678") BEEP: NF
FOR L=1 TO NF
DISPLAY AT(6+(2%XL),1):USING "NAME OF FI

ELD # -":L =z: ACCEPT AT(6+(23L),
19)SI1ZE(-6)BEEP:P$ (L)

P(L)=¢ :: FOR Z=1 TO FIELDS

IF P$(L)=FNM${(Z) THEN P(L)=2

NEXT Z

IF P(L)=@ THEN L=L-1

NEXT L

DISFLAY AT(23,1):"TOTAL A FIELD? Y/N ."
:: ACCEPT AT(23,28)VALIDATE("YN")SIZE(

~1)BEEP:0FT$:: IF OFT$<>"Y" THEN 8454

DISFPLAY AT(24,1):"NAME OF FIELD "
:: ACCEPT AT(24,15S)SI1ZE(-6)BEEF:F% (@)

FOR Z=1 TO FIELDS

IF P$(@)=FNM$ (Z) THEN P (&) =12

NEXT Z

IF TYPS(F{(@))="N" THEN 8#5@

DISPLAY AT(24,1):"%x INVALID OR NOM-NUM

ERIC %xx" :: FOR Z=1 TG 2466 :: MEXT Z :
: GOTO 8d4¢

GOSUER 8tag :: TC=@
TC=TC+LN(P(Z)):: N

TC=TC+ (2%xNF) -2

IF TC<8¢ THEN 8d6¢
DISPLAY AT(I_.1):USING "REFORT WILL OVER

FLOW RY ##":TC-39 :: DISPLAY AT{S,1):”°
P° TO PRINT - "M* FOR MENU"

CALL KEY(3,KEY,.STATUS)

IF STATUS=@ THEN 8456

IF KEY<>89 THEN 183

:: FOR Z=1 TO NF ::
EXT Z

CALL CLEAR :: DISFLAY AT(Z,1):"ENTER RE
FORT TITLE" :: ACCEFT AT(4,1)REEF:RTs
DISPLAY AT(1@,1):"PRINTING..."

PRINT #2:RPT$(" ", (86-LENI(RT$))/2);
PRINT #2:RT$:: PRINT #2:" * :: FRINT #
2:" " :: PRINT #2:" ©

FOR @=1 TO RECS

IF OPT$="N" THEN 8¢74

IF ARGSZ >SEG$ (A% (B.FLD) , 1, LEN{ARGS)) THE
N 84808

Le="" =: FOR L=1 TC NF
L$=LSXAS (R, P(LYIY:: IF LINF THEN L&=L3%"
NEXT L

PRINT #2:L%
IF P(@)Y<>¢ THEN GOSUB 8249

125

Applications e

1|14 AN A T AL

8989 NEXT @

8082 IF P(8)=@ THEN 8a9¢

8084 PRINT #2:" " :: PRINT #2:" " :: PRINT #
2: "TOTAL FOR ";FNM$(P(@)):" ";:TOT

8094 CLOSE #2 :: GOTO 190

8169 CALL CLEAR :: DISPLAY AT(3,1):"SEARCH B
Y FIELD NAME? Y/N ." :: ACCEPT AT(3,27)
VALIDATE("YN")BEEP:0OPT$:: IF OPT$="N"
THEN RETURN

8119 DISPLAY AT(S5,1):"SEARCH FIELD NAME
.-" z: ACCEPT AT(5,19)SI1ZE(-&6)BEEP:FLD$

8120 FLD=0 :: FOR L=1 TO FIELDS

81235 IF FLD$=FNM$ (L) THEN FLD=L

8139 NEXT L

814¢ IF FLD=¢ THEN 811¢

8150 DISPLAY AT(6,1):"ENTER SEARCH VALUE" ::
ACCEPT AT(7,1):ARGS

8169 RETURN i

820@¢ RECS=0 :
:: S=¢ :

SUM=P{(@):: S=1 :: GOSUB 71496
RETURN

126

LI S

A

=

———— [ames D. Baker

This menu-based word processor includes many of the basic
features of commercial word processors: text creation, addi-
tion, deletion, modification, paragraphs, pagination, margin
control, page overflow, and text centering. Written for the TI-
99/4A with Extended BASIC, a disk drive, and printer, the
program runs with standard 16K memory.

Just like thousands of other TI users, I have added to my sys-
tem since the original purchase of the computer and a TV set.
After I had purchased Extended BASIC, the Peripheral Expan-
sion Box, disk drive and controller, RS-232 interface, and a
printer, my next choice was word processing capability. All
the word processor packages available required 32K memory
expansion, so I decided to write my own word processor.

This program runs with standard 16K memory because of
linked list access for text files: Only one line of text is in mem-
ory at a time, with before and after indices pointing to the pre-
vious or following line of text.

With this design, addition and deletion of text lines are
possible. The addition of a single line or an entire paragraph
of text is also possible and, therefore, updating text after the
initial input process is easy.

Automatic pagination, margins (top, bottom, left, and
right), page overflow, text centering, and text modification are
also included features.

The program is written in two distinct sections: first, the
create/edit section, then the print section. If additional fea-
tures are added, it may be necessary to split the program into
two separate programs in order to maintain the objective of
minimum memory usage.

Program Initialization

Upon initial execution of the program, the user will be asked

for a filename (assumed on DSK1) where text is stored. The

subroutine called in line 140 sets characters in lowercase.
Next, a screen menu is displayed with these options:

127

Applications ==

N—NEW DATA FILE

A—ADD TO END OF EXISTING FILE
C—CHANGE EXISTING FILE
P—PRINT FILE

New Data File

Upon selection of the first option, a header record is written to
the opened disk file. This record is used to maintain a pointer
to the last text record in the file. Initially, this record does not
contain any meaningful information, but will be updated at
the end of the program to contain the actual last record
number.

Control is then passed to the routine for entering new text
(lines 380-470). Original text is entered using the LINPUT
statement, which limits the length of a single entry to 128
characters. However, this is not a severe limitation; the pro-
gram will simply cause wraparound of the text from one
record to the next. The computer will beep to remind you that
you have exceeded the length of the input string, and you
must then press ENTER to cause this record to be written to
disk and begin entry of the next record. Also, note that dur-
ing text entry all the standard control key operations are al-
lowed, including cursor left or right, character delete or insert,
erase, etc.

The pointers for previous and next record locations are
then updated, and a check for one of the special control func-
tions, /E/, is performed. This is used to indicate the end of
text and must be entered as the last record of the text. If the
record just entered is not the end marker (/E/), the program
writes the text line to disk and returns for the next line of text.

When text entry is complete and the /E/ is entered, lines
490-510 update record 0 with the record number of the last
record on file. Finally, the option of printing the text is of-
fered. If you answer Y for yes, control is passed to the print
routine (line 2400); otherwise the program ends.

Other special control functions are also included for
editing. By entering /C/ as the first three characters of the text
line, the print program will automatically center the text that
follows on that line. By entering /P/ as the first three charac-
ters of a text line, the print program will automatically indent
five spaces for a new paragraph. Also, by entering /N/ as the
only three characters on a text line, the print program will

128

N

4

43

B BN

!

m Applications

automatically cause a top-of-page routine to be executed.
These special control functions can be entered as upper- or
lowercase letters.

Appending
When this second menu option is selected, control is passed to
program line 600. This routine simply uses the pointer ob-
tained from the first record on file to retrieve the last record
on file (the /E/ record). Then the last actual text record is re-
trieved by using the previous record pointer from the /E/
record.

The last actual text record on file is then displayed, and
control is passed to the routine used for original text entry.

Changing an Existing File

With this option, the program retrieves the first text record,
using the pointer obtained from the first record on the file.
This line of text and a change menu are then displayed:

1=NEXT LINE 5=ADD BEFORE
2=LAST LINE 6=ADD AFTER
3=FWD X LINES 7=CHANGE
4=BKW X LINES 8=DELETE
9=QUIT

Next Line. This option displays the next text line. If se-
lected, program execution is transferred to line 900. This rou-
tine first sets the number-of-records-forward counter to one.
The loop in lines 940-980 follows the next record pointer
through the file until the requested number of records forward
has been read. :

A check is made to insure that a READ past the end of
file does not occur. If this is attempted, the program displays
the last line of text, a warning message, and returns to the
main change menu. Upon completion of the loop, program
control is returned to the main change menu.

It should be noted that the loop is not necessary in order
to display the next line. However, it is also used to advance
any number of records by using the third option discussed
below. :

Last Line. This option displays the previous line of text.
The routine starting at line 1000 provides for stepping back-
ward through the text file. This routine is the same as the
prior routine except that the previous record pointer is used in
order to proceed to the previous record.

129

Applications e

FWD X Lines and BKW X Lines. Both of these options (3
and 4) are handled in the routine beginning at line 1100. The
program asks for the number of lines to be read either forward
or backward. This value is then placed in the appropriate
counter, and control is transferred to the Next Line or Last
Line routine.

Add Before and Add After. These options (5 and 6), ini-
tially handled by the same routine (at line 1100), allow for
adding text; option 5 for adding before the current line, option
6 for adding after it. The program displays the current record
and, based on which type of add was requested, prompts you
to add before or after.

The new line of text is then entered and the record point-
ers from the current record are saved. The /E/ is retrieved in
order to determine the next available location in the file to
store a record (next record pointer). This value is saved, and
then the /E/ record is rewritten with the next record pointer
incremented. Based on the type of add being done, control is
transferred to the appropriate routine.

: If you select Add Before (option 5), control is passed to
line 1350.

If you select Add After (option 6), control is passed to line
1450.

Control is then transferred to line 1430 and processing
continues as discussed above.

Change. This option allows you to change an existing line
of text. The routine for this option begins at line 1540. The
text line is broken into 14 lines of “equal” length. Using the
DISPLAY AT and ACCEPT AT statements allows the setting of
default values for each of the subtext lines to their initial string
value. This eliminates the necessity of retyping the entire line
to make a minor correction.

The length of each of the subtext lines is calculated and
the first 13 lines are displayed. Note that a special character is
added to the end of each line. This is done so a space is not
lost at the end of the subtext line.

Line 1650 determines if there is any text remaining for the
fourteenth line. This is necessary to avoid an error if the string
happens to be less than 13 times the rounded length of a single
subtext line length. The fourteenth line is then displayed in
preparation for change.

130

I B SO B R

=

I

X

1

N

3 1

e Applications

The 14 lines are then “looped” through, allowing any
changes desired. Note that the maximum length of any subtext
line is limited to 26 characters and that if the special end
character is accidentally deleted, the program will restore this
character. The length of the new text line is recalculated since
this length could now exceed the maximum string length
permitted by the computer.

After the text has been changed, the new text length is
checked to see if it exceeds 225 characters. If the length is less
than 226 characters, the text line is reconstructed and control
is transferred to line 2050.

If the length of the new text line exceeds 225 characters, a
menu offering two choices is displayed: either update as modi-
fied and create a new record on disk or reupdate the line. If
the reupdate choice is selected, control is transferred to the
beginning of the change routine with no changes made.

If the choice is made to update and create a new record,
lines 1900-1940 establish two new text strings consisting of
the first seven and last seven subtext lines respectively. The
current record being changed is then replaced on disk by the
first new text string created. The second new text string is then
added to the file using the Add After routine. Note that the re-
turn switch has been set in line 1950 causing control to return
to this routine after the add is completed.

The first of the new records is retrieved, and control is re-
turned to display this as the current record and to display the
main change menu.

If the change process did not cause a new record to be
added, lines 2050-2130 display the changed text and offer
three choices: perform more updates, update the record as dis-
played, or exit with no updating.

Delete. The routine for this option, which allows you to
delete a line of text, begins at line 2180. You will be asked for
confirmation before the delete is executed. If the choice is
made not to delete the line, control is passed back to line 780
where the current line is redisplayed and the main menu
choices are available.

If you choose to delete the line, the previous and next
record pointers from this “to be deleted” record are saved. The
previous record is then read and updated with the next record
pointer from the deleted record. The record after the deleted
record is then read and updated with the previous record

131

Applications ==

pointer from the deleted record. Note that the record just
deleted is only deleted from the standpoint that the record
pointers no longer allow access to the record.

A check is then made to insure that this delete has not
caused all text to be deleted. If this is the case, the program
displays a message to that effect and terminates. Otherwise, if
a record still exists before the deleted record, control is passed
to line 1000 and the previous record is displayed. If the record
prior to the deleted record is the header record, control is
passed to line 900, and the record following the deleted record
is displayed.

Print File

The print routine begins at line 2400. Lines 2480-2540 estab-
lish the default values for top margin (TM), bottom margin
(BM), left margin (LM), page length (PL), lines per page (LPP),
and maximum line length (MAXWID). Print control infor-
mation is then requested, including mode of print (draft or fi-
nal), spacing (single or double), and optional page numbering.

The input file is then “restored” to restart from the first
record on file, and the printer output file is opened. Note that
the parallel port is used in this program. If you are using the
serial port for your printer, the OPEN statement in line 2730
will require appropriate changes.

The first record on file is read to retrieve the next record
pointer for the first text record. The main print “loop” begins
at line 2820 where the next text record is read using the next
record pointer from the previous record.

If draft printing was requested, control is passed to that
routine (line 2880). If the current record is a forced new page
request (/N/), the subroutine at line 3900 causes a page eject
and the top margin to be printed. Control is then returned to
the main print loop.

Line 2850 passes control to the ending routine if this is
the last text record. Otherwise, control is passed to the print fi-
nal routine (line 2980).

Print Draft. This routine (lines 2870-2930) simply prints
the lines of text in sequence exactly as entered. This includes
printing any special print commands, but does not effect these
commands. This is useful if you want to see what was entered
for verification purposes and do not want pagination, etc. This
print mode is also faster than final printing as the special print
commands are not executed.

132

88

1

B

1

= Applications

Print Final. This routine begins at line 2980 and prints as
much text as will fit on the remainder of the print line, then
prints character by character until a space is encountered.

The Print Final routine first checks for any special print
commands. If a blank line, centered line, or new paragraph is
requested, control is passed to the appropriate routine. If the
last character on the text line is a period, two spaces are added
to the end of the line to insure proper spacing.

The centering routine begins at line 3550 by printing any
unfinished print line and checking for overflow. The length of
the text to be centered (excluding the centering command) and
the number of spaces required to center the text are then cal-
culated. The line is then printed and control is passed to read
the next record.

The routine to print a blank line begins at line 3700. This
routine simply prints the preceding line, a blank line, checks
for overflow and returns to read the next record.

The routines for top and bottom margins begin at line
3800 and simply loop for the necessary number of blank lines.
Page numbering is handled on line 3940.

Lowercase Definition

Finally, the DATA statements in lines 3980-4240 represent
lowercase letters. These values are assigned according to stan-
dard lowercase ASCII characters and are read using the loop
in lines 4250-4290.

TI Word Processor

186 REM WORD PROCESSING

13g DIM A1l$s(14)

149 GOSUER 42549

15g CALL CLEAK

166 DISPLAY AT(14.7):"WORD PROCESSING”

176 DISFPLAY AT(11.3):"- ENTRY/UPDATE PROGRAM
1886 INPUT "FILENAME -—-DSK1.":F$%

198 DISPLAY AT(46.8)ERASE ALL:"SELECT OPTION"
268 DISPLAY AT(9.6):"N — NEW DATA FILE"

218 DISFLAY AT(11,.6):"A — ADD TO END OF"

226 DISPLAY AT(12.18):"EXISTING FILE"

238 DISFLAY AT{(14,6):"C — CHANGE EXISTING"
249 DISPLAY AT{(1S,1@):"FILE"

259 DISPLAY AT(17,6):"P — PRINT FILE"

268 DISPLAY AT(24¢,146):"CHOICE"

133

Applications

279
28¢
294

Iaa
319
329
339
340
359
360
376
380
390
4903
410
429
43@
449
459

460
470
48¢
490
Seg
Sio
S2a

S36
S40

550
Sed
S7a¢
S8a
S99
-3717]
b1¢
629
639
649

&S50
660

679
689
690

134

ACCEPT AT(2¢,17)BREEP VALIDATE("NACP"):C%
IF LEN(C%)=00 THEN 264

OPEN #1:"DSK1."&F$,RELATIVE, INTERNAL,UFPD
ATE,.FIXED 2S¢

IF C$="P" THEN 2419

IF Cé="N" THEN 326 ELSE 349

PRINT #1,REC @:"EOF="3031

NXTREC=1 :: GOTO 499

RECNO=90

INPUT #1,REC RECND:A$,EOFREC,NXTREC

IF Cs="A" THEN 499 ELSE 670

REM

REM NEW ROUTINE

REM

CALL CLEAR

LINPUT A%

LSTREC=CURREC

CURREC=NXTREC

NXTREC=NXTREC+1

IF SEG$(A$,1,3)="/E/" OR SEGH(A%,1,3)="/
e/” THEN PRINT #1,REC CURREC:A$;LSTREC:N
XTREC :: EOFREC=CURREC :: GOTO 499

PRINT #1,REC CURREC:A%;LSTREC,NXTREC
GOTO 41¢@

REM UPDATE HEADER

RECNO=@

INPUT #1,REC RECNO:A$,HRECNO,NXTREC
PRINT #1.REC RECNO:A%$,EOFREC,NXTREC
DISPLAY AT(12,1)ERASE ALL:"DO YOU WANT T
0 PRINT THE"

DISPLAY AT(13,1):"REFPORT NOW - Y/N"
ACCEPT AT(13,18)BEEP SIZE(1)VALIDATE{("VYN
yn"):P%

IF Pes="Y" DR P$="y" THEN 2419

CLOSE #1

END

REM

REM ADD ROUTINE

REM

INPUT #1,REC EOFREC:A%$,CURREC,NXTREC
INPUT #1,REC CURREC:A$.LSTREC,DUMMY

CALL CLEAR

DISPLAY AT(14,.1):"LAST RECORD ON FILE IS
DISPLAY AT(12,1):A%

LINPUT A% :: LSTREC=CURREC :: CURREC=EOF
REC :: GOTO 459

REM

REM UPDATE ROUTINE
REM

n

L

4

B I B

|

4

17

1 1

700
718
724
738
740
758
760
779
786
790

809

814g

82a

834
840
850

860
870
889
899

03
919
920
939
40
959

969
978
989
9993
1000
1819
1629
1939
1940
1450

1960
19706
1989
1996

e Applications

CALL CLEAR
RECNO=NXTREC
INPUT #1,REC RECND:A$,LSTREC,NXTREC
DISPLAY AT{(2.1):"CURRENT LINE"
FOR I=4 70 13
DISPLAY AT(I,1):" »
NEXT I
DISPLAY AT(4,1):A%
DISPLAY AT(14,1):"SELECT CHOICE:"
DISPLAY AT(16,1):"1=NEXT LINE{4 SPACESS
=ADD BEFORE"”
DISPLAY AT(17,1):"2=LAST LINE{(4 SPACES3&
=ADD AFTER"
DISPLAY AT(18,1):"3=FWD X LINES 7=CHANG
ElI
DISPLAY AT(19.1):"4=BWK X LINES 8=DELET
E”
DISPLAY AT(20,.16):"9=QUIT"
DISPLAY AT(22,1):"YOUR CHOICE:"
ACCEPT AT(22,13)BEEP VALIDATE("12345478%9
"):C%
DISPLAY AT(24,1):" »
IF LEN(C$)=0 THEN 849
C=VAL (C%$)
ON C GOTO 900,.1000,1100,1100,1180,1180,1
S40,2180,4909
REM
REM DISPLAY NEXT
REM
NBRFWD=1
FOR I=1 7O NERFWD
IF NXTREC=EOFREC THEN DISPLAY AT (24 1) "
LINE DOES NOT EXIST"” :: DISPLAY AT(2,.1)
"LAST LINE OF TEXT" :: GOTO 7490
RECNO=NXTREC
INPUT #1,REC RECNO: A$,LSTREC,.NXTREC
NEXT 1
GOTO 73¢@
REM
REM DISPLAY LAST
REM
NBRBACK=1
FOR I=1 TO NBRBACK
IF LSTREC=¢ THEN DISPLAY AT(24,1) :"LINE
DOES NOT EXIST" :: DISPLAY AT(2,1):=:"FI
RST LINE OF TEXT" :: GOTO 749
RECNO=LSTREC
INPUT #1,REC RECNO:A$,LSTREC,NXTREC
NEXT I
G070 734

135

Applications m===

1106
1110
1120
1130
1149
1150
1160
1170
1180
1198
1260
1210
1220

1230
1249
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
13906
1400
1310
1429
1430
1449
1459
13606
1470
1480
1490
1500
1510
1520
1530
1549
1550
1560
1576
1580

136

REM

REM FOWARD/BACK X LINES

REM

DISPLAY AT(22,16):"NBR LINES"”
ACCEPT AT (22,.246)BEEP:NBRLNS

IF C=3 THEN NBRFWD=NBRLNS :: GOTO 94¢
NBRBACK=NBRLNS

GOTO 19490

REM

REM ADD BEFORE/AFTER

REM

CALL CLEAR

IF C=6 THEN PRINT "ADD NEW LINE AFTER:"
ELSE PRINT "ADD NEW LINE BEFORE:"
PRINT

PRINT A%

PRINT

PRINT "ENTER NEW LINE"™ :: ::

LINPUT ANS$

HREC=RECNO

HLST=LSTREC

HNXT=NXTREC

INPUT #1,REC EOFREC:A%$,LSTREC, ADDREC
HADD=ADDREC

PRINT #1,REC EOFREC:A%,LSTREC,ADDREC+1
IF C=6 OR RETSW=1 THEN 1450

REM

REM ADD BEFORE

REM

PRINT #1,REC HADD: AN$,HLST,HREC
INPUT #1,REC HLST:A%$,LSTREC,NXTREC
PRINT #1,REC HLST:A$,LSTREC,HADD
INPUT #1,REC HREC:A$,LSTREC,NXTREC

PRINT #1,REC HREC:A$,HADD,NXTREC

NXTREC=HADD

IF RETSW=1 THEN 201¢ ELSE GOTO 749
REM

REM ADD AFTER

REM

PRINT #1,REC HADD: AN$,HREC.,HNXT
INPUT #1,REC HREC:A$,LSTREC,NXTREC

PRINT #i,.REC HREC:A%$,LSTREC,HADD
INPUT #1,REC HNXT:A%$,LSTREC,NXTREC
PRINT #1,REC HNXT:A%,HADD,NXTREC
GO0TO 1434

REM

REM CHANGE

REM

CALL CLEAR

LENAI=INT(LEN(AS) /14) +1

;.! ;wﬁ ~_ﬂ B

4

R D I |

.

T

159
1600

1618
1620
1638
1640
16506

16608

1679
16898
1690
1706
1710
1720
1738

1749
1750
1768
17709
178¢
1799

1849
1819
1829
1839
1849

185¢
1860
18706
1889
1899
1960
1910
1929

19398

194a
1956
1969
1970
1989
1999

mmsma Applications

FOR I=1 TO 13

Al${I)=SEGS{AS,LENALX(I-1)+1 ,LENAL1)&"

{ « } "

DISPLAY AT (I, 1):s"L"

DISPLAY AT(I,2):A1%(I)

DISPLAY AT(I, 28):"3"

NEXT I

IF LEN(A$)<=13%xLENA1 THEN A1&(14)="(,3"
:: GOTO 167G

A1$(14)=SEG$(A$,LENA1X13+1 ,LEN(AS) -LENA
1x13)&"{,. 3"

DISPLAY AT(14,1):="LC"

DISPLAY AT(14,2):A1%(14)

DISPLAY AT(14,28):"1"

LENA=@

FOR I=1 TO 4

ACCEPT AT(I.2)BEEP SIZE(-26):A1%(I)

IF LEN(A1$(I))=8 THEN A1$(1I)="{(,3" ELSE
IF SEGS(A1$ () ,LEN(ALIS(I)) ,1)L>"{,3" 7T

HEN A1$(I1)=A1&6(I)&"{,3"

LENA=LENA+{(LEN(A1$(I))-1)

NEXT 1

IF LENA>22S5 THEN 182¢

A$= ”

FOR I=1 TO 14

AE=ATLSEGE(AL1E(I), 1 ,POS{(ALSG(I) "L ,3",1)

-1)

NEXT I

GOTO 2954

DISPLAY AT(16,1):"NEW LINE TOO LONG”

DISPLAY AT(18,1):"SELECT CHOICE:"

DISPLAY AT{(19,1):"1=UPDATE/CREATE NEW L
INE"

DISPLAY AT(208,1):"2=RE-UPDATE"

DISPLAY AT(22,1):"YOUR CHOICE"

ACCEPT AT (22,13)BEEP VALIDATE("12"):C%
IF LEN(C%)=0 THEN 18&¢

IF C$="2" THEN 1549

A2$=" 1] : s A3$=ll n

FOR I=1 T0 7

AZ24=RZ2SLSEGH(AL1S$(I),1,POSALS{(I) " {,3",
1)-1)

A3S=A3SLSEGE (AL1$(I+7),1,POS{AL1S(I+7),"
{(,3",1H)—-1)

NEXT I

RETSW=1

HLDCUR=RECNO

A$=A2%

PRINT #1,REC RECNO:A$,LSTREC,NXTREC

ANE=A3 S

137

2000
2010
2020
2030
2040
2050
2060
2079
2080
2909¢@
2106
2119
21209
21390
2149
2159
2160
2176
2189
2196
2209
2210
2220

2239

2246
2259
2268
2279
2289
2299
2300
2319
2320
2338
2340
23509
2360
2370
2380
2398
2499
2419
2424
2430
2446
2459
2469
2476

138

GOTO 1280

INPUT #1,REC HLDCUR:A%,LSTREC,NXTREC
RETSW=0

CALL CLEAR

GOTO 720

CALL CLEAR

DISPLAY AT(2,1):"CURRENT LINE"
DISPLAY AT(4,1):A%

DISPLAY AT(14,1):"SELECT CHOICE:"
DISPLAY AT(16,1):"1=MORE UPDATES"
DISPLAY AT(17,1):"2=UPDATE AS IS"
DISPLAY AT(18,1):"3=EXIT-NO UFPDATE"
DISPLAY AT(22,1):"YOUR CHOICE:"
ACCEPT AT(22,13)BEEP VALIDATE("123"):C$%
IF LEN(C$)=6 THEN 2880

ON VAL (C$)GOTO 1540,2160,720

PRINT #1,REC RECNO:A%,LSTREC,NXTREC
GOTO 728

REM

REM DELETE LINE

REM

DISPLAY AT(24,1):"CONFIRM DELETE - Y/N"
ACCEPT AT{24,22)BEEP VALIDATE("YyNn"):D
&

IF D$="N" OR D$="n" THEN DISPLAY AT (24,
1):"LINE NOT DELETED" :: GOTO 788
HLST=LSTREC

HNXT=NXTREC

INPUT #1,REC HLST:A%$,LSTREC,NXTREC
PRINT #1,REC HLST:A%$,LSTREC,HNXT
INPUT #1,REC HNXT:A%$,LSTREC,NXTREC
PRINT #1,REC HNXT:A$,HLST,NXTREC
LSTREC=HLST

NXTREC=HNXT

DISPLAY AT(24,1):" *»

IF LSTREC>@ THEN GOTO 1466

IF NXTREC=EOFREC THEN 2350 ELSE 98¢
CALL CLEAR

PRINT "TEXT NO LONGBER EXISTS"

PRINT

CLOSE #1

END

REM

REM WORD PROCESSING

REM PRINT PROGRAM

REM

CALL CLEAR

REM

REM SET-~UP DEFAULTS
REM

A8 8

L

A

,

1

1 1

2489
2490
25006
2519
2329
25306
2549
2550
2560
2579
2589
2599
2696
2619

2629
2639
2649
2659

2668
2678
2680
2699

27909
2719
2729
2739
2749
2736
2769
2779
2789
2799
2809
2810
2820
2839
2846

2860
2874
2889
28940
2904
2910

[

RO AR TSR Applications

TM=6

BM=6

LM=1

PL=66

LC=9

LPP=PL-BM

MAXWID=68

DISFPLAY AT(16,.7):"WORD PROCESSING”
DISPLAY AT(11,.6):"—- PRINT PROGRAM -—"
DISPLAY AT(18,1):"FILENAME — DSK1.";F$
DISPLAY AT{(20,.1):"PRINT MODE - D/F”
DISPLAY AT(22,1):"SPACING - S/D"
DISPLAY AT{(24,1):"PAGE NUMBER (Y/N)"
ACCEPT AT(20.26)SIZE(1)BEEP VALIDATE("D
Fdf"):M$

IF LEN{M$)=0 THEN 2614

IF Me&="d"” THEN M$="D"

IF M&="+" THEN M$="F"

ACCEPT AT(22,28)S1ZE(1)BEEP VALIDATE("S
Dsd”) : SPG$

IF LEN(SPG$)=9 THEN 265¢

IF SPG$="s" THEN SPG$="S8"

IF SPG$="d" THEN SPG$="D"

ACCEPT AT(24,26)SIZE(1)BEEP VALIDATE("Y
Nyn") : PGNO$

IF LEN(PGNO%$)=90 THEN 2690

IF PGNOs$="y" THEN PGNO&="Y"

RESTORE #1

OPEN #2:"PI10"

GOSUB 3849

REM

REM READ INITIAL RECORD

REM

INPUT #1:A%$,LSTREC,NXTREC

REM

REM READ INPUT FILE

REM

INPUT #1,REC NXTREC:A$,LSTREC.NXTREC

IF M$="D" THEN 2854

IF SEGH(A%,1,3)="/N/" OR SEGHs{At,1,3)="
/n/" THEN PRINT #2 :: LC=LC+1 :: GOSUB
3989 :: GOTO 2899

IF SEG%(A%,1,3)="/E/" OR SEG%{A®,1,3)="
/e/" THEN 2949

IF M&="F" THEN 298¢d

REM

REM PRINT DRAFT

REM

FRINT #2:A%

LC=LC+1

139

Applications e==mmss

2929
2939
2949
2959
2960
2974
298a
29949
Iaag
Ig1a
Ig29

339
Ig49

Ia5g
Ia6a
IG78
Ia8a
3G90
3108
3119
3129
3132
Ji140
Ji15a
3160
317@

31849

3199
3289
3219
32209
JI238
3240
325¢@
I260

32749
32849
3299
JITag
33140
3320
IZ3E
3340
3359
3360

140

IF LC=LPP THEN GOSUB 3990
GOTO 2849

PRINT #2

GOSUB 3914

CLOSE #1 :: CLOSE #2

END

REM

REM PRINT FINAL

REM

IF LEN(A%)=0 THEN 369¢

IF SEG$(AS.LEN(A®),1)="_" THEN As=AE&"

IF SEGH{A%,1,3)="/P/" OR SEGH{(A%,1,3)="

/p/s" THEN 3149

IF SEG4(A$,1,3)="/C/" OR SEGH(At,1,3)="

/c/" THEN 354¢

IF PC+LEN{(AS){=MAXWID THEN 3110
NPOS=MAXWID-PC

STRT=1

INIT=NPOS+1

IF INIT<1 THEN INIT=1%
GOTO 3399

PRINT #2:A%;
PE=PC+LEN({(A%)

GOTO 28909

REM

REM X*XNEW PARAGRAPHXX
REM

IF PC>LM THEN PRINT #2 :: LC=LC+1

INT #2:RPT$(" ",LM);

IF SPG$="D" AND PC>LM THEN FRINT #2

LC=LC+1 :: PRINT #2:RPT$(" ",LM)3;
PC=LM

IF LC>=LPP THEN GOSUB 394¢

PRINT #2:"{5 SPACES}":

IF LEN(A$) +LM+2>MAXWID THEN 3260
PRINT #2:S5EGH{(A%$.4,LEN(AS$)-3);
PC=LEN(A$) +2+LM

GO0TO 2869

NPOS=MAXWID-5-LM

STRT=4

INIT=NFOS+4

REM

REM X*¥PRINT FARTIAL LINEXxxX
REM

IF PC>MAXWID THEN 338g
PRINT #2:S5EG${A%,STRT.NFO0S);
PC=MAXWID

REM

REM

PR

;

S IO I

A 1

|

I

se=wy Applications

REM

FOR I=INIT TO LEN(AS$)

PC=FC+1

A2$=SEGE (A%, 1,1)

IF PC=1+LM AND A2¢=" " THEN PC=LM :: GO
TO 3444

IF AZ%=" " THEN 3460

PRINT #2:A2%;

NEXT I

GOTO 2Z8dd

INIT=1I :: PRINT $#2 :: LC=LC+1 :: PRINT
$#2:RPTS (" ",LM):

IF SPG$="D" THEN PRINT #2 :: LC=LC+1 ::
PRINT #2:RPT&H(" ",LM);

IF LE>=LPF THEN GOSUB 39¢¢

PC=LM

IF INIT=LEN(A$) THEN 280¢

IF SEG$(A%, INIT,1)=" " THEN INIT=INIT+1

:: GOTO 354940
A$S=SEGS(AS$, INIT,LEN(AS) -INIT+1)
GOTO 3I4d5Se
REM
REM CENTERING ROUTINE
REM
IF PC>LM THEN PRINT #2 :: LC=LC+1 :: PR
INT #2:RPT$(” ",.LM):
IF PC>LM AND SPG%="D" THEN PRINT #2 ::
LC=LC+1 :: PRINT #2:RFT&(" ", LM);
FC=LM
IF LC>=LPF THEN GOSUR 39490
CLEN=LEN{(A%) -3
SP=INT({MAXWID-{M-CLEN) /2)
PRINT #2:RPT&(" ", ,SP+LM);
PRINT #2:S5EG${(A$.4,LEN(AS))
LEC=LC+1 :: PRINT #2:RPT&{(" ".LM);
IF SPGEs="D" THEN PRINT #2 :: LC=LC+1%
PRINT #2:RPT${(" ",LM);
IF LC>=LFP THEN GOSUB 39¢g
G60T0O 28494
REM
REM PRINT BLANK LINE
REM
IF PC=LM THEN 3750
PRINT #2 :: LC=LC+1
IF SPGs="D" THEN PRINT #2 :: LC=LC+1
PRINT #2 :: LC=LC+1 =2: PRINT #2:RPT&("

" LM 3
IF SPG$="D" THEN PRINT #2 :: LC=LC+1 ::
PRINT #2:RPT&(" ".,LM);

141

Applications r==me

3779 IF LC>=LPP THEN GOSUB 3980

378¢ PC=LM

379¢ GOTO 2899

38008 REM

3814 REM PRINT TOP MARGIN

3828 REM

3839 FOR LC=1 TO TM

3849 PRINT #2

3858 NEXT LC

3869 LC=TM

3878 PRINT #2:RPT&H("” ",LM);

3880 PC=LM

3898 RETURN

3998 REM

3919 REM PRINT BOTTOM & TOP MARGINS

392a REM

3936 FOR LCT=LC+1 TO PL

3949 IF PGNO$="Y" AND LCT=PL-3 THEN PGNO=PGN
O+1 =: PRINT #2:RPT$(" ",38);"PAGE ":;PB6
NO ELSE PRINT #2

3958 NEXT LCT

3968 GOSUB 3I8ag

3978 RETURN

3986 REM RE-DEFINE LOWER CASE CHARACTERS

3994 DATA SOS00G38043IC443C

4900 DATA GAA0AG7844444478

4310 DATA GOIGGG3CAG4G403C

4020 DATA GO940G43C44444483C

4938 DATA O0GGAG384478403C

4040 DATA OG18242020702026

4950 DATA SAGB3G4B83I8082810

4060 DATA OOAG4G4G78444444

4970 DATA G910001010101010

448¢ DATA O0GAGGGA404G42418

4998 DATA G@4048S50605894848

4108 DATA OB1010101010101 G

4110 DATA GOSOGG2854444444

4129 DATA GOOGHG7844444444

4130 DATA O90AAG3844444438

4140 DATA G0GA704B704A4040

4159 DATA S0G@I1C241C0484G4

4160 DATA SOOROGSBLAAGAGAD

4179 DATA 90GGGG3C46380478

4180 DATA GOGA207020232418

4198 DATA GOSGORA4444444438

4200 DATA GO90GG4444442810

4219 DATA G09G9GA4444546C44

4223 DATA 0099G004428162844

4239 DATA 009GA442418102040

4248 DATA OOSGGG7COBLIB2G7C

142

—

7

4250
4266
4278
42840
4299

FOR 1=97 TO 122
READ A%

CALL CHAR(I,A$)
NEXT I

RETURN

Applications

143

ecreation

< %

. 2 B A N N R R B =
: v . N !

EEEEp EEans

Larry Michalewicz

Each player must avoid the walls while trying to force his
opponent to collide with him or a wall. It gets tricky. A two-
player game, joysticks required.

“Trap,” written for the TI-99/4 and 4A, runs in TI or Ex-
tended BASIC. The object is to force your opponent to collide
with a wall while you avoid hitting any walls yourself. If you
cause your opponent to crash into your wall, his own wall, or
a boundary wall, you receive a point. The first player to get
five points wins the game.

Program Description

The playing field for the game is set up in lines 200-280.
Lines 250 and 260 draw the top and bottom barriers, and lines
270 and 280 draw the left and right walls.

The variables for player movement are initialized in lines
290-380. The beginning coordinates for player 1 are C1 and
D1; for player 2, C2 and D2.

Lines 410 and 470 examine input from the two joysticks.
If a joystick has not been moved or has been moved in a diag-
onal direction, the player will continue to move in the direc-
tion he or she was last going. The CALL GCHAR statements
in lines 520 and 570 determine the ASCII value of the charac-
ter in the next screen location. If this value is anything but a
32 (which is a space), then I1 or 12 is assigned the value of 1
depending on which player has collided.

Line 620 checks for a collision between players and walls.
If I1 (but not 12) is equal to 1, meaning the player on the left
side has crashed, the right side wins and is awarded a point.
Likewise, if 12 (but not I1) is 1, the left side wins and receives
a point. If both players collide (I1 and 12 = 1) with a wall
simultaneously, each player is awarded a point.

When either player gets five points, the game is over.
Lines 830-840 then prompt for another game.

147

Recreation m===

Trap

100

119
129
139
149
150
160
179
189
199
209
219
226
239
249
259
269
276
289
299
399
319
3209
339
349
350
360
379
389
399
400
419
429
430
440
450
469
479
480
499
Sg@
S1g
529
5309
540
550
560
570

148

P=g

Q=9

CALL CHAR(12@,"")

CALL CHAR(135,"")

CALL CHAR(136,"")

CALL CLEAR

CALL SCREEN(3)

CALL COLOR(13,1,7)

CALL COLOR(14,1,5)

REM SET UP PLAYING FIELD
PRINT "PLAYER #1 "3;P,"PLAYER #2
FOR 0=1 TOQ 22

PRINT

NEXT O

CALL COLOR(12,2,2)

CALL HCHAR(2,2,128,30)
CALL HCHAR(24,2,120,39)
CALL VCHAR(2,2,128,23)
CALL VCHAR(2,31,128,23)
Ci1=12

c2=12

Di1=4

D2=28

R1=0

S1=1

R2=0

s2=-1

It=0

12=0

REM MAIN LOOP (MOVEMENT)
CALL JOYST(1,B1,A1)

IF ABS(A1)-ABRS(B1)=@ THEN 44¢
R1=A1/4

S1=B1/4

C1=C1-R1

D1=D1+S1

CALL JOYST(2,B2,A2)

IF ABS(A2)-ABRS(B2)=@ THEN S@0
R2=A2/4

S2=B2/4

C2=C2-R2

D2=D2+52

CALL GCHAR(C1.D1,6)

IF 6=32 THEN 558

I1=1

CALL VCHAR(C1,D1,135)
CALL SOUND(1,262,9)
CALL GCHAR(C2,D2,6)

IO;Q

3

L

43

S S R R B

1 3

3 1

S8g
S99
Y17
61@
620
630

&40
65

Y-}
678
&80
6948
7089
714
720
734
740
750
760
776
789
799
899
81d
820
834
849
850
860
879

e Recreation

IF G=32 THEN 64d@

12=1

CALL VCHARI{(C2,D2,136)
CALL SOUND(1,294,9)
IF I1+12=¢ THEN 404

IF ((I1=1%1I2=1))+((I2=1)%(D1+D2=32))THEN

714
IF I1t=1 THEN 648¢
H&="LEFT SIDE WINS"
P=P+1
GOTO 749
He="RIGHT SIDE WINS"
2=0+1
G6O0TO 749
H&="IT*S A TIE"
P=P+1
E=a+1
PRINT He$
FOR I=1 TO 24¢
NEXT I
FOR H=1 TO 23
PRINT
NEXT H
IF (P<3>S) ¥ (Q<>S5)THEN 15¢@
REM PLAY AGAIN?
PRINT "PLAYER 1";P,"PLAYER 2";:;@
PRINT "DO YOU WANT TO FLAY AGAIN
CALL KEY(A,KEY,ST)
IF ST=¢ THEN 84¢
IF (KEY=89)+(KEY=121)THEN 109
END

(Y/N) 2"

149

ck Leader

Douglas E. Smith and Douglas W. Smith

This is no time to be feather-brained or daffy. There are
hunters lurking in the maze of reeds ahead, and if you make
a wrong turn, you and your friends will be duck soup. Two
skill levels, ten difficulty ratings.

This game will challenge your skill and memory. Your assign-
ment, as the leader of a squadron of 30 ducks, is to direct
them through a series of marsh mazes to the safety of a duck
sanctuary.

You must swim through five different mazes, each of
which has invisible reed patches and hidden hunters. The
reeds will send you back to the beginning of the maze. If you
find a hunter, you will lose a duck. Save as many ducks as
possible for a high score. Lose your squadron and it’s all over.

Favorite Duck
After typing in the program, it's a good idea to list the pro-
gram, check for errors, and then save a copy to tape or disk
before running the program.

When you start the game, the title graphics will appear,
followed by several questions.

1. LEVEL=?(1=HELP/ 2=NO HELP)

Enter 1 until you have gained confidence in your memory
and problem-solving ability. With level 1 you may use the H
key to quickly view the location of the reeds and hunters in
the marsh (up to five times during one game).

Level 2 will double your possible score, but you cannot
use the H key for help.

2. DIFFICULTY=(1—-10)
For your first game, enter 1. After some practice try the
other difficulty ratings. Ratings 1-4 are easy, 5-7 are hard,

and 8-10 are very challenging. The difficulty rating deter-
mines the complexity of the maze.

150

U B B B

I B B

R

=

[

e Recreation

3. INSTRUCTIONS ? (Y/N)

Enter Y to read the instructions before the game begins.
This screen briefly describes the game and the functions of the
appropriate keys used for the game. It also shows the graphic
characters used for the reeds, hunters, and the marsh exit.

4. FIRST NAME OF THE LEAD DUCK?

Type in your first name or the name of your favorite
duck, and press ENTER. The game will then begin.

If you entered Y for instructions, they will appear first. Hit
the 1 key to begin play.

At first the outline of the marsh appears, and then the
positions of the reeds and hunters are indicated. You have 15
seconds to study the locations before the reeds and hunters
become invisible.

Successful Maneuvers

The duck on the left side of the marsh represents your squad-
ron. Move the duck by using the arrow keys (E, S, D, and X).
You do not have to press ENTER or use the FCTN key.

If you hit the sides of the marsh or the invisible reed,
your ducks will bounce back to the starting position, but you
do not lose any ducks.

Meeting a hunter will result in gunfire and the loss of a
duck, with the survivors returning to the start again.

The positions of the reeds and hunters do not change un-
til you reach the exit to the next marsh.

Your goal is to maneuver your squadron to the right side
of the marsh and out the exit to the next marsh. Once you
have passed through the five marshes to safety, the program
will congratulate you, show you the remaining ducks, and
print your score.

The highest possible score is 6000 and can be achieved
only at level 2 with the difficulty rating 10. Nobody has
achieved this score to date.

The marsh border color changes to red if the squadron is
depleted to ten or fewer ducks. Losing all the squadron will
put you in Duck Soup, and give you a zero score.

After the score is printed, the program will ask PLAY
AGAIN? (Y/N). Enter Y to play again at the last selected level
and difficulty. Enter N to choose a different level and
difficulty.

151

The H key may be used if you selected level 1. Pushing
the H key while playing the game will give you a quick look
at the marsh. Using this key does not change the position of
the duck. You are limited to only five heips per game.
Remember the highest score using level 1 will be half that of
level 2.

On occasion, the program will generate a maze which is
impossible to cross. (Ducks don’t always have it easy, do
they?) Press the N key and you will move to a new marsh.
The change in marshes will cost the squadron five ducks, so
use the N key only if there is no way out.

Some Noteworthy Routines

The “Duck Leader” program employs several very useful TI
BASIC routines. Creation of the maze is accomplished using
the RND function to place the reeds and hunters (lines
620-670). The CALL GCHAR in line 800 tests the randomly
determined position for characters already present on the
marsh.

Line 800 checks to see if an empty space is present and, if
not, calls for a new set of coordinates to be generated.

The CALL KEY routine (line 890) is used to move the
duck through the marsh. Keys 68, 69, 83, and 88 determine
the direction of the move. Once again the CALL GCHAR is
used to test for an empty space. If found, the duck is printed
in that position. If a reed or hunter is found, lines 1250-1260
execute the proper action.

Several loops and counters pause the program and keep
track of the ducks. Lines 690-720 give you time to view the
maze before the characters become invisible. The H key sends
the program to lines 1140-1220, making the maze visible. The
ducks left are counted in lines 980 and 1310. The number of
marshes traversed is counted in line 1380. The score is cal-
culated in line 1550 and the ducks saved in line 1540.

Changing the Difficulty
You may wish to make the game less difficult by making one
or more of the following changes:

1. Set the final value in the FOR-NEXT loop in line 690 to a
higher value to increase the length of time you have to view
the maze.

152

B T T T S

L S R R

A

3 7

3

)

zz Recreation

2. Increase the final value for X in the FOR-NEXT loop begin-
ning in line 1170 to give you a longer look when you use
the H key.

3. Change the 5 in line 1150 to a greater number to increase
the number of times you can use the H key.

Program Summary

Lines
120-170

180-320
330-410
420-500
510-610
620-670
680-720
730

740

750-820

830-980

910

920
980-1030
980
1040-1050
1060-1130
1140-1220
1140

1150

1190
1230-1270

1280-1360
1320
1370-1410

1420-1460

1470-1710
1540
1550
1610
1670-1690

Reset random generator, define graphic characters and
colors.

Print title graphics and questions.

Duck animation GOSUB. Routine for title and game end.
Instructions.

Marsh and borderline.

Print reeds and hunters.

Allow view of the maze.

Make the reeds and hunters invisible.

Transfer control of the program to the call key routine.
Subroutine which randomly selects the positions for
reeds and hunters.

Use the call key routine to read the keyboard and to
branch the program for the desired action.

Check for the H key.

Check for the N key.

Reset game for a new marsh.

Add five to total ducks lost (DL).

Sound for hitting reeds.

Reset value for position of the duck.

Reveal maze when H key is used.

Check for level (1) input.

Check for HELP limit.

Count H key use.

Check the duck position for contact with reeds or hunters
or the Exit.

Print gunfire graphic, call sound, and increase DL by one.
Check for DL=20 and change border color if true.
Return program for creation of a new marsh, and count
marshes completed.

Screen color change routine used to signify the beginning
and end of the game and of the completion of a marsh.
Print end-of-game message and play again prompt.
Calculate ducks saved (DS).

Calculate score.

Print saved ducks.

Set DL, HELP, and MARSH to 0.

153

Recreation =

1720-1800 Subroutine which defines the graphic characters.

128,129 Duck.

136 Border.
137 Exit.
112 Reeds.
113 Hunter.

120 Gun Shot.

Duck Leader

126
13¢
149
150
160
170
189
199
2900
219
229
239
249
259
260
270
28¢
299
300
310
320
339
349
359
369
379
380
399
400
416
42¢
430
446

450

154

RANDOMI ZE

GOSUB 1726

CALL COLOR(13,2,1)

CALL COLOR(14,5,16)

CALL COLDR(11,13,1)

CALL COLOR({12,16,1)

CALL CLEAR

CALL SCREEN(12)

FOR X=1 TO 19

PRINT " DUCK LEADER DUCK LEADER"

NEXT X

PRINT

GOSUB 338

GOSUB 1429

INPUT "LEVEL=7(1=HELP/2=N@ HELP)":LEVEL
INPUT "DIFFICULTY=?(1-16)":DIF

IF (DIF<1)+(DIF>18)THEN 278

INPUT "INSTRUCTIONS?(Y/N)":INS$

INPUT "FIRST NAME OF LEAD DUCK?":NAME$
IF INS$="Y" THEN 420

GOTO 526

FOR Y=12 TO 14 STEP 2

FOR X=1 TO 32

CALL HCHAR(Y,X,129)

CALL SOUND(25,-5,15)

CALL HCHAR(Y, X, 128)

CALL HCHAR(Y,X,32)

NEXT X

NEXT Y

RETURN

CALL CLEAR

PRINT NAMES$: :

PRINT "YOU ARE THE LEADER OF A": :"SQUAD

RON OF THIRTY DUCKS.": :"PADDLE THROUGH

FIVE MARSHES": : ,

PRINT "TO SAFETY!'!'!": :"USE ARROW KEYS TO
MOVE": :"H-KEY FOR HELP(ONLY FIVE)": :"
N-KEY=NEW MARSH(-5 DUCKS)": :

S R B R

-

Ao)

3

)

3

1

o

460

473
489
493
Sao
S19
S2¢8
S3a
S49
550
S0
579
589
S99
&89
614
620
630
649
659
663
679
6809
698
709
719
720
730
749
750
769
776
780
790
809
8190
829
8306
849

859
869
879
889
899
900

919
20
934

mmm Recreation

PRINT "WATCH DUT FOR REEDS..": :"AND HUN
TERS!!": :"REEDS":"HUNTERS":"EXIT"
CALL HCHAR(21,12,112)

CALL HCHAR(22.12,113)

CALL HCHAR(23,12,137)

INPUT "ENTER 1 TO START":SRT

GOTO S28

REM MARSH

CALL SCREEN(15)

CALL CLEAR

PRINT TAB(10); "MARSH #"3;MARSH+1
CALL HCHAR(2,3,136,28)

CALL HCHAR(22,3,136,28)

CALL VCHAR(2,3,136,28)

CALL VCHAR(2,3@,136,208)

CALL VCHAR(6,7,136,12)

CALL VCHAR(9,38,137,7)

FOR X=1 TO (DIFXS)

GOSUB 758

CALL HCHAR(ROW,COL,112)

GOSUE 7598

CALL HCHAR(ROW,COL,113)
NEXT X

CALL HCHAR(12,5,128)

FOR X=1 TO S@

CALL COLOR(13,9,1)

CALL COLOR(13,2,1)

NEXT X

CALL SCREEN(13)

GOTO 838

REM RAN ROW+COL
ROW=INT (22%RND)

IF ROW<3 THEN 760
COL=INT (38¥RND)

IF COL<4 THEN 789

CALL GCHAR(ROW,COL,GRC)
IF GRC<>32 THEN 760
RETURN

REM MOVE DUCK

R=12

c=5

CALL HCHAR(R,C,129)
CALL SOUND(25,-5,15)
CALL HCHAR(R,C,128)
CALL KEY{(®,KEY,ST)

IF (KEY=68)+(KEY=69)+(KEY=72) + (KEY=78) +(
KEY=83) + {(KEY=88) THEN 916 ELSE 890
IF KEY=72 THEN 11490

IF KEY=78 THEN 980
CALL HCHAR(R,C,32)

155

949

959

969

979

989

990G

1009
1619
10209
1939
1949
14506
1060
16706
1289
1899
1190
1116
1128
1139
1149
11506
1169
1179
1189
1199
1200
1210
1229
1239
12490
1256
1260
1279
12886
1299
1399
13109
1329
1339
1340
1359
1368
1379
1389
1399
1400
1410
1420
1439

156

IF

DL=

KEY=468

KEY=69
KEY=83
KEY=88
DL+S

THEN
THEN
THEN
THEN

1060
19806
1160
1129

IF DL>19 THEN 1960 ELSE 1049

CALL COLOR(14,5,9)

IF DL>=36 THEN 1420 ELSE 1049

DL=39

GOTO 1470

CALL SOUND(19@,S589,0)
GOTO 529

C=C+1

GOTO 1239

R=R-1

G60TO 1239

C=C-1

GOTO 123¢

R=R+1

GOTO 1239

IF LEVEL<>1 THEN 89¢
IF HELP=5 THEN 1219
CALL SCREEN(1S)

FOR X=1 70O S0

NEXT X

HELP=HELP+1

CALL SCREEN(13)

CALL SOUND(S5,1¢08,.1)
GOTO 899

CALL G6CHAR(R,C,GR)
IF G6R=32 THEN 8640

IF (BR=136)+(BR=112)THEN 1350

IF GR=113 THEN 1280
IF GR=137 THEN 1378
CALL HCHAR(R,C, 128)
CALL SOUND(1,268,1)
CALL HCHAR(R,C,113)
DL=DL+1

IF DL=2¢ THEN 133¢ ELSE 134¢

CALL COLOR(14,5,9)

IF DL=3¢ THEN 147¢ ELSE 84g

CALL SOUND(S@,-1,1@)
GOTO 849

REM NEW MARSH
MARSH=MARSH+1

IF MARSH=5 THEN 1479
GOSUB 1429

GOTO S52¢

FOR SC=4 TO 1&

CALL SCREEN(SC)

S B R R A |

L I R

4 1

T

N

1440
1450
1460
1470
1480
1490
1506
1519
15209
15398
1549
1559
1569

1579
158¢
1598
1609
1619
162¢
1630
1649
1659

1669
1676
1684
1699
1790
1719
172¢@
173¢@
1749
1750
1760

1779
1780
1799
18006
18190

» Recreation

CALL SOUND(1,3886,1)

NEXT SC

RETURN

REM END OF GAME

CALL CLEAR

CN=INT ((28-LEN(NAME$)) /2)

FPRINT TAB(CN);NAMES$: :

IF DL=36 THEN 1649

GOSUB 1429

GOSUB 1420

DS=3@-DL

SCORE=LEVEL$DIF%DSX10

PRINT "CONGRATULATIONS YOU SAVED ": :TA

B(16);DS; "DUCKS'": :TAE(5);"FOR A SCORE
OF ©;SCORE

FOR X=1 TO 12

PRINT

NEXT X

CL=INT((32-DS)/2)

CALL HCHAR(6,CL,128,DS)

GOSUB 330

GOTO 1640

REM DUCK SOUP

PRINT "OH NO!' YOU’RE DUCK SOUP": :TAB(
11) ; "SCORE=0": :

INPUT "PLAY AGAIN?(Y/N)":PLAY$
DL=6

HELP=9

MARSH=0

CALL COLOR(14,5,16)

IF PLAY$="Y" THEN 526 ELSE 1816
REM CALL CHAR

CALL CHAR(128,"9G040BPAFE7CB8808")
CALL CHAR(129,"g@0816GBFE7C4400")
CALL CHAR({136,"G@BAAAAAARAAAAAAAA")
CALL CHAR(137,"90080C7EACOBAGHG")

CALL CHAR(112,"80AAAARARAARAARAAAAA"T)
CALL CHAR(113,"09000689890677C64")
CALL CHAR(12@,"8142241818244281")
RETURN

END

157

John B. Dorff

Dare you cross the freeway of the future? You better have all
your wits together, for this is one grueling highway. It will
take all the cunning and speed you can muster to cross this
ten-lane roadway. Requires Extended BASIC and joysticks. A
Speech Synthesizer is optional.

If you’ve been trying to write games in BASIC, you have prob-
ably found out that it can be difficult to design fast-action
games. Creating a game with many moving objects on the
screen, moving in all directions, is next to impossible; BASIC
is just too slow. Still, with TI's great graphic and sprite
capabilities, there are ways to create fun and exciting games
once you learn to work with BASIC's limitations. Extended
BASIC is the best way to create such a game.

“Freeway 2000 is just such a game. It takes advantage of
TI's graphics and sprites. To save program space, there are no
REM statements or instructions for the game included in the
program. For the same reason, and to increase speed, almost
all the lines in the program are multistatement lines. Save the
program after you have typed it in and before you run it.

Some speech has been added to enhance the game, so if
you have a speech synthesizer, connect it before you play.
There is nothing like a game that compliments you when
you've made a good run, or chides you when you goof.

Crossing the Road

The object of the game is to get across the ten-lane highway,
using a joystick to guide your runner, without getting hit. Each
time you make it across successfully, the level of difficulty in-
creases. At the start of the game, you score ten points for each
lane passed, one thousand points for making it all the way. As
the levels increase, the points per lane increase. You start off
with six runners, gaining an extra one at six thousand point
intervals. The game is for one or two players, so challenge a
friend! Remember to have the ALPHA-LOCK key up when

playing.

158

4y v b

N R R R R

a Recreation

Here's a short explanation of the program:

Line #
10-30

40-150

160
170-220
230-320
330

340-430
440-460
470-560

580-690

700-720
730-780
790-800
810-820

830
840-850

860-920

930

Comment

Call up needed speech words, construct the suffix “s” and
add it to certain words.

Title screen, definition of characters, and initialization of
variables. Many variables are used to save space and to in-
crease program speed. The more important ones are:

L(1), L(2)—Player levels;

E(1), E(2)—Score that must be reached to gain an extra
runner;

W(1), W(2)—Number of runners the players have left;
Z(1), Z(2)—Players’ scores;

B(1), B(2)—Bonus points;

P—Player number.

Input one- or two-player game.

Set up the playing screen.

Define sprites (cars and runners).

Randomly select the cars’ speeds for each lane, dependent
on the variable L(P)—player level.

Set cars in motion.

Main control loop.

Sorry, you got hit! These lines play appropriate sound ef-
fects and find the runner’s position for scoring.

You made it across! These lines add the appropriate points
and check to see if an extra runner should be awarded.
Also increase the player’s level.

Main control loop. (This is used when the runner is on top
of the screen and must come down to cross the freeway.)
Same as 470-560.

Input to play again; reinitialize.

Input to continue the same game or start a new one;
reinitialize.

This subroutine waits for you to press a key to answer.
This subroutine creates varied car sounds, dependent on
the variable O.

These lines check to see if the game is over. If not, they
subtract a runner and change the player number in a two-
player game. They also award an extra runner at 6000 point
intervals.

Data for constructing the suffix “s”.

Freeway 2000

19 RANDOMIZE :: CALL SPGET("SET".S$):: CALL
SPGET("GDOD".6%):: CALL SPGET("MOVE",M$):

CALL SPGET("WELL" , W$)

159

49

6@

79

8a

a9

1900

149

15a

1606

179

160

CALL SPGET("WHAT",WH$):: FOR I=1 TO 29 ::
READ A :: S5S$=5S56%CHR%(A):: NEXT I
J=LEN(M$)—-13 :: ME=SEGH{M$,1,2)UCHR®(J) &S
EG$(ME,4,T)r:: J=LEN(WHS$)-13 :: WHS=SEGSH (W
H$,1,2) % CHR$ (J) XSEG$ (WHE,4,J)

CALL CLEAR :: 0=18¢¢ :: GOSUR 849 :: DISF
LAY AT(I,4): "XXXXFREEWAY 200@%xkXx" :: LA{1
)L,L(2)=5 :: VI=-2.5 :1: V2=2.5 :: Q=33 ::
21=138

CALL SOUND(8@,57¢,5,356,5):: E(1) ,E(2)=68
gg s W1),W(2)=5

SND1 (@) =43@ :: SND1(1)=514 :: SND1(2)=470
t: SNDI1(3)=395 :: SND2{(@)=3@g@ :: SND2(1)
=339 :: SND2(2)=39¢ :: SND2(3)=241

CALL CHAR(24,"@@3C"):: CALL CHARI(97,"ga0g
A3IC"):: CALL CHAR(104,"OQ0AGOFFFFFFFFFF”
:: CALL CHAR(992,"0003dd@u@@ICc")
CALL SOUND(154,578,5,356,5):: CALL CHAR(1
B3,""):: CALL CHOR(100,"Q00000000000GA3IC"
Y:: CALL CHAR(13#,"191AFERCP83C4484")
CALL CHAR(128,"@0056C9DDDDDDCY66ERS6FIRERB
BB9366"):: CALL CHAR(132,"@A@CEA4IFIFEAGCE
g"):z: P=1 :: Z(1),2(2)=¢g :: B(1),B(2)=190
g :: U=1190
CALL SOUND(S9,436,3,386,3):: DISFLAY AT
12,1):"DARE YOU CROSS THE FREEWAY" :: DI

CALL SOUND(80,430,3,30@¢,3):: D=2400 :: G

OSUB 84¢ :: DISPLAY AT(13,1):"

(18 SPACES}” :: DISPLAY AT(12,1):"ARE YOU
INTREFPID ENOUGH..."

0=1600 :: GOSUR 840 :: DISFLAY AT(13,.1):
"ADROIT ENOUGH...." :: CALL SOUND(15@,47

$.5.396,5S):: FOR X=1 TO 150 :: NEXT X

CALL SOUND(150,47@.5,39%,5):: FOR X=1 TO
2604 :: NEXT X :: DISPLAY AT(14,1):"INSA
NE ENOUGH TO TRY?!" :: 0=220@ :: GOSUE 8
ag

CALL CLEAR :: DISFLAY AT(12,5):"G0O0D LUC

K,FRIEND...." :: FOR D=1 TO 10¢ :: NEXT
D :: CALL SOUND(486,514,3,359,3)

FOR D=1 TO 3I¢@ :: NEXT D :: DISFLAY AT(1

4,5):"YOU LL NEED IT!!t't!!" :: Q=1868 ::
GOSUB 84¢

CALL CLEAR :: DISFLAY AT(12,8)REEF SIZE(
15):"1 DR 2 FLAYERS?" :: GOSUB B3@ :: IF
K=49 THEN A=1 ELSE A=d

CALL CLEAR :: CALL COLOR(2,2,13):: CALL
COLOR(3,2,13):: CALL COLOR(4,2,13):: CAL
L COLOR(8.2,13):: CALL COLOR(13,2,13)

A

B B

A

S I RS B |

1

189

199

200

359

369
370

= Recreation

CALL COLOR(1¢,.13,186)::

6):: CALL COLOR(7,2,13)

L,13):: CALL COLOR(S,2,1
2,13

CALL HCHAR(1,1,32,16@8):: CALL HCHAR(19,1
.32,192):: CALL HCHAR(6,1,185,32):: CALL
HCHAR(7,1,96,32):: CALL HCHAR(8,1,97,32
)

CALL HCHAR(9,1.99,32):: CALL HCHAR(18,1,
16@,32):: CALL HCHAR(11,1,105,32):: CALL
HCHAR(12.1.96,32):: CALL HCHAR(13,1.97,

32)

CALL HCHAR(14.1,99,32):: CALL HCHAR(1S5,1
L180,32):: CALL HCHAR116,1,195,32):: CAL

L HCHAR(17.1,96,32):: CALL HCHAR(18.,1,1@

4,32)

DISFLAY AT(1,1)SIZE(8):"FLAYER 1" :: IF

Aa=@ THEN DISPLAY AT(2,1)S1ZE(8):"FPLAYER

2!'

CALL SPRITE(#1,128,2,41,12,%#2,128,5,41,6

3.#4,128,3.41,187)

CALL SPRITE(#5.129,.6.51.160,46,129,7.51,
2@e. #7.129,15,.51,224)

CALL SFRITE(#8.129.2.61.60 ,#%9,129,3,61,1
88)

CAl.L SPRITE(#1%,128.14,71,96,411.128.7,7
1.196.4#12.128,9.71,228)

CALL SFRITE(#13,129,5,381.75.#14.129,13.8
1,149,4%%,127.2,81.,275

CALIL. SPRITE(#15,128.7.91,123.#19,128,15,
91.250.416,128,4,101,30,4#17.128, 7.1o
1,6@,#18,128,&,101,1"9)

CALL SPRITE (#28,129,5.111,115,#21,129,2.
111,145, 422,129,14,111,175)

CALL SPRITE (#23.128,15,121,84,#24,128.9,
121,168,#25,128,7,121,235)

CALL SPRITE (#26,129,5,131,68,.#27.129,2.1
31,184)

DISPLAY AT(22,1):"FPLAYER";F :: CALL SPRI
TE(#28.136,2,166,127)

DISFLAY AT(S.18):"GET READY'!" :: CALL H

CHAR (24,3, 138, W(P)):: CALL SAY("GET".S%)
:: FOR N=1 TO 16 :: S(N)=INT(RNDXL (F)) «1

G :: NEXT N

HH=INT(RNDX4):: CALI MOTION(#1.%,-S(1). %
LB, -S(1) H#8,8,-5(1))

CALL MOTION(#5,0.5(2),#6,0,5(2} ., #7,8.5(2
)

CALL MOTION(#B8,8,S(3),49,.%,5(3)

CALL MOTION(#1@.6.-5(4) . #11,.8,-S(4) %12,

@,-5¢8))

CALL COLOR(1,2

CALL COLOR{9,15,1
X):: CALL COLOR(6

161

Recreation ===

389
399
4 33
419
/420

43¢

4405

459

460

478

484

499

Sag

S1¢@
S29
S3d
5S40
SSa

S69
S74

S8g

S99
&P
&1
623
&30

162

T L T S T

CALL MOTION(#13,0,5(S5) . #14,06,5(5),#3,6,8
{5))

CALL MOTION(#15,8,-5(&),#19,8,-5(58))

CALL MOTION(#16,0,-S(7),#17,8,-S(7),#18,

G,.-5{(7)):: DISPLAY AT(S,18):"{4 SPACESIG

g!!" =2 CALL sSaAY("GO")

CALL MOTION(#26,0,5(8),.#21,6,5(8) ,#22.4,

s5(8))

CALL MOTION{#23,06,~5(9),#24,0,-5(9),#25,

B.-5S(9))

CALL MOTION(#26.8,5(19) ,#27,6,5(1@)):: D
ISPLAY AT(S,18):"{12 SPACES>" :: IF O=1 T
HEN 748 ELSE 0O=9

CALL JOYST(P,X,Y):: CALL COINC{(ALL.C)::
IF C THEN 479

CALL MOTION(#28,Y%V1i,XXV2):: CALL PGSITI
ON(#28,R,V):: CALL JOYST(P.X.Y¥):: CALL C
OINCA(ALL ,C):: IF C THEN 470

CALL MOTION($#28,YxV1,XxV2):: IF R>2 THEN
4460 ELSE 570

CALL SOUND(B2@, SND1 (HH) ,5,5ND2(HH) ,S)::

CALL MOTION(#28,4,.%):: CALL PATTERN(#28,
132)

CALL SOUND(18,554,1):: CALL SOUND(1@,523
+2)z: CALL SOUND{14,494,.3):: CALL SOUND(
18,466,4):: CALL SOUND(10,440,5)

CALL SOUND<(14,415,6):: CALL SOUND (18,392
27323 CALL 50UND'1@,:7“ 8)Y:: CALL SQUNDC(
19,349,9):: CALL SOUND (19 ,330,1@)

CALL POSITIDN(#°8 R,V):: DN HH+1 GOTO S1

8,526,338, 54¢9

CAaLL SAY(.WHVSS,"THQT"):: 60T0 SSe

CALL SAY("SOQRRY"): GOTO SSa

CALL SAY("QH",W$):: BOTO S50

CALL S8AY(, WH$&SS$ "THAT")

FOR D=133 TO 43 STEP -1% :z: IF R<D THEN
ZAPY=Z(P)+L{P)+L{(F)z:: U=U+8 :: CALL. SOUN

D(S,U,@d):: DISFPLAY AT(P,9):Z(P)YELSE 874

NEXT D =:: GOTO 87¢

CALL MOTION(#28,9,.8):: IF R>179 OR R<28

THEN Z(P)=¢ :: DISFLAY AT(26,12): *"NO FAI

R!" =2: CaALL SOUND(S9@8,-3,4):: GOTO 8og

DISFLAY AT (29, 9)SIZE(IH) "NICE RUNNING'"
:: DISPLAY AT(”I 6)SIZE(19)-STR$(H(P))
* BONUS POINTS!''" :: O=0+1

ON HH+1 GOTO o688, 616,620,630

CALL SAY("MEAN",M$&SS$):: GOTO 649

CALL 5AY("VARY",G$):= GaTa 644

CALL SAY(,W&,"DONE"):: GOTO 49

CALL SQY(_G*_"GDINB")

U R R

A

Ay

I

11 1

640

o~

So

660

6790

s Recreation

FOR D=1 70 14 :: U=U+8 ::
+L(P):: CALL SOUND(S,U,8):
«9P):2Z(P)Y:: NEXT D :=:: U=119
L(P)=L(P)Y+1 ::: Z(P)=Z(P)+B(P):: CALL 50U
ND (S8 ,SND1 (HH) ,3,SND2(HH) ,3I)::2 CALL SOUN
D(1ag,SND1 {HH) , 3.SND2 (HH) (3)

DISPLAY AT (F,?2):Z(P):: IF Z(P)<E(P)THEN
&89

W(P)=W(P)+1 :: E(P)Y=E(P)+468080 :: CALL HC
HAR (24, W(P)+2,134d):: CALL SOUND(1¢,3

Z(PY=Z(P)+L(P)
: DISPLAY ATI(P

49.9):: CALL SOUND(19,523,8)

&89

690
796

718

760

77¢

784

799

8¢ad

814g

83d¢

849

CAaLL HCHAR(28,9,32,38):: IF L(P)=11 OR L
(P)=16 OR L(F)>=21 THEN B{(P)=R(P)+1909

GOTO 339

CALL JOYST(P,.X,Y):: CALL COINCC(ALL,C)::
IF C THEN 738

CALL MOTION(H#28,Y*V1, XxV2):: CALL POSITI
ON{(#28B,R,V):: CALL JOYST{(P,X,Y):: CALL C
OINC(ALL,C):: IF € THEN 73¢

CALL MOTION{(H#28.Y*%V1,.X%kxV2):: IF R<81 THE
N 79d ELSE S74¢

CALL SOUND(8¢®,S5ND1 (HH) ,S,.S5SND2(HH) ,S) ==
CALL MOTION(#28.4,.4)

CALL PATTERN{#28.132):: CALL SOUND(1#4,5S
4,.1):: CALL SOUND(14,523,2):: CALL SOUND
(16.494,3):: CALL SOUND(14g,466,4):: CALL
SOUNDC(18,.4486.5)

CALL SOUND(1#,41S,6):: CALL SOUND{(14,392
«7):: CALL SOUND(13,370,8):: CALL SOUND(
194,349,.9):: CALL SOUND(19,330,19)

CALL SAY("SORRY"):: CALL FOSITION(#28,R,

V)

FOR D=4¢ TO 130 STEP 14 :: IF R>D THEN Z
(F)Y=ZA(P)+L(PY+L{P):: U=U+8 :: CALL SOUND
(S U, @):: DISPLAY AT(P,2):Z(P)ELSE 879

NEXT D :: GO TO 87d

CALL SAY{("TRY AGAIN"):: DISPLAY AT(S,7)H

EEF: "PLAY AGAIN?{(Y,N)” :: GOSUER 83¢

IF k=110 THEN CALL SAY("GOODEYE"):: CALL
CLEAR :: STOFP

WiL) . W{(Z2)=5 ::: P=1 :: 0,Z(1),2(2)=9 :
ISPLAY AT(S,7)BEEP:" CONTINUE GAME?"

GOSUHR 83a

IF K=121 THEN 168 ELSE E(1) ,E{(2)=6000 ::
B(L) ,B(2)=1009 :: L{1),L(2)=5 :: GOTO 1

o8

CALL KEY(@,K.88):: IF SS=¢g THEN 839 ELSE
RETURN

FOR X=18 TO ¢ STEP -1 :

o@,30,208,36,0,38,-8.X)

D

CALL SOUND(68,2
: NEXT X

163

Recreation ==

85o
860

a7a

884
89%
aa

919
928

164

FOR X=6 TO 18 :: CALL SOUND(&8,208,36,20

$,36,0,38,-8,X):: NEXT X :: RETURN

DISPLAY AT(P,9):Z(P):: FOR D=1 TO 168 ::
NEXT D :: CALL HCHAR(26,14,32,8)

U=116 :: IF Z{(P)>E(P)—1 THEN W(P)=W{F)+1
:: CALL HCHAR(24,.W(P)+2,13@):: E(P)=E(F
) +&@B@ :: CALL SOUND(14,349,%):: CALL SO

UND(1@,523,8)

0=@ :: IF W(P)THEN W(P)=W(F)-1 :: GOTO 9
10

DISPLAY AT(22,11):"GAME OVER"” :: FOR D=1
TO 268 :: NEXT D :: IF A THEN 7980

CALL HCHAR(22,11,32,9):: IF FP=1 THEN P=2
:1: A=1 ELSE P=1 :: A=1

CALL HCHAR(24,3,32,18):: IF A THEN 320
IF P=1 THEN P=2 :: GOTO 3286 ELSE P=1 ::

GOTO 326

DATA 96,%,26,14,56,130,2084,6,223,177, 26,

224,163,85,3,252,1056,166,128,95,44,4,240
,35,11,2,126,16,121

-

A

I B

0 I [

,

SE

s Dennis M. Reddington

“The Chase” is a challenging action game. It's a relatively
fast-moving game written in TI BASIC.

Watch out for those ghosts. If they catch your jewel collectors
the price can be quite costly: Once all six of your collecters are
caught, the game ends.

The object of “The Chase” is to collect jewels. The play-
field for The Chase is a 7 X 11 grid. Move your jewel collec-
tors around by moving the joystick or by using the keyboard’s
arrow keys (E, up; X, down; S, left; and D, right). If you man-
age to gather all the jewels you’ll move to the next level of
play. Be careful—don't let a ghost catch your jewel collector,
for if he’s caught all the jewels will be placed back onto the
playing grid.

Design Considerations

The Chase is of interest to a TI-99/4A programmer because it
demonstrates some ways to develop a relatively fast moving
game in BASIC that pressures the player to keep moving. Sev-
eral of the game design and programming considerations used
in The Chase can be used in other BASIC games to speed up
the action. They include:

* The use of color changes to give the appearance of fast game
action;

* Limiting the playing grid’s size to a relatively small portion
of the screen so that, in a game like The Chase, captures and
escapes can take place quickly;

» Randomly generating each game to add variety to the game’s

lay;

. Ehecking first for the more common joystick movements and
thus reducing the amount of time required to react to the
player’s request to move;

» Changing character patterns on the screen to give the player
the feeling of action;

* Minimizing the time-consuming task of displaying the score
and other text;)

* Coordinating the sound with joystick movement;

* Increasing the difficulty level as the game progresses to

higher levels.
165

Recreation c==—swmmen

Game Scoring

Play continues until all six jewel collectors are captured. Each
time you clear the playing board, you will advance to the next
level of play. Scoring is based on the level of play: For each
jewel collected you'll get a number of points equal to ten times
the level. For example, level 1 scores 10 points for each jewel
collected, level 8 scores 80, and so on.

The Chase

198 CALL CLEAR

118 PRINT "T H E CHASE"

129 PRINT

138 PRINT "Joystick 17 1/ENTER"
149 PRINT "Joystick 27 2/ENTER"
159 PRINT "Keyboard ? S/ENTER"
168 PRINT

179 INPUT JTSHW

184 PRINT

19289 PRINT '"=====m=c===m=momos®

2¢6 IF JTSW=1 THEN 239

219 IF JTSW=2 THEN 23¢g

22¢ IF JTSW<>3 THEN 168 ELSE 25¢
230 PRINT "ALPHA LOCK Of+"

249 GOTO 269

258 PRINT "ALPHA LOCK On"

260 PRINT V"=====s==mocoo===="

279 PRINT

288 PRINT "Please Press ENTER"
299 PRINT "To BEGIN ..."

Jog CALL KEY(@,X,Y)

318 Z=7Z+1

326 IF Y=8 THEN 3Ig4

338 IF ZI<199 THEN 369

340 7=71-98

359 GOT0O 33¢

368 RANDOMIZE Z

379 CALL CLEAR

388 H&="FF"

394 VE="1a1a10101@1a1a10"

460 PHs="0@aa@1818"

414 POS="ga"

420 G14$="183CSAFFFF919121"

438 G24%="183ICSAFFFF242424"

447 S14$="@g@3ICSASASAZE3IC"”

458 S24¢="G@IC7E42427E3C"

469 Els="0000001818"

47¢ E2¢="06@0024181824"

48¢ ET4="@200249818240948"

166

A

b3

;

A

3

R R

Recreation
Pﬁm 490 E4%$="4A814281a¢324814A4"
SO0 ESs="¢004aa0830300804aA81"
519 CALL SCREEN(2)
P, S2¢ CALL COLOR<{(14,.16,1)

[S36 CALL COLOR{13,14,1)
S4¢ CALL COLOR(12,5,1)
S50 CALL CHAR(136,H$)
P S68 CALL CHAR(128,H$)
{ S76 CALL CHAR(124,H$)
586 CALL CHAR(137,V$)
5948 CALL CHAR(129,Y%)
688 CALL CHAR(121,V$)
616 CALL CHAR(138,P%)
620 CALL CHAR(13@.P%)
639 CALL CHAR(122,P%$)
644 CALL COLOR(11,11,1)
656 CALL CHAR(112,.S1%)
668 SM=112
676 CALL CHAR(113,P0$)
686 PO=113
698 CALL COLOR(19,8,1)
786 CALL CHAR(164,G%)
718 G=104
7286 CALL CHAR(185.E1%)
736 CALL CHAR(186.E2%)
749 CALL CHAR(187,E3$)
759 CALL CHAR(168,E4%)
768 CALL CHAR(149,ES$)
776 EB=145
789 CALL HCHAR(1,3,136,28)
799 CALL HCHAR(2,4,128,26)
809 CALL HCHAR(3.S,126,24)
819 CALL HCHAR(22,5,128,24)

826 CALL HCHAR(23,4,128,26)
839 CALL HCHAR(24,3,136,28)
846 CALL VCHAR(2,2,137,22)
856 CALL VCHAR(2,31,137,22)
868 CALL VCHAR(3,3,129,20)
879 CALL VCHAR(3,30,129,28)
P 884 CALL VYCHAR(4,4,121,18)
x 898 CALL VYCHAR(4,29,121,18)
988 FOR X=11 TO 21 STEP 2
918 CALL HCHAR(1&,X,S5M)
; 928 NEXT X

939 S1=11

949 S2=21
= 959 FOR X=3 TO 8
! 969 CALL COLOR(X,14,1)

979 NEXT X

988 CALL HCHAR(19,9,83)

\. 167

Recreation ==

998 CALL HCHAR(19.,1@,67)

1900
1019
1820
1930
1840
195¢
1866
1670
1980
1a99
1100
1119
1129
113¢
114¢
1158
1166
117¢@
118a
1194@
1209
1210
1220
1230
1249
1259
1260
127a
1289
1299
1360
1319
1320
133
1340
13548
1360
137¢
138¢
1394
1406
1410
1420
1436
1440
1459
1460
14740
1480

168

CALL HCHAR(19,11,79)
CALL HCHAR(19,12,82)

CALL HCHARI(19,13,69)

CALL HCHAR(19,14,58)

MX=2

LX=LX+1

IF MX=5 THEN 1468%

MX=MX+1

PILLS=76

S=S+ (14XLX)

Mi=g

M2=g0

01=138

02=138

FOR X=8 TO 14

FOR Y=11 TO 21t
Z=(INT(3XRND)+1) %x8+114

CALL HCHAR({X,Y,2)

CALL SOUND{(15d,-4,1)

GOSUB 2799

NEXT Y

NEXT X

CALL HCHAR{(11,16,SM)

L=11

C=16

CALL HCHAR(8,11,6)

L1=8

Ci=11

CALL HCHAR(14,21,6)

L2=14

c2=21

CALL SOUND{(3I@@,-5,8)
SMC=SMC+1

IF SMC=1 THEN 1388

SMC=0

CALL CHAR{(112,51%)

CALL CHAR(1G4,G1$)

GOTO 1469

CALL CHAR{(112,52%)

CALL CHAR(164,62%)

CALL SOUND(1,3066,5)

NL=L

NC=C

IF JTSW=3 THEN 144¢ ELSE 1560
XX=@

CALL KEY(@,XX,YY)

IF XX<>ASC("S")THEN 147¢ ELSE
IF XX<>ASC{("D")THEN 1480 ELSE
IF XX<>ASC("E")THEN 149¢ ELSE

15350
1560
1599

3

)

A

34

b

]

I R

1498
1508a
1510
1529
1534
1540
1550
1566
1570
158a
159a
16606
1610
1620
16303
1649
1639
1669
1676
1689
1699
170a
1710
172¢
173@
1749
1750
1760
1779

1789
1799
1800
181¢
1820
1834
1849
1859
1869
1879
1889
1899
1900
1910
192¢a
193a
1944
1959
1969
1970
19808

IF XX<>ASC("X")THEN 1869 ELSE

CALL JOYST(JTSW,XX,YY)
XX=(1H%XX) +YY

IF XX<>—48 THEN 155@
NC=C-1

GOTO 1630

IF XX<>49 THEN 158¢
NC=C+1

GOTO 1630

IF XX<>4 THEN 1618

NL=L -1

GOTO 1639

IF XX<>—4 THEN 1868
NL=L+1

IF NL<8 THEN 186%

IF NL>14 THEN 1860

IF NC<11 THEN 18640

IF NC>21 THEN 186@

CALL GCHAR(NL,NC, X)

FOR Z=122 TO 138 STEP 8
IF X<>Z THEN 173g
S=S+(14%LX)
PILLS=PILLS-1

G0TO 1750

NEXT Z

IF X=PO THEN 1756 ELSE 2449
CALL HCHAR(L,C,PO)

CALL HCHAR(NL,NC,SM)
L=NL

C=NC

IF PILLS<>@ THEN 1858
NLSW=1

FOR X=35¢¢ TO 3309 STEP -26
CALL SOUND(1,X,®)

NEXT X

60T0 2529

GOSUB 2796
Z=INT(LX%32RND) +1

IF Z=1 THEN 132@
X1=(ABS(L1-L)+ABS(C1-C))
X2=(ABS(L2-L)+ABS(C2-C))
HIT=1

IF X1=1 THEN 2010

IF X2=1 THEN 2239

HIT=0

IF M1<>MX THEN 1978
Mi=0

GOTO 2230

IF M2<>MX THEN 20606
M2=0

Recreation

169

Recreation ===

1999
20600
2016
2020
203¢
2040
20509
2060
2076
2089
2990
2100
2110
2120
21308
2149
2159
2160
2179
2189
2194
2209
2210
2220
2238
2249
2259
2260
2278
2280
2294
23a¢8
2314
2320
2330
2344
2358
2369
2370
238¢g
2399
2490
2414@
2420
243¢
2449
245@
2460
2473
24849

170

GOTO 2010

IF X1>X2 THEN 2234
Mi=M1+1

NL1=L1

NC1=C1

IF Li=L THEN 2100

IF L1>L THEN 2080
NL1=L1+1

GOTO 2149

NLiI=L1-1%

GOTO 2144

IF C1<C THEN 213¢
NCi=Cit-1

60TO 2148

NC1=C1+1

CALL GCHAR(NLI1,.,NC1,01X)
IF O1X=6 THEN 13290
CALL HCHAR(L1,C1,01)
01=01X

CALL HCHAR(NL1,NC1,6)
Li=NL1

Ci1=NC1

IF HIT=1 THEN 2449
GOTO 1329

M2=M2+1

NL2=L2

NC2=C2

IF C2=C THEN 23290

IF €2<C THEN 239¢
NC2=C2-1

GOTO 2360

NC2=C2+1

GOTO 2369

IF L2>L THEN 235@
NL2=1 2+1

GOTO 23469

NL2=1L.2-1%

CALL GCHAR(NL2,NC2,02X)
IF 02X=6 THEN 13208
CALL HCHAR(L2,C2,02)
02=02X

CALL HCHAR(NL2,NC2,6)
L2=NL2

C2=NC2

G0OTO 22190

CALL SOUND(S¢g@,-5,1)
FOR X=¢ 70O 4

CALL SOUND(1S54,-4,0)
CALL HCHAR(16,.,51,EB+X)
NEXT X

L R I B

;.

]

-4

2499
25009
2510
2529
23398
2549
2559
2560
25706
258¢
2396
2609
2619
2629
2639
2649
2650
2669
2670
2680
2699
2700
2719
2729
2739
2749
2758
2760
2776
2789
2799

CALL SOUND(158,-4,8)
CALL HCHAR(16,51,P0)
S1=81+2

T$=STR$(S)

Z=LEN(T$)

FOR X=1 TO 2
TX$=SEG$(T$,X. 1)
Y=VAL (TX$)

CALL HCHAR(19,16+X,Y+48)
NEXT X

FOR X=8 TO 14

CALL HCHAR(X,11,P0,11)
NEXT X

IF S1=52+2 THEN 26640
IF NLSW<>1 THEN 1089
NLSW=0

GOTO 1950

FOR X=1 TO 3000

NEXT X

CALL CLEAR

END

Z=INT {3ERND) +1

ON Z GOTO 2729,2744,2760
Z1=14

GOTO 2779

Z1=5

GOTO 27790

Z1=16
Z=INT(3ERND) +12

CALL COLOR(Z,Z1,1)
RETURN

Recreation

171

Ane)r VanDuyne
TI Version by Patrick Parrish

“Thinking"—and its advanced version, “Thinking Harder"—
is a game of pattern recognition and memory that tests your
ability to think logically.

You have nine black boxes labeled from 1 to 9 in front of you.
Your job is to make them all light up with a purple glow.

The trouble is, you can’t get to them directly. Instead, you
have a set of six switches, numbered from 1 to 6. Each switch
controls three of the boxes. When you choose switch 1, for ex-
ample, boxes 1, 4, and 8 might change condition. If they were
all dark, then they’ll all glow; if they were all glowing purple,
then they’ll go dark. And if 1 and 4 were purple and 8 was
black, then 1 and 4 will go dark and 8 will glow purple.

The trouble is figuring out which switches control certain
boxes. You know that there is a correct combination—three of
the switches, toggled at once, will make all nine boxes glow.
But which three? That’s where luck and genius combine. It's
possible to guess right with your first three choices. But if you
aren’t concentrating, it's also possible to get such a mishmash
of purple and black boxes that it could take a hundred tries
before the puzzle is solved.

How to Play

After you have typed in “Thinking” and saved it on tape or
disk, run it and the game will begin. A title screen and two
screens of instructions appear first. Press any key to go on.

Nine black boxes lettered from 1 to 9 appear in the center
of the screen. Below the boxes you can see the number of
purple boxes, which is 0 at the beginning of the game. At the
top of the screen is the number of turns you have taken,
which is 1 at the start of the game.

The input line just above the black boxes asks you for a
number from 1 to 6. Hit a number and press ENTER. Three
boxes will immediately turn purple. The turn number will
change to 2 and the count of purple boxes will change to 3.

172

I

|

LR

e Recreation

Suppose you enter the number 5, and the 1, 2, and 8
boxes glow purple. You don’t know about any of the other
numbers, but you know that from then on, in that game,
number 5 will toggle boxes 1, 2, and 8. The pattern for each
switch is randomly assigned at the beginning of each game,
so that each time you play there’ll be a new set of patterns.
But the pattern for a particular switch will never change during
a game.

If you choose a number and don't like what it did, choos-
ing the same number again toggles the same three boxes and
restores them to the way they were originally. It will cost you
a turn each time, though, just as if you had entered a new
number.

When all nine boxes turn purple, the computer congratu-
lates you, tells you how many turns you took, and asks if you
want another game. If you choose to play again, a new set of
patterns is randomly created.

Strategy and Frustration

At the beginning of every game there are always two perfect
solutions. The puzzle can always be solved. Winning in three
or five tries is entirely a matter of luck. Students in my school
average between 9 and 25 turns—slightly better than the
teachers. If you become totally lost, however, it can take doz-
ens or even a hundred tries to solve the puzzles.

But if you think logically, you should soon become quite
good at the game. I won't give away the whole strategy, but
you might keep in mind that any two patterns that overlap
(that change the condition of the same box) cannot possibly be
in the same winning combination. And in the last turn before
you win, you must always have exactly six purple boxes and
three black ones.

Is It Too Easy?
If you become a master at Thinking, you might want to try
“Thinking Harder.” In this version of the game, you have nine
possible patterns instead of six. This makes it possible to get
much more confused, and getting it right by luck alone is
much less likely.

To play Thinking Harder, remove the word REM in lines
210-240. If Thinking Harder is too difficult, you can always
reverse the changes and go back to Thinking again.

173

Recreation e

Thinking

166

11a
120
15@
149
159
160
17a
180
199
200
210
220
239
249
259
269
27@
289
299
Iga
310
320
330
340
359
369
378
38¢g
394
403
419
426
430
449
450
460
479
480
499
Sag
Sig
529
S3So
oS40
559
=137
S7¢

174

GOTO 159
FOR U=1 TO LEN(DS$)

CALL HCHAR{(ROW,COL+U,ASC(SEGs(D$,U,1)))

NEXT U

RETURN

CALL CLEAR

CALL SCREEN({(&)
PRINT TAR(7);:;"T H 1
G=6

B1=2

B2=17

REM G=9

REM B1=3

REM B2=2¢%

REM PRINT TAB(9):"H
PRINT = : : :
FOR I=1 TO 25¢
NEXT 1
GE=STR$ (G)
GOSUB 14649
CALL CLEAR
CALL SEREEN(14)
GOSUB 2a3g

DD=1

CALL CLEAR

FOR N=1 TO 6
CH{(N)=@

NEXT N

FOR N=% TO 9

C(N)=g

CALL COLOR{(N+S5,2,2)
NEXT N

COo=9

605UB 22149

FOR N=1 TO G
RANDOMIZE

Z=INT (RNDXG) +1

IF CH(Z)<>8® THEN 468
CH(Z)=N

NEXT N

FOR B=1 TO Bi

FOR N=1 TO 9
RANDOMIZE

Z=INT (RND%9?) +1

IF Y(Z)<>@3 THEN S39
Y(Z)=N

NEXT N

FOR N=1 TO 9

m

6":

Rll

A

4)

|

A

mmmemm Recreation

(= 580 X=Y (N)
. S98 X$=SEGS$(STR$(X),1,1)
686 P$(B)=P$ (B)X$
610 NEXT N
™= 626 FOR N=1 T0 9
: 638 Y(N)=0
648 NEXT N
= 656 GOSUB 2210
j 668 NEXT B
678 H$=P$ (1) &P$ (2)
688 IF G<>9 THEN 708
698 HE=P$ (1) &P%$(2) &P$ (3)
786 FOR N=1 TO B2 STEP 3
716 P$(INT(N/3)+1)=SEG$ (H$,N,3)
726 NEXT N
736 CALL SCREEN(15)
748 FOR I=9 TO 23
756 CALL VCHAR(4,1,64,15)
768 NEXT 1
778 C1=72
7868 R=6
798 FOR S=1 TO 3
808 J=11
816 FOR @=C1 TO C1+1&6 STEP 8
820 FOR I=R TO R+2
839 CALL HCHAR(I,J,08,3)
849 NEXT I
858 J=3+4
860 NEXT @
878 R=R+4
880 C1=C1+24
898 NEXT S
908 KH=49
918 FOR T=12 TO 2¢ STEP 4
928 CALL HCHAR(7.T,KH)
93@ CALL HCHAR(11,T,KH+3)
940 CALL HCHAR(1S,T,KH+6)
95@ KH=KH+1
968 NEXT T
g 978 @=0
| 989 ROW=2
999 COL=10
1998 D$="# (1-"&G$X") 7"
e 1616 GOSUB 118
1928 ROW=20
1930 COL=10
1040 D$=",.%& # :"
1650 GOSUB 110
1968 ROW=22

l

175

Recreation cems

1976
1480
1999
1100
1119
1120
1138
1140
11548
1169
1179
1189
119¢@
1209
1210
1226
1233
1249
1259
1260
1279
1289
1299
1300
1319
1320
1339
1349
1359
1360
137¢a
1389
1399
149
1419
1429
1430
14490
14356
1460
1476
1480
1494
1509
1510
1520
1539
1540
1559
156¢

176

D$="7 . %X Z"&CHRE (34) &" +
GOSUB 114

FOR N=1 TO 9

IF C(N)<>14 THEN 1138
CALL COLOR{(S+N,14,14)
GOTO 114

CALL COLOR(S+N,2,2)
NEXT N

FOR I=1 TO 9

IF C(IN<>14 THEN 1180
CO=CO+1

NEXT I

CALL HCHAR(22,21,C0+48)
IF CO=9 THEN 1459
CO=9

Q=0+1

D$=STR$ (Q)

ROW=20

COL=19

GOSUB 119

CALL HCHAR(2,21,38)
CALL KEY(8,K,ST)

IF ST=1 THEN 1316
CALL HCHAR(2,21,32)

IF (K<49)+{(K>48+6) THEN 1274g

CALL SOUND(S@,440,4)
CALL HCHAR(2,21,K)
SE=CH(K-48)

FOR N=1 TO 3

W=VAL (SEG$(P$(SE) ,N, 1))
IF C(W)<>8 THEN 1400
C(w)=14

GOTO 1429

IF Ct(W)<>14 THEN 142@
C(W)=0

NEXT N

GOTO 1099

REM YOU WIN:!

L1=2

L2=15

S1=1

FOR U=1 TO 3

FOR I=L1 TO L2 STEP S1

CALL SOUND(-1,110+I%x18,3)

CALL SCREEN({(I)
NEXT I
S1=S1%-1

NEXT U

ROW=24

CoL=12

-

I TR N B

N

1578
158¢@
1599
1606
1619
1620
1639
1649
1650
1660
1670
16860
1699
17060
171 @
1729
1730
1740
1750
1769
1770
178@a
179¢@
1860
1810
18208
1839
1844
1859
1860
187¢
1889
1899
1980
1919
1920
19306
1949
19546
1969
1979
1980
1994
2000
2010
2024
2039
2049
29359
2869

n Recreation

DE="1/14% 2"

GOSUB 118

CALL KEY(®,K,ST)

IF ST=@ THEN 1594

IF (K<>78)%x(K<>89) THEN 1594

IF K=89 THEN 33¢ ELSE 2248

REM INSTRUCTIONS

CALL CLEAR

CALL SCREEN(11)

PRINT "YOU WILL SEE 9 BLACK BLOCKS."
PRINT

PRINT "BY ENTERING A NUMBER BETWEEN"
PRINT ~

PRINT "1 AND ";G%;", YOU CAN CHANGE"
PRINT

PRINT "SOME OF THEM TO PURPLE."
PRINT

PRINT

PRINT "BUT. SOME PURPLE ONES MIGHT"
PRINT

PRINT "TURN BACK TO BLACK '"

PRINT

PRINT

PRINT "EACH NUMBER YOU ENTER WILL"
PRINT

PRINT "CHANGE THE COLORS IN ITS OWN”
PRINT

PRINT "uWAY."

PRINT

GOSUR 1976

CALL CLEAR

PRINT

PRINT "TRY TO CHANGE ALL THE BLOCKS®
PRINT

PRINT "TO PURPLE IN AS FEW TRIES AS"
PRINT

PRINT "YOU CAN."

FOR I=1 TO 1@

PRINT

NEXT I

PRINT

PRINT TAB(3);"PRESS A KEY TO CONTINUE":
CALL KEY(8,K,ST)

IF ST=8 THEN 199%

RETURN

REM DEFINE COLORS AND CHARS

FOR I=72 TO 134 STEP 8

CALL CHAR(I,"")

NEXT I

FOR I=1 TO 12

177

Recreation we=

29079
20809
2999
2100
2110
2129
2130
2149
2159

2169
2179
21808
2199
2200
2219
2229

2239
2249

178

READ LL,L$
CALL CHAR(LL,L$)

NEXT I

CALL COLOR(5,5,1)

FOR 1I=6 TO 14

CALL COLOR(1,2,2)

NEXT I

RETURN

DATA 33,003844447CA444444,34,007CA040784
8407C

DATA 47,093C406405C444438,346,003819106101
61038

DATA 37,004949404046467C,38, 00446464544
cacaa

DATA 39,007844447840G4640,42,00784444785
064844

DATA 43,0038444038044438,44,007C16106101
61010

DATA 46,0944444444444438, 64 ,FFFFFFFFFFF
FFFFF

DD=DD+2

CALL SCREEN(DD)

RETURN

END

S D R

3

A

-}

B I B

Joseph Ganci
TI Translation by Patrick Parrish

Now you can go bowling without the expense of renting spe-
cial shoes or suffering the embarrassment of rolling a gutter
ball in front of dozens of people. “Bowling Champ” is a game
for one to four players.

Some games, such as Pac-Man or Adventure, create their own
unique fantasy worlds, while others are simulations of reality.
“Bowling Champ” is an example of the latter.

It's not easy to take a game with countless physical vari-
ables (such as bowling) and reduce it to numbers so it can be
re-created by a computer—especially a microcomputer. Com-
promises must be made. Usually the game must be modified
in major ways to make it possible to program. The result is a
hybrid game, an approximation of reality, that resembles the
original but has new aspects of its own.

Bowling Champ is a reasonable simulation of a game of
ten pins, given the limitations imposed by a BASIC program
which must remain short enough to publish. The elements of
skill and luck have been preserved, and the scoring is
authentic.

Up to Four Players
When you first run Bowling Champ, the program asks for the
number of players. Up to four people can play.

Next you enter the players’ names. All names of more
than eight characters long will be truncated to eight characters.

Now you're ready to bowl the first frame. The bowling
ball rapidly moves up and down across the alley until you
press the space bar. This rolls the ball down the alley and
knocks over the pins—unless you’ve thrown a gutter ball. The
trick is to time your release so the ball rolls down the center of
the alley to score a strike.

In case you're unfamiliar with how a game of ten pins is
scored, here’s a brief summary:

A game consists of ten frames or turns. Each player gets
one or two balls per frame. If you roll a strike—knocking

179

Recreation ==

down all ten pins with the first ball—you don't get a second
ball, but the current ball’s score is ten plus the total of your
next two throws.

If some pins are left standing after your first ball, you get
a second ball. If you knock down all the remaining pins, it
counts as a spare, and the current ball’s score is ten plus your
next throw.

If any pins remain after your second ball (no strike or
spare), the number of pins knocked down in that frame is
added to your previous score.

Rolling a spare in the tenth (last) frame gains you one ex-
tra ball; rolling a strike in the tenth frame gains two extra
balls.

Therefore, a perfect game—ten strikes during regular play
plus two strikes with the extra bowling balls—scores 300
points. Needless to say, this doesn’t happen very often, either
in real bowling or in Bowling Champ.

Is It Too Hard?
You can make the game easier with just two simple changes.
Remove STEP 2 from line 1660 and delete line 1740 entirely.

Bowling Champ

166 GOTO 1S¢

116 FOR I=1 TO LEN{HS$)
126 CALL HCHAR(R,C+I,ASC(SEGS(H$,1,1)))
138 NEXT 1

146 RETURN

156 GOSUB 2444

1686 DIM NAMES$(3),S85(3),TT(3)
176 6=15

186 H=23

196 CALL CLEAR

266 CALL SCREEN(&)

219 PRINT TAB(8);"B O W L I N
226 PRINT TAR(9);"C H A M P !

239 PRINT TAR(3); "HOW MANY PLAYERS (1-4) 72"
249 CALL KEY(8,A,S)

259 IF S=0 THEN 249

269 IF (A<49)+(A>52)THEN 244

279 A=A-48

289 CALL CLEAR

299 CALL SCREEN(13)

G'l

180

4

3 4

3aag
319
329
339
349
359
369
378
389
390
483
416
429
439
449
450
4608
470
489
490
S99
Sig
S29
S3¢g
549
SSg
S69

S79
589
S99
600
619
629
&30
649
&350
-Y-1}
679
&80
&9a
790
718
720
7349
740
759
7608
776
789
798

XE="NAMES"”
IF A<>1 THEN 33¢
Xs="NAME"

PRINT "TYPE IN YOUR “;X$;":":
FOR I=0 TO A-1

PRINT :

PRINT TAB(4);"PLAYER #"3;I+1;"
INPUT NAMES$(I)

NAME® (1) =SEG$ (NAME$(1),1,8)
NEXT I

REM DRAW GAME SCREEN

CALL CLEAR

CALL SCREEN(12)

Hé="1 2 X 4 5 6 7 8 9
R=1

C=1

GOSUR 119

R=2

R B B R P R P R P R I R R R R I I L

GOSUB 114

FOR J=1 TO A

H$=" vy vy v vy v vy vy vy
R=2%xJ+1

GOSUR 1190

B ==t 50 50 50 50 50 51 58 X 30 0 2050 50 00 3 %303 20 M M M M K N KA K "

R=2%J+2

GOSUB 119

NEXT J

R=13+(A>2) %2

FOR J=1 TO A
C=1-((J=2)+(J=84)) %15
R=R-(J=3) %2

HE=NAME$ (J-1)&": "
GOSUB 119

NEXT J

REM INITIALIZE SCORE STATE
FOR J=6 TO A-1

S5(J)=1

TT(I) =0

NEXT J

REM PUT DOWN ALLEY
CALL COLOR(13,1,1)

FOR J=6 TO H

CALL HCHAR(J,2,E,38)
NEXT J

CALL HCHAR(14,2,124,36)
CALL HCHAR(24,2,128,38)
REM MAIN LOOFP

FOR @=1 TO 19

FOR RR=¢ TO A-1

1@"

yll

= Recreation

181

Recreation =

800
816
824a
839
840
859
8609
879
889
899
900
910
920
938
940
959
6@
979
989
9949
1903
1019
1820
1939
1649
195g
19609
1679
1980
1496
1180
1114
1129
1130
1140
1158
1160
1170
11806
1199
1200
1219
1220
12303
1240
1259
1260
1270
1289
1299

182

CC=(RR+1) %3

IF RR<{>3 THEN 839
CC=14

CALL COLOR(13,2,CC)
CALL COLOR({(11,1S5,CC)
Bl1=g

GOSUB 132g

IF J1=10 THEN 960
B1=1

GOSUR 1459

IF @<{>19 THEN 920

ON S GOTO 920,1040,1040,920,1160

NEXT RR
NEXT @
R=19
C=7

H&="PLAY AGAIN (Y/N) 2"

GOSUB 119
CALL KEY(8,K,ST)
IF ST=6 THEN 98¢

IF (K<>B9)¥(K<>78)THEN 98¢

IF K=89 THEN 17¢g
STOP

REM 14TH FRAME-EXTRA BALLS

R=19
c=2

H&="TAKE 2 MORE BALLS,

GOSUB 118

FOR I=1 TO 300

NEXT I

CALL HCHAR(19,2,E,29)
SS(RR)=5-1

B1l=1

GOSUB 1320

IF J=14 THEN 1239
GOTO 127@

c=3

R=19

H$="TAKE 1 MORE BALL,
GOSUB 110

FOR I=1 TO 398

NEXT I

CALL HCHAR(19,3,E,28)
SS(RR) =1

B1=2

GOSUB 1329

GOTO 929

SS(RR)=1

B1=2

GOSUB 1459

"&NAMES$ (RR)

"&NAME$ (RR)

B

A

A

N I R R

A

swmwm Recreation

= 1366 GOTO 929
, 1316 REM FIRST BALL
1326 FOR 1=16 TO 22 STEP 2
_ 1336 CALL VCHAR(I,36,112)
= 1346 NEXT I
1356 FOR I=17 TO 21 STEP 2
1366 CALL VCHAR(I,29,112)
== 1376 NEXT I
1386 CALL HCHAR(18,28,112)
1396 CALL HCHAR (26,28, 112)
1460 CALL HCHAR(19,27,112)
1416 PS=-1
1426 J1=06
1438 GOTO 1460
1446 REM SECOND BALL
1456 PS=@
1466 GOSUB 1589
1476 T=TT(RR)
1486 S=SS(RR)
1496 T=T+J
15S6@ ON SS(RR)GOSUE 2208,2250,2360, 2340, 2390
1518 TT(RR)=T
1526 SS(RR)=S
1530 R=13+(A>2) %X2— (RR>1) X2
1548 C=16-((RR=1) + {RR=3)) %15
1556 H$=STR$(TT (RR))
1560 GOSUB 118
1576 RETURN
1588 IF (@=1)%(PS=—1) % (RR=8) THEN 1650
1596 C=36
16868 FOR HH=C TO 3 STEP -1
1616 CALL HCHAR(1S,HH+1,E)
1626 CALL HCHAR(15,HH,R)
1636 NEXT HH
1649 CALL HCHAR(15,HH+1,E)
1656 C=3
1666 FOR R=6G TO H STEP 2
1676 CALL HCHAR(R,C,B)
1686 CALL KEY(@,K,ST)
== 1699 CALL HCHAR(R,C,E)
1768 IF ST=0 THEN 1736
1716 ROW=R
. 1726 R=H
= 1736 NEXT R
17406 6=15-(6=15)
1756 IF ST=0 THEN 1668
= 1766 R=ROW
1770 J=8
1788 FOR C=3 TO 25
1796 CALL HCHAR(R,C,E)

183

Recreation c==

1849
1819
1829
1839
1849
1859
1860
1870
188¢
1899
1900
1910
1926
19306
1940
1959
1960
1978
19849
1990
2000
2010
2820
2038
2849
203508
2060
2070
20809
2090
21909
2119
2129
2130
214a
215@
2160
2179
2184
2199
2200
2210
2220
2230
22480
2239
2260
2279
2289
2299

184

CALL HCHAR(R,C+1,B)
CALL SOUND{(-1,13@,2)
NEXT C

CALL GCHAR(R,C+1,X)
IF (X<>112)%(C<>31)THEN 2829
IF C=31 THEN 2848
IF X<>112 THEN 2028
CALL SOUND(1&,-7,5)
J=J+1

C=C+1

FOR D=-1 TO 1 STEP 2
Y1=R

X1=C

X1=X1+1

Y1=Y1+D

CALL BCHAR(Y1,X1,X)
IF X<>112 THEN 2016@
J=J+1

CALL HCHAR(Y1,X1,E)
CALL SOUND(18,-7,5)
GOTO 1939

NEXT D

CALL HCHAR(R.C-1,E,2)
C=C+1

CALL HCHAR(R,C,B)
GOTO 183@

CALL HCHAR(R,C,E)
J1=J1+J

R=3+RRX2
C=-2+3%XQ+B1

G1=J+48

IF J1<>1@ THEN 215@
G1=47

IF PS=@ THEN 215@
G1=88

IF Bi1=@ THEN 217@
G1=6G1+59

H$=CHR$ (G1)

GOSUB 11@

RETURN

IF J1<>1@ THEN 224@
S=5

IF PS=@ THEN 224@
5=2

RETURN

T=T+J

S=4

IF J<>1¢ THEN 2299
8=3

RETURN

.

1

A

3

A

N

n

2306
2310
2329
2338
234G
2359
2369
2378
2380
2398
2409
2410
24248
2438
2440
2450
2469
2479
2489
249¢@
2500
2510
2329
253¢
2549
2359
2568
2576
2580

25903

2600

2610
2626

e Recreation

T=T+J%x2

IF J=1@ THEN 2336

S=4

RETURN

T=T+J

S=1

IF Ji1<>14 THEN 2389

8=5

RETURN

T=T+J

S=1

IF J<>19 THEN 2434

§=2

RETURN

FOR I=97 70 187

READ C¢

CALL CHAR(I.C$)

NEXT 1

FOR I=112 TO 128 STEP 8

READ C%

CALL CHAR(I,C%)

NEXT I

CALL CHAR(121,."60101010101A1800")

CALL CHAR(138,"FFBBBBD7EFD7BBEB")

E=129

CALL CHAR({(129,"")

B=128

RETURN

DATA FFFFFBF7EFDFRFFF,.FFC7BEBBBEBRBRBBLC7,
FFEFCFEFEFEFEFC7,FFC7BBFBF7EFDF83

DATA FFC7BBFBE7FBBBC7,.FFF7E7D7B783F7F7,
FF83BFB87FBFRBEBC7

DATA FFE7DFBF87BBEBC7,.FF83FBF7EFDFDFDF,
FFC7BBBBC7BEBBC7

DATA FFC7BBRBC3IFBF7CF

DATA 1CICOB8ICIEIEIEIC,.SPOGODFFODROABAG,
ABICTEFE7E7E7ESC

185

of

Stephen D. Fultz
TI Translation by Patrick Parrish

Nerm the worm is lost in Bemer Castle and needs your help
to get home. You must guide him through 11 rooms and help
him find magic mushrooms to eat along the way. The journey
is a navigator’s nightmare, because you never know where
the next mushroom will grow, and if Nerm hits a wall or
gets trapped by his tail, he loses one of his lives.

“Worm of Bemer” is a fast-paced arcade game in which Nerm
the Worm travels through rooms eating magic mushrooms.
Nerm is lost in Bemer Castle and wants to return home. Guide
Nerm to a mushroom using the keyboard arrow keys (E, S, D,
and X) so he can keep up his strength for the journey. After
eating five mushrooms in a room, Nerm can exit to the next
room. You must guide Nerm through 11 rooms before he
finds his home. You start out with four lives. If you touch
anything besides a mushroom you will lose a life.

At the top of the screen you will see the current score,
what room Nerm is in, how many mushrooms Nerm must eat
to open the exits, and how many lives Nerm has left, includ-
ing the current life. You get 100 points, plus bonus points, for
every mushroom you eat. Nerm gets a bonus life after
completing the first two rooms and another for every third
room thereafter.

Adding More Features

You can learn a lot about programming and games by modify-
ing the action and settings in Worm of Bemer. Some features
you might add include a routine to save the high score to disk,
adding more players, or having Nerm go to a different room
depending on which exit he takes. Simpler enhancements
would be changing the number of mushrooms that Nerm must
eat or changing his speed.

Worm of Bemer

3 DIM NN(29) ,RANK$(12)

S GOSUB 119d9

186

A

A 4

B B R B

u

19

29

39

33

40

160
145
186
167
148
110
111
112
113
115
116
117
118
126
123
139
135
149
143
159
152
154
156
158
1608
162
164
166
168
17@
172
174
176
180
209
201
293
205
219
212
214
2135
216

‘218

229

GOTO Sog9
FOR I=1 TO LEN(H%$)

Recreation

CALL HCHAR(ROW.COL+I1,ASC(SEG$(H$,1,1)))

NEXT 1
RETURN
CALL KEY(8,K,ST)
IF (K<>68)+(0D=2)THEN 118
DX=1
DY=@
DI=1
IF (K<>B3)+(0D=1)THEN 115
DX=-1
DY=8@
DI=2
IF (K<>69)+(0D=3)THEN 128
DY=—1
DX=6
DI=4
IF (K<>B88)+(0D=4)THEN 140
DY=1
DX=@
DI=3
CALL HCHAR (YA, XA, 136)
OD=DI
XA=XA+DX
YA=YA+DY
L=LEN(XAS$)
XAS=XASKCHRS (XA)
YA$=YASXCHRS$ (YA)
CALL GCHAR(YA,XA,Z)
IF Z<>32 THEN 269
CALL HCHAR(YA, XA, 128)
CALL SOUND(1,622,2)
IF L<WO THEN 186
CALL HCHAR(ASC(YA$),ASC(XA$),32)
LL=LEN(XA$) -1
XA$=SEGS (XAs,2,LL)
YA$=SEG$ (YA$,2,LL)
GOTO 186
CALL SOUND(186,311,2)
CALL HCHAR(YA,XA,128)
GOSUB 6489
IF Z<>MUSH THEN 260
WO=WO+15+2¢L0
IF W0<18S THEN 215
Wo=185
RANDOMI ZE
XX=RND%28+3
X=RND%19+4
CALL GCHAR(X, XX,H1)

187

Recreation =

222
224
228
239
232
234
236
238
249
241
242
243
244
245
259
2690
261
264
266
279
272
2735
277
279
289
281
282
283
284
285
286
287
288
289
299
300

399
409
419
429
449
458
435
460
499
So9
385
Si9
349

188

IF H1<>32 THEN 216
SC=SC+108+L0X7

HI=HI-1

GOSUB 6400

IF HI>@ THEN 245

CALL HCHAR(3,17,184)
CALL HCHAR(13,2,163)
CALL HCHAR(13,31,194)
CALL HCHAR(23,17,164)
FOR I=3 TO 3¢ STEP 3
CALL SOUND(168,1966,1)
NEXT I

GOTO 199

CALL HCHAR (X, XX,MUSH)
GOTO 1896

IF Z=164 THEN 270

IF LI=1 THEN 7500
GOSUB 7580

GOTO 299

CALL HCHAR (YA, XA, 136)
GOSUB 7889

FOR DE=110 TO 888 STEP 32
PRINT

CALL SOUND(1,DE,2)

CALL SOUND{(-1,DE,?2)
NEXT DE

LO=LO+1

IF LO=12 THEN 1296
Wo=5

Li=L1+1

IF LOYEX THEN 9186
CALL COLOR(14,L1,1)
CALL CLEAR

GOSUB 1399

GOSUB 6400

ON LO G0TOD S5080,400,500,550,600,796,800,
456,550, 1000,1100, 1200
60T0 S089

REM SECOND SCREEN

CALL HCHAR(13,5,120,24)
GOTO S989

REM SCREEN

CALL VCHAR(7,15,120,16)
CALL HCHAR(9,6,126,22)
GOTO S@89

REM FOURTH SCREEN

CALL HCHAR(46,5,120,24)
CALL HCHAR(28,5,128,24)
GOTO Sg8%

REM FIFTH SCREEN

A

)

I B R

S50
555
569
S99
1-Y517]
619
629
699
7008
710
715
7208
723
799
809
84S
810
815
999
1900
1415
1620
1825
1930
1109
1119
1115
11248
1125
1199
1209
1285
1206
1297
12g8
1219
1229
1233
1249
1259
1269
1270
1275
1289
1283
1284
1285
1286
1287
1288

T TS

CALL HCHAR(7,6,126,22)
CALL VCHAR(8,15,128,16)
GOTO S980

REM FRAME &
CALL HCHAR(12,3,126,13)
CALL HCHAR(12,19,126,12)
GOTO S@¢89
REM FRAME 7
FOR I=8 TO 18

CALL HCHAR(1,7,128,7)
CALL HCHAR(I1,18,129,8)
NEXT I

GOTO S¢98¢9

REM FRAME 8

CALL HCHAR(8,3,128,13)
CALL HCHAR(14,12,1286,19)
CALL HCHAR(18,3,1206,13)
GOTO 5989

REM FRAME 9

GOSUB 14G9

FOR T=S5 TO 21

CALL HCHAR(T,4,32,18)
NEXT T

GOTO S98¢

GOSUB 149@

FOR T=S5 TO 21

CALL HCHAR(T,4,32,20)
NEXT T

GOTO 499

REM YOU WIN!!

CALL CLEAR

CALL SCREEN(3)

FOR I=4 TO 8

CALL COLOR(I,2,1)

NEXT I

PRINT TAB(9);"NERM’S HOME'"
PRINT

PRINT

PRINT TAB(16);:"THANK YOu:!"
FOR T=1 TO 9

PRINT

NEXT T

FOR T=1 TO 3

FOR I=11¢ TO 886 STEP 30
CALL SOUND(1,1,2)

CALL SOUND(-1,1,2)

NEXT I

FOR 1=880¢ TO 119 STEP -3@
CALL SOUND(1,1,2)

CALL SOUND(-1,1,2)

Recreation

189

Recreation

1289
12909
1291
1293
1300
1385
1310
1320
1336
1340
1359
1460
1410
142a
143a
4999
SO00
S085
Sg19
5815
S929
S@35
S049
S84S5
S@S5e
S@35S
Sg6g
5065
5066
S867
5068
5679
S075
S089
S5081
58S
5086
5891
5893
51483
5165
3167
S1409
S110
9115
S129
9125
S1306
S135
S140

190

NEXT 1

NEXT T

CALL SCREEN({(2)
GOTO 7700
CALL CLEAR

PRINT "SCORE :";TAB(29); "ROOM
PRINT "MUSHROOMS :";TAB(28);"LIVES

FOR T=1 TO 21

PRINT

NEXT T

RETURN

FOR T=3 TO 21t

CALL HCHAR(T,4,12a,26)
NEXT T

RETURN

REM UP THE GAME

GOSUB 19990

MUSH=112

LI=4

SC=g

LO=1

HI=5

Wo=5

EX=2

L1=3

60SUB 5599

CALL CLEAR

CALL SCREEN(2)

FOR I=3 TO 8

CALL COLOR(I,16,1)
NEXT I

G60SUB 134@

GOSUB &68@

XA£= nn

YA$= nn

XA=17

YA=18

DX=g

DYy=-1

IF HI<6 THEN 5147
HI=5

IF HI>-t THEN St1g9
HI=@

DI=4

FOR I=2 TO 31 STEP 29
CALL VCHAR(3,1,128,21)
NEXT I

FOR I=3 TGO 23 STEP 20
CALL HCHAR(I,3,124,28)
NEXT I

N R

-l

i

5145
5159
5155
5160
5165
5167
5171

5174
5175
5178
5180
5185
5199
5200
5599
5585
5519
5515
5529
5525
5530
5535
5549
6599
54690
6693
6604
66085
6697
6698
6699
6610
6611

6620
6625
6630
6635
6640
5650
6999
7900
79695
7610
7615
7020
7625
7630
7935
7640
79845

CALL HCHAR(24,3,137,28)
IF HI>@ THEN 5174
CALL HCHAR(3,17,194)
CALL HCHAR(12,2,184)
CALL HCHAR(12,31,104)
CALL HCHAR(23,17,164)
GOTO 159

RANDOMIZE
XX=RND%¥28+3
X=RND%19+4

CALL BCHAR(X,XX,H1)
IF H1<>32 THEN 5174
CALL HCHAR (X, XX, MUSH)
GOTO 159

CALL CLEAR

PRINT TAB(18);"GET READY!'!'"
FOR T=1 TO 12

PRINT

NEXT T

FOR I=1 TO 14

CALL SOUND(168,NN(I),2)
NEXT I

RETURN

REM PRINT SCORE
H$=8STR$ (SC)

ROW=1

COL=19

GOSUB 26

H$=STR$(L0O)

CoL=28

GOSUB 29

HE=STR$ (HI)

ROW=2

COL=14

GOSUB 26

H$=STR$ (L)

CoL=29

GOSUB 29

RETURN

REM NERM LEAVES
SP=8P-5

GOSUB 64600

HI=S

L=LEN{(XAS$)

FOR I=1 TO L

CALL SOUND(2,116+1%2,2)

CALL HCHAR(ASC(YA$),ASC{XA%$),32)

LL=LEN(XA$) -1
XAS=SEBS (XA$,2.LL)
YAS=SEG$ (YA$,2,LL)

m Recreation

191

Recreation =

7839
7060
7499
7300
7595
73519
731S
7320
7325
7347
7549
7351

7553
73355
7360
7575
7600
7699
7700
7764
7785
7786
7710
7720
7721

7722
7723
772S
7728
7729
7739
7740
7743
7745
7759
77335
7760
7779
777S
7789
7785
77908
7795
7796
7797
7798
78949
7885
7886
7819

192

NEXT I

RETURN

REM 0OQP!!

CALL CLEAR

PRINT TAB(13);"00PS"
FOR I=1 T0 12

PRINT

NEXT I

LI=LI-1

FOR I=14 TO 24

CALL SOUND(1G,1x49,2)
NEXT I

FOR I=1 TO 39

NEXT 1

IF LI<1 THEN 7780
GOSUB 13469

RETURN

REM THE GAME ENDS
CALL CLEAR

FOR I=3 TO 8

CALL COLOR(I,16,1)

NEXT I

IF HS5>8C THEN 7759

HS=8C

FOR I=1 70 S

PRINT

NEXT I

PRINT TAB(8);"NEW HIGH SCORE"

FOR T=116 TO 1768 STEP 5@

CALL SOUND(2,T,2)

NEXT T

FOR I=1 TO S

PRINT

NEXT I

PRINT TAB(7);"YOUR SCORE: ";SC
PRINT

PRINT TAB(7);"HIGH SCORE: "3;HS
FOR 1I=1 TO 3

PRINT

NEXT I

PRINT TAB(S);"YOUR NEW RANK IS
PRINT

PRINT TAB(9) ; RANKS (LO)

FOR I=15 TO 29

CALL SOUND (188 ,NN(I),2)

NEXT I

PRINT

PRINT

PRINT

PRINT "(C TO CONTINUE @ TO QUIT)"

L R R R B

7815
7816
7817
782a
7838
7849
7845
7850
9899
9199
9116
120
9125
2139
132
134
9136
9140
9145
91509
10030
18001
10663
18986
19616
18815
194286
18621
18922
19823
19825
19028
10836
19832
190834
190436
16049
10642
19845
18647
129350
18952
14035
19657
18458
190606
10865
196679
18675
19999

e Recreation

FOR T=1 TO 4
PRINT
NEXT T
CALL KEY(@,K,ST)
IF ST=@ THEN 7828
IF (K<>67)X(K{>81)THEN 782¢
IF =67 THEN S@0@
sTOP
REM EXTRA LIFE
CALL CLEAR
PRINT TAB(11);"BONUS LIFE"
FOR I=1 TO 12
PRINT
NEXT 1
FOR I=1 TO 3@ STEP 2
CALL SOUND(1¢8,1175,1)
NEXT I
EX=EX+3
LI=LI+1
GOTO 287
CALL CLEAR
FOR T=3 TO 8
CALL COLOR(T,2,1)
NEXT T
CALL COLOR(14,3,1)
CALL SCREEN(15)
PRINT TAB(18);"WELCOME TO"
FOR T=1 TO 4
PRINT
NEXT T
PRINT TAB(8);"NERM OF BEMER"
FOR T=1 TO 9
PRINT
NEXT T
PRINT "USE E,S,D, & X KEYS TO MOVE"
PRINT
CALL HCHAR(21,3,136,4)
CALL HCHAR(21,8,128)
FOR I=1 TO 22
CALL HCHAR(21,6+1,136)
CALL HCHAR(21,7+1,128)
CALL SOUND(18,622,2)
CALL HCHAR(21,2+1,32)
FOR T=1 TO 2¢
NEXT T
NEXT I
FOR T=1 TO 169
NEXT T
RETURN
REM REDEFINE CHARS

193

Recreation ==

119009
11915
11620
11925
1103a

11632
11833
114835
11640
11645
11650
11969
11065
11670
1197S
119890
11985
11699
11992

11494
11160
11119
1112
11139
11135

111490

194

FOR I=164 TO 136 STEP 8

READ A%

CALL CHAR(I,AS$)

NEXT 1I

DATA FFFFFFFFFFFFFFFF, 1B7EFFFF18181818
+ FFB81BDASASBD8IFF

DATA B142243C7ESA3C18,3IB87CFEFEFEFE7C38
CALL COLOR(186,2,2)

CALL COLOR(11,14.1)

CALL COLOR(12,2,19)

CALL COLOR{(13,7,1)

CALL CHAR(137,"FFFFFFFFFFFFFFFF")

FOR I=1 TO 9

READ RANK$(I)

NEXT 1

FOR I=1d TO 12

RANK$ (I)="HALL OF FAME"

NEXT 1

DATA ZERO,RDOKIE,NOVICE,AVERAGE

DATA MASTER GRAND MASTER WIZARD,GRAND
WIZARD

DATA SUPER STAR

FOR I=1 7O 29

READ NN(I)

NEXT I

DATA 262,349,40000, 349,392,40080,392,4
46,523, 44ﬂ 529,44@ 349, 40000

DATA 349 46@6@ 40060, 262 247,262,294, 2
94,2562, 4@09@ 4Eﬁﬂﬂ 4@ﬂﬂﬂ 334, 335.049
RETURN

)

-

B

4

I B B

5

Sound
and Graphics

"N RN NN

RS BB EEm R e

- Lyle O. Haga

There is a better way of figuring out pattern-identifier code
than that presented in the TI manual.

The TI screen is divided up into a giant grid of 24 rows and 32
columns for graphics. This grid, shown in your TI manual in
the CALL CHAR section, makes 768 positions, or squares, for
you to put your graphics in. Each square of the grid is divided
into an 8 X 8 grid consisting of 64 dots to be turned on or off.
Each 8 X 8 grid is divided into a “left block” and a “right
block.”

Left Right
Block Block

Each time you define a pattern-identifier, you use all 64
dots whether or not you so stipulate. Thus, the statement
CALL CHAR(100,”FF”) covers all 64 dots even though you
stipulated only the top row of eight dots to be turned off; the
remaining dots stay turned on. This can be seen by a simple
little exercise. Make a box outline, 4 X 4.

On the surface this sounds like a pretty simple exercise,
and it is. The problem is that many people probably won’t
think it through, and will come up with the following:

16 CALL CLEAR

2¢g CALL CHAR(196@, "FF")
39 CALL CHAR(1461 , "8d08086808a848d80")

197

Sound and Graphicg iy B S

49 CALL HCHAR(12,8,199,4)
S@ CALL HCHAR(16,8,100,4)
68 CALL HCHAR(12,8,101,4)
78 CALL HCHAR(12,12,101,4)
86 GOTO 84

No matter what you do, this won't work; there will al-
ways be a gap somewhere. Remember that even though you
didn't stipulate all 64 dots in CHAR 100, you still have them
to deal with.

On top of this you put the following:

You should be able to see where the gap comes in now.
When you put CHAR 101 on top of CHAR 100, the dots you
left turned on cover the dots you turned off, thus the gap.

Here’s one solution to the problem:

18 CALL CLEAR

26 CALL CHAR(100,"00000000000030FF")
36 CALL CHAR(161,"FF")

40 CALL CHAR(102,"8680808089898680")
S@ CALL CHAR(183,"0101010101016161")
68 CALL VCHAR(12,8,192,4)

78 CALL VCHAR(12,11,183,4)

80 CALL HCHAR(11,8,100,43)

9@ CALL HCHAR(16,8,141,4)

196 GOTO 109

198

-y 8

-y

A

R R R

1)

1

1

== Sound and Graphics

There’s an easier way of defining graphics? The new
method is one your kids learned in school, called base 16.
Using base 16, you write the numbers 8,4,2,1,8,4,2,1 across
the top of each 8 X 8 grid. Let’s see how this works in defin-
ing the heart; we will make it two positions high and two wide.

If you are planning to do many graphics, you should get
some graph paper—this will make it easier. Let each square
on the graph paper represent one dot; this gives you 16
squares wide and 16 squares high. Make the outline with a
heavy line. Count horizontally from the left 4, 8, and 12 lines;
make these heavier than the other lines, and make the eighth
line even heavier and have it extend beyond the outline. This
will mark off your left and right blocks and one position from
another. Now, counting vertically, go down eight and darken
this line, going beyond the outline. Across the top, put your
base 16 numbers 8, 4, 2, 1, 8, 4, 2, 1, and your paper should
look like this:

84218421|184218421

With this, let’s make our heart. First, color in all the
squares making your heart. Then, starting at the top row, add
up the numbers over the squares you darkened. If the total is
under ten, your pattern code will be that number, and if it is
over nine, you see the letters A-F. You do the one complete
grid and then move to the right; when you are through, move

199

Sound and Graphics ee=——mmmmmmm

down to the next line. You should come up with the following
results:

84218421|84218421

L
| e i
[] o il
R b A=10
LR E T e B =11
mE | LR R | C=12
B Rl D =13
L E =14
LRI [F=15
R [
[
i

Row one has no darkened squares, so the code is zero for
both left and right blocks. You get the same results with row
two. In row three, a square under the number 1 is darkened in
the left block of grid one, so the code is 1. In the right block,
squares under the 8 and 4 are darkened, so the code is C. In
row four, the squares under the 2 and 1 are darkened; the
code is 3. Row four of the right block has darkened squares
under 8, 4, and 2, so the code is E. Just keep this up, and you
will come up with the following;:

CALL CHAR(109,"0PBBICIETF7F7F7F")
CALL CHAR (191 ,"@000@S87CFEFEFEFE®)
CALL CHAR(1@2,"3FIFAFg7838188a@")
CALL CHAR((183,"FCFBFOESCABAGAGHG")

Using base 16 is easier.

200

b

-

B

Fast animation is possible with TI BASIC through efficient
coding and the use of a few tricks. “Marbles,” a game writ-
ten in TI BASIC, demonstrates some of these techniques.

Sprites can be used to create very smooth moving animation.
The problem with sprites is that they require the Extended
BASIC module. If you don't already have Extended BASIC, it
can be a very difficult item to find. It's possible, though, to
write animated games using just TI BASIC.

BASIC’s CALL and the Hardware

When writing animated programs for the TI-99/4A home
computer, an understanding of its architecture will lead to
easier coding and faster program execution. In particular, the
relationship between the TI's display hardware and the BASIC
language CALL instructions used to control this hardware is
important. The 99/4A uses Texas Instruments’s TMS9918
video display processor to generate the screen display. The
display processor functions independently of the TMS9900,
the 16-bit microprocessor used in the 99/4A, but is controlled
by the TMS9900. This removes the job of generating the dis-
play from the microprocessor, allowing it to execute the BASIC
program faster.

The TMS9918 allows more flexible displays than the
owner of the TI has access to without purchasing additional
software modules. Sprites are 8 X 8, 16 X 16, or 32 X 32
pixel patterns created and controlled by the Extended BASIC
program. A pixel is the smallest point that can be changed on
the display. The sprites are then moved by the TMS9918 in-
dependent of, but under control of, the BASIC program. Ani-
mated displays can be created without sprites, but it takes a

201

Sound and Graphics mermrmmmmmm

little more work. Here is where the knowledge of the
TMS9918 architecture comes in handy!

The display created by the TMS9918 is controlled by
three tables which are modified by the BASIC program. These
tables and their interrelationships are shown in Figure 1.

Figure 1. TI-99/4A Display Mapping

These tables control the display generated by the TMS9918
video display processor.

CHARACTER PATTERN COLOR
TABLE TABLE TABLE
row col
1 1 number 32 pattern 1 color
1 2 33 2 f|b
9 20 128 128 | 001..00 13 211
o 128 . | 011..10 .
24 31 . 16
24 32 .
158
159

Character Table

The first table, the Character Table, is a list of the 768 charac-
ters (24 rows by 32 columns) to be displayed. The numbers
stored in this table represent the characters to be displayed at
each row and column position. The letter A is represented by
the number 65, B by 66, C by 67, etc. Numbers 32~127 are
defined by the ASCII character set but can be redefined by the
BASIC program. ASCII characters 128-159 are also available
for defining special characters. This table is accessed by four
CALL instructions:

CALL CLEAR

CALL HCHAR(row, column, character| repetitions])

CALL VCHAR(row, column, character|,repetitions])
CALL GCHAR(row, column, character)

CALL CLEAR sets all numbers in the table to 32 (a space
character). CALL HCHAR and CALL VCHAR are used to put
numbers into the Character Table while CALL GCHAR is used

202

-

N

.

b

mmm Sound and Graphics

to get numbers from the table. Note that the repetitions argu-
ment for the CALL HCHAR and CALL VCHAR instructions is
optional. If this argument is omitted, one character is written

to the position defined by the row and column arguments. If
this argument is used, a row or column of characters is written
to the display. The argument “repetitions” defines the length
of the row or column. For example, CALL HCHAR(1,1,65,10)
will print ten letter A’s horizontally starting at row one, column
one.

Pattern Table

The second table, the Pattern Table, is a list of 128 8-byte
character patterns. The first entry in the list represents the pat-
tern for character number 32, the second entry is for character
number 33, and so on. The last pattern, entry 128, represents
the pattern for character number 159. Each character is an 8 X 8
pixel, 2-color pattern where each 1-pixel represents the fore-
ground color.and each 0-pixel represents the background
color. This table is modified by one CALL instruction:

CALL CHAR(character, pattern)

CALL CHAR defines which pixels are to be displayed as
the foreground color and which are to be displayed as the
background color. An example of a CALL CHAR instruction is -
shown in Figure 2.

Figure 2. CALL CHAR Instruction
CALL CHAR(128,”1898FF3D3C3CE404")

Pattern Binary Hexadecimal
[0001 1000 18
1 1001 1000 98
] T 1111 1111 FF
L R 0011 1101 3D
(DA 0011 1100 3C
L 0011 1100 3C
LI i 1110 0100 E4
[0000 0100 04
Color Table

The color table is a list of 16 foreground and background color
combinations to be used when displaying the characters. The
characters defined in the Pattern Table are arranged in sets of

203

Sound and Graphics =

eight for determining which colors to use. The first eight
characters use the first foreground /background color combina-
tion, the second eight characters use the second combination,
etc. This table is modified by the CALL COLOR instruction:

CALL COLOR(set, foreground-color, background-color)

Fifteen colors plus transparency are available. Any
combination of these colors can be selected by the CALL
COLOR instruction.

Table 1. Colors Available on the TI-99/4A

Number Color Number Color
1 Transparent 9 Medium red
2 Black 10 Light red
3 Medium green 11 Dark yellow
4 Light green 12 Light yellow
5 Dark blue 13 Dark green
6 Light blue 14 Magenta
7 Dark red 15 Gray
8 Cyan 16 White

Creating Animation

Most computer games use animated players to liven up the ac-
tion during play. To do this, the program running the game
must change the pattern of the player to make them move.
Munchman and TI Invaders are good examples of games using
animated players. Two or more patterns representing different
positions of the player are built using the CALL CHAR
instruction. The patterns are then alternately displayed creat-
ing animation. Also, using and changing colors can add to the
effect of animation.

By using the BASIC instructions for creating displays, sev-
eral different methods can be used to create the same display.
Some methods, however, are preferable because they are easier
to write and run faster. The faster a program can run, the bet-
ter the animated display will be.

Many games display the same type of player several times
and move each of these players simultaneously. TI Invaders is
a good example. Several rows of about ten aliens move

204

4

-}

4 h

)

A

A

1

e I

2 Sound and Graphics

about, each moving its legs and/or arms. Each row is made of
only one type of alien; all of the aliens in a row move their
arms and legs the same way. This type of animation can be
created two different ways on the 99/4A.

Both methods will use a common subroutine to animate
the players:
800 REM * N = Number of Players
810 REM * RP = Array of Row Positions of Players
820 REM * CP = Array of Col Positions of Players
830 REM * C = Character Number of Player Pattern
840 FORI =1TON
850 CALL HCHAR(RP(I),CP(1),C)
860 NEXT I
870 RETURN

The first method uses this subroutine when the player
changes their row and column positions and when the players
move their arms and/or legs:

100 REM * Define Player Patterns
110 CALL CHAR(128,“1898FF3D3C3CE404")
120 CALL CHAR(129,“1819FFBC3C3C2720")

330 REM * Erase Players

340 C=32

350 GOSUB 800

360 REM * Calculate New Rows/Cols

400 REM * Display New Positions
410 C=128
420 GOSUB 800

520 REM * Move Arms/Legs
530 C=129
540 GOSUB 800

610 C=128
620 GOSUB 800

680 IF whatever THEN 520
690 GOTO 330

205

Sound and Graphics ==

The second method uses subroutine 800 only to change
the row and column positions of the players. To move the
arms and legs, the character pattern defining the player is
changed. Lines 120, 530, and 610 are deleted, lines 540 and
620 are changed to:

540 CALL CHAR(128,”1898FF3D3C3CE404")
620 CALL CHAR(128,“1819FFBC3C3C2720")

In the first method, characters 128 and 129 are used,
while in the second method only character 128 is used. Re-
ferring back to Figure 1, the differences in these methods can
be seen. Method one changes the Character Table while
method two changes the Pattern Table when moving the arms
and legs. Method one changes each player’s location in the
Character Table to point to a new pattern entry in the Pattern
Table. Method two just changes the pattern. If ten players
were displayed, method one would execute 66 instructions to
move the arms and legs while method two would execute only
2 instructions. Method one uses so many more instructions be-
cause the loop in subroutine 800 must be executed once for
each player.

Using Color

In addition to moving players to create animation, changing
colors adds to the visual effect. Again, different approaches
will produce the same display but the programming and
execution time will vary. The CALL COLOR instruction lets
the program change the foreground/background color
combination for any character. It's important to remember that
each CALL COLOR changes colors for eight character pat-
terns. Care must be used to insure that players and objects are
grouped properly for coloring.

Making players and objects appear and disappear can be
accomplished three different ways.

First, move the character number of the player or object to
the Character Table to make it appear. Overwriting the player
or object with a space character would make it disappear. If
several players/objects needed to be changed, this would
mean executing many instructions.

Second, the CALL CHAR instruction could be used to
change the Pattern Table to create this effect. Setting all the
pixels in the pattern to 0 would make the object disappear.

206

A

A

-}

r=erwemmn Sound and Graphics

Defining the object pattern would make the object reappear.
This requires execution of only one instruction.

Third, the CALL COLOR instruction could be used to
change the Color Table. By defining both the foreground and
background colors the same, the object is no longer visible. If
the object is on a game board, the color of the board should
be used. Setting both the foreground and background colors to
transparent (1), the color defined by the CALL SCREEN
instruction would be used. One advantage of using the CALL
COLOR instruction is that up to eight distinct objects could be
made to appear and disappear with one instruction, while the
CALL CHAR instruction would have to be executed once for
each distinct object. A single object composed of up to eight
character patterns could be changed with a single CALL
COLOR instruction.

Example Animated Program

The following BASIC program uses the techniques described
in this article to produce an animated game. The object of the
game is to maneuver the marble into the hole at the opposite
corner of the display. Between the marble and the hole are
two to five kids trying to catch the marble. The kids can only
be seen at the start of the game or when one is close to the
marble. The arrow keys on the keyboard are used to maneu-
ver the marble.

Marble

186 REM X

1196 REM x DEFINE PLAYERS
120 REM X

134 BGC=8

148 SQUARE=128

150 SQR&="@HAPAIPOAOATOOOB"
164 CALL CHAR(SGQUARE,SGRS$)
178 CALL COLOR(13,1,BGC)
186 KID=136

1968 KDi14="1898FF3ID3ICICE4g4"
2904 KD2¢="1819FFBC3IC3C2724"
21@ CALL CHAR(KID,.KD1%)

220 CALL COLOR(14,2,BGO)
239 MARBLE=144

2409 MRB$="@@3ZC7E7E7E7E3COO"
259 CALL CHAR{MARBLE,MRES$)
269 CALL COLOR(1S,16,RGC)

207

Sound and Graphics =

27¢
289
299
3¢9
319
320
338
340
35@
360
378
3849
398
490
419
429
430
44@
43¢
469
479
48¢
4940
Sog
Sig
S29
S39
SLa
SSe
=1-37
S79
S84d
590
1-3237}
614
62@
633
649
1)
&6
&70
689
&40
709
710
729
7349
749
759
769

208

HOLE=152
HOL$="FFC381818181C3FF"
CALL CHAR(HOLE,HOL$)

CALL COLOR(16,2,1)

REM %

REM % DISPLAY BOARD

REM X

CALL CLEAR

CALL SCREEN(16)

c=7

L=20

FOR R=3 TO 22

CALL HCHAR(R,C,SBUARE,L)
NEXT R

REM X

REM %X POSITION KIDS{3I SFACES}
REM X

DIM KR(18) ,KC(18)
RANDOMIZE
KN=INT (4 XRND) +2

FOR N=1 TO KN
KR{N)=INT (20 %XRND) +3
KC(N)=INT(2@XRND) +7

CALL HCHAR(KR(N) ,KC{(N) ,KID)
NEXT N

REM X

REM %X POSITION HOLE{3I SPACES}
REM X

HR=4

HC=8

CALL HCHAR (HR,HC,HOLE)
REM %

REM % FOSITION MARELE
REM X

MR=21

MC=25

CALL HCHAR (MR.MC.MARKLE)
REM %{3 SPACES}

REM % WAIT FOR KEY{S SFACES:
REM %{3 SPACES:

CALL KEY(1.KEY,STATUS)

IF STATUS=@ THEN &78
CALL COLOR(14,RGC.BGC)
REM x

REM % BEGIN GAME

REM X

CALL CHAR(KID,KD1$)

CALL KEY(1,KEY,STATUS)

IF STATUS=g THEN 97@

J=1

-}

L I

A

ssmmsmess Sound and Graphics

. 77% IF STATUS>@® THEN 799
i 780 J=2
798 1F KEY>S THEN 974
) 893 REM X
Wﬁ 819 REM ¥ MOVE MARELE
! 826 REM X
83¢ CALL HCHAR(MR.MC,SQUARE)
84¢ ON KEY+1 GOTO 85¢4,97%.87¢,89¢.974,.9148
85¢ MR=MR+J
869 GOTO 9248
879 MC=MC-J
886 GOTO 92¢
894 MC=MC+J
9¢@ GOTO 92¢
919 MR=MR-J
920 IF (MR=HR) % (MC=HC) THEN 1218
939 CALL HCHAR(MR.MC,MARELE)
943 REM X
9506 REM ¥ MOVE KIDS3
968 REM %
97@ CALL CHAR(KID,KD2%)
984 FOR I=1 TO KN
998 CALL HCHAR(KR(I),KC(I),SQUARE)
1000 IF KR(I)=MR THEN 18S#
1616 IF ER(I)<MR THEN (@48
1626 KR(I)=KR(I)-1
1636 GOTO 1450
1049 KR(I)=KR(I)+1
1856 IF KC{(I)=MC THEN 1100
1660 IF KC(I)<MC THEN 1498
1979 KC(I)=KC(I)-1
1989 GOTO 1160
1996 KC(I)=KC(I)+1
11686 CALL HCHAR(KR{(I),KC(I),KID)
1116 IF (KR(I)=MR)¥(KC(I)=MC)THEN 1328
1126 R=ABS(KR(I)-MR)
= 1136 C=ABS(KC(I)-MC)
} 1146 IF {(R+C>4)THEN 1160
1156 CALL COLOR(14,2,BGC)
1160 NEXT I
1179 GOTO 73@
1189 REM X
1199 REM ¥ PLAYER WINS
e 12006 REM X%
: 1216 CALL COLDR(16,2,16)
1226 FOR I=¢ TO 1
, 1239 FOR J=-1 TO -4 STEP -1
= 1249 CALL SCREEN(I%X8-J%2)
' 1256 CALL SOUND(S568,J,1)
1268 NEXT J

209

Sound

1279
1280
1299
1390
1310
13209
133¢
1349
1359
1369
1379

210

T T IR AT T

and Graphics =

NEXT I
GOTO 199

REM X

REM x PLAYER LOSES
REM X

CALL COLOR(15,7,BGC)
CALL HCHAR (MR, MC,MARBLE)
FOR J=-5 TO -7 STEP -1
CALL SOUND(16@,J,1)
NEXT J

GOTO 180

.

A

LR B

)

4

—— Patrick Parrish

A powerful feature of the TI-99/4A is its ability to redefine
the character set. With “SuperFont,” a comprehensive
character definition program, you can harness this capability.
Requires Extended BASIC and Memory Expansion.

The character graphics capabilities of the TI-99/4A are well
known. To redefine a character on the TI by the usual means
(see the TI User’s Reference Guide, pages II-76 to I1I-79), a
tedious, multistep procedure must be followed. First, you plot
the prospective character in an 8 X 8 grid. Next, you convert
each row of the grid into a two-digit hexadecimal number and
then sequentially combine the numbers from each row to gen-
erate a pattern-identifier, or coded representation of the charac-
ter. To complete this task, you place this pattern-identifier
along with a chosen ASCII value for the character in a CALL
CHAR statement. Anyone who has repeatedly endured this
process can attest to its drudgery.

Fortunately, this process is easily computerized, and sev-
eral character definition programs have been written for the
TI. Most character definition programs, though, have not taken
full advantage of the TI's capabilities. By using “’SuperFont”
(Program 1) the task of character manipulations can now be
undertaken with ease.

Nineteen Commands

The original SuperFont was written for the Atari by Charles
Brannon. The Atari version first appeared in the January 1982
issue of COMPUTE! magazine and featured 18 commands for
redefining characters. After using this outstanding program on
several occasions, I was convinced that the TI user deserved
the pleasure and convenience it provided. So, I set about
converting the program for the TI.

In converting SuperFont, a few commands with less value
to the TI user were eliminated while certain more practical
commands were added. The final product offers the following
19 commands or modes:

211

Sound and Graphics e

DOODLE
EDIT

INPUT
RESTORE CH
RESTORE CHSET
COPY
SWITCH
MIRROR
REVERSE
ROTATE
CLEAR
INSERT
DELETE
WRITE DATA
QUIT

LOAD FONT
SAVE FONT
PRINT CH
PRINT CHSET

When the program is run, these commands are displayed
in menu form on the screen. Above the menu is an 8 X 8 grid
which serves as a work space for redefining each character. To
the right of the grid, the current mode and, in some cases, a
prompt will be displayed. Below this is printed the entire TI
character set (codes 32-143) with each color subset (eight
characters) depicted by a different background color. (The
colors can be toggled off and on with the Z key.)

Several commands require that you pick a character from
the character set. In these instances, a box-shaped sprite,
CHR$(143), will appear over the last character referenced from
the set (defaults to space). To choose a character move the
joystick over the desired character and press the fire button.

Unless indicated otherwise, each command will return
you to the EDIT mode upon completion. Let’s now examine
each command beginning with EDIT (the ALPHA-LOCK key
should be up).

EDIT is the basic editing command. When selected from
the menu, you will be requested to choose a character from
the character set. The character selected is copied into the grid
and the box-shaped sprite will be homed in the grid. Move
this sprite about the grid with the joystick. Pressing the fire
button will set or clear the point depending on its present
state. You can draw lines by holding down the button while

MO IOTNP<LZXTIRZmMO

212

LR B

b

ltlm

meemme—en Sound and Graphics

moving the joystick. When you're pleased with the appearance
of the character in the grid, press ENTER to redefine the cho-
sen character. You’ll then be prompted for another command.
To completely redesign a character from scratch, use the
CLEAR command.

INPUT lets you type in a pattern-identifier and assign it to
a particular character code. When INPUT is selected, choose a
replaceable character from the set with the joystick and then
type in the hexadecimal code for the proposed character. The
hexadecimal code can be typed in upper- or lowercase. A rou-
tine at line 1260 automatically converts the code to uppercase.
The INPUT command is handy when attempting to associate a
pattern-identifier with a CHR$ in someone’s BASIC code.

RESTORE CH restores the current character to its original
configuration. This command is useful if you wish to start over
defining a character or if you changed the wrong one.

RESTORE CHSET restores the entire character set to its ini-
tial appearance.

COPY copies a character to a second location in the
character set. You will be prompted for the first (character to
be moved) and second (destination) character. This command
is handy for arranging your customized characters to fit the
various color codes.

SWITCH swaps the location of two characters in the set.
As with COPY, you will be prompted for two characters.

MIRROR produces a mirror image of the current character
in the grid.

REVERSE puts the current character in the grid in reverse
field: all dots become blanks, and all blanks become dots.

ROTATE turns the current character 90 degrees clockwise.

CLEAR completely clears out the current character.

INSERT places a row of blanks in the current character.
Move the sprite in the grid with the joystick to the row where
you wish to insert the blanks and press ENTER. All rows be-
low that will scroll down and the bottom row will be lost.

DELETE is the opposite of INSERT. Position the sprite on
a row in the grid and press ENTER. The row will be elimi-
nated and all other rows will scroll upward. DELETE and IN-
SERT can be used in conjunction with ROTATE to scroll
characters left or right in the grid (of course, one row will be
lost in both cases).

WRITE DATA displays the pattern-identifier for each

213

Sound and Graphics =

R T A T

selected character along with its ASCII value. When finished,
a prompt for another command will be issued. This is handy
when comparing characters or for providing a few character
codes for another program.

QUIT simply terminates the program.

LOAD FONT loads a previously SAVEd character set (a
font) from tape or disk. You will be prompted for the device
and filename. Be sure that this is typed in the standard format
(CS1 or DSK1.FILENAME). Again, capital letters need not be
used. The routine that converts from lower- to uppercase
lettering takes care of this for you. If you're using a cassette,
the screen will be restored after the tape system messages
have been printed (the same occurs with SAVE FONT dis-
cussed below). When loading is complete, a command prompt
is given.

SAVE FONT saves to tape or disk in a data file format
only those characters in the set which have been altered since
the program was run. Since each character code is saved as a
separate record, you may need 30 minutes of tape to save a
large set if you use cassette. As with LOAD FONT, you will
be prompted for the device and filename. If you accidentally
hit L (for LOAD FONT) or S from the main menu, simply
press ENTER to abort the errant command when prompted for
the device and filename.

Once saved, character sets can be loaded into any pro-
gram where they’re needed (we’ll consider this in greater de-
tail shortly). As with LOAD FONT, you’ll see a prompt for
another command when the SAVE is complete.

PRINT CH prints the current character in an 8 X 8 grid
along with its ASCII and pattern-identifier codes, then returns
you to the main menu. Be sure that you modify line 1660 to
correspond to the specifications of your printer.

PRINT CHSET is the same as the previous command ex-
cept that it prints every character which has been modified.

Just For the Fun of It

The first command in the menu, which we overlooked until
now, is the DOODLE mode. By choosing this mode, you can
use your redefined character set to design a playfield or simply
draw for the fun of it. Your completed playfield or drawing
can even be saved and loaded back in from tape or disk for
further modification.

214

A

4.3

S I S

.

Sound and Graphics

After redefining some characters, go into the DOODLE
mode by typing O. The screen will clear except for the charac-
ter set at the bottom. The following one-line menu will be dis-
played at the top of the screen:

C F B M=MENU L S=SAVE

First select the character you wish to locate somewhere on
the screen by positioning the box-like sprite with the joystick
over this character and pressing the fire button. The chosen
character will become a sprite and automatically scroll up to
the row above the displayed character set. You can move this
character sprite to a desired location with the joystick and
print it there by hitting the fire button. If you hold the fire
button down while moving the character sprite, a line of
characters will be printed.

Now, referring to the above one-line menu, press C to
change the screen color, F to change the foreground color of
the current character subset, and B to change its background
color (as before, all character colors can be toggled off or on
with the Z key). When you wish to draw with another charac-
ter, just press ENTER. The box-like sprite will once again be
placed in the character set at the bottom of the screen for an-
other selection. When you’ve finished drawing, type M to re-
turn to the main menu, or if you wish to save the screen
(actually, the program saves only rows 2-20), type S. (L lets
you load a screen and will wipe out any existing screen.)

Typing L or S while in the DOODLE mode results in a
prompt for the device and filename. As with font LOAD and
SAVE FONT, carefully type in the device and filename. If you
use tape for storage, the screen will be restored (stored in the
array Z1) after the tape system messages scroll the screen. If
you hit L or S by mistake, just press ENTER to return to the
above one-line menu.

When a screen is saved from the DOODLE mode, the
screen color, and all foreground and background colors are
saved as well.

The commands offered by SuperFont are versatile, but
you may want to add others. Since the program is modular in
structure (just follow the branching IF statements from line
520 to 1220 for the current commands), you can insert addi-
tional command routines following line 1220.

215

Sound and Graphics e

Retrieving a Font or Screen

After you have saved a newly created character set or a set
and a screen, how do you go about recovering these for use in
another program? Program 2 is a sample program showing
how to do this.

Since line 120 dimensions for the screen array (Z1), the
foreground colors (FR), and background colors (B), it must be
included in your retrieval program. In line 130, the device and
filename for the character set file and the screen file are de-
fined as B$ and C$, respectively (the filenames used here are
font and screen). If you used tape to store these files, line 130
should read B$,C$="CS1”. When loading these from tape, be
sure to load them in the proper order.

Lines 140-160 load in the new character set while lines
180-210 load the screen and color codes. In line 220, the
screen previously SAVEd from SuperFont is recreated. The de-
lay in line 230 allows you to see it.

If you only wish to retrieve a font, modify lines 120 and
130 to:

120 CALL CLEAR
130 B$="DSK1.FONT”

and eliminate lines 170-220. Of course, you may wish to re-
cover the font along with its foreground and background
colors. If so, change line 120 and 190 to:

120 DIM FR(14),B(14) :: CALL CLEAR
190 FOR I=2 TO 20 :: INPUT #1:P$:: NEXT I

and delete line 220,

A Super Utility

With SuperFont, you can perform many chores with ease. You
can customize your character set (ever wished for a true
lowercase?), create graphics characters and animated figures
(space creatures!), create composite pictures from characters,
design playfields, or just play around. The uses of this utility
are endless. I'm sure you'll find discovering them as much
fun as I have. :

Program 1. SuperFont

189 !'MEMORY EXPANSION REQUIRED
11¢ DIM A$(111),C$(15) ,N$(112),D(15),V(8,8),
FR(14) ,B(14),Z21(20,32):: L=32

216

I N R B

.

i

139
140
159
169

17a@
189
190
200
219
220

23¢9
244

ez Sound and Graphics

TT=2 :: E=15 :: @¢="DEVICE{(DSK1.FILE OR
CS1)?” :: GOSUR 146390 :: GOTO 419

'ERASE

F=@ :: GOSUR 15¢ ::
cALL HCHAR(S,.14,L .1
CALLL HCHAR(3,17,L.E
«.16):: RETURN

FOR I=S5S TO 7 :=:: CALL HCHARA(I,13,L.17)::
NEXT I :: RETURN

CaALL HCHAR(8,14,L,E):: CALL HCHAR(24.,2.L
«.27):: RETURN

'DISPLAY A GRID CHAR

ZE=Ns (W-L)

FOR I=@ TO 1S5 :: D(I)=ASC(SEG%(Z&,I+1,1)
)—48 :: D(ID=D(I)+(D{(1)>2)x%x7

NEXT I :: J=¢ :: FOR I=¢g¢ TO 7 :: DISPLAY
AT(2+I,1):C$(D(J))3:: DISPLAY AT{(2+1,5)
:CE(D(I+1))z:2 J=J+2 :=:: NEXT I :: RETURN
{CONVERT GRID PAT TO HEX STRING

CALL DELSPRITE(#1):: DISFLAY AT(S.13):"F
LEASE WAIT"

FOR R=1 70 8 :: FOR C=1 TO 8

GOTO 49¢
6):: RETURN
):: CALL HCHAR({(7,17,.L

IF M=149 THEN CALL GCHAR{(R+1,11-C.H):: G
0oTO 299
IF M=97 THEN CALL G6CHAR(1&8-C.R+2.H):: GO
TO 29¢

CALL GCHAR(R+1,2+C,H)
V(R,C)=H—141 :: NEXT € :: NEXT R
H$="@#123456789ABCDEF" :: IF M=118 THEN H
$="FEDCERA9876543219"

Z$="" :: FOR R=1 TO 8 :: LO=V(R,S)¥8+V(R
L6)KA+V(R,7) X2+V(R,8) +1
HI=V(R,1)$8+V(R,2) X4+V(R,3) X2+V (R, 4) +1
Z$=7$%SEGS(H$,HI,1)%SEG$(H$,L0,1)z:: NEXT
R

IF (M<>1088) % (M<>105) THEN 384

IF M<>1@48 THEN 376

Z$=SEG$(Z%,1,ROWX2-2) *SEG$(2$,ROWX2+1,14
)X"@B” :: GOTO 386
Z$=SEG$(Z%,1,RONX2-2) & "GO "LSEGS$(Z$, ROWK2
~1,16-ROWX2)

CALL CHAR(W,Z$):: N&{W-L)=Z% :: IF (M=1@
g)+(M=165) THEN GOSUB 280

GOSUB 159 :: RETURN

'CREATE RBLOCK CODES
F$="000000010010031101900101011 7831111000

100116101 011110011 0811111111
FOR I=@ TO 1S5 :: Z$=SEG$(F$,Ix4+1.4):: D
$= ”nn

217

Sound and Graphics c=mammsss

440

469

47a

480
490

Sad
S10

S2a
538

5849
S99
oyt
619
629

63@
649

218

FOR J=1 TO 4 :: T=VAL(SEG$(Z$,J,1))+141
:: D&=DSEXCHR$(T):=: NEXT J :: Cs$(I)=D$::
NEXT I

CALL CHAR(141."", 142 RPTS("F",16),143,"F
F818181818181FF"):: FOR I=141 TO 143 ::
CALL CHARPAT(I,A$(I-L)):: N$(I-LI)=A%(I-L
Yz NEXT 1

CALL DELSPRITE(#1):: CALL CLEAR :: FOR I
=2 TO 14 :: FR(I)=2 :: B(I1)=I+2 :: CALL
COLOR(I,2,TI+2):: NEXT I :: FR(1)=2 =:: B(
1)=1

FOR I=L TO 143 :: PRINT CHR®%(I):;:: NEXT

I :: DISPLAY AT(1,11):"SUPERFONT" :: GOS
UB 142¢ :: IF WS=1 THEN CALL COLOR({14,2,
146)

FOR R=1 TO 8 :: CALL HCHAR(R+1,3,141.8):
: NEXT R

BR=2¢ :: BC=2 :: L

CALL SOUND(1¢@,.8@¢@,2):: DISPLAY AT(3.15)
:"WHICH MODE?™

CALL KEY{4d.M,S):: IF S=¢ THEN Sg@@

IF M<{>122 THEN S2¢ ELSE GOSUR 178¢ :: GO
TO 49a

IF M<>1@1 THEN 670

D$="EDIT MODE" :: T=1 :: GOSUR 158¢ :: G
OSUR 1299 =3 IF (F=1)x(K<>112)THEN 149 E
LSE IF K=112 THEN M=K :: GOSUB 15¢ :: GO

TO 1268
GOSUE 266 :: z=1
CALL SPRITE(#1,143,19,9,17)z: R=1 :: C=2

:: CALL GCHAR(R+1,C+1,CAR)

CALL KEY(@,K,S):: IF (K=13)+(K=112)THEN
ROW=R :: GOSUR 24% :: GOSUR 154@ :: IF K
<>»112 THEN ON Z GOTO 494,760

IF (K>13) X (K<>122) THEN M=K :: GOTO S28 E
LSE IF K=122 THEN GOSUR 178%

CALL JOYST{(1.X.Y):: IF ABS(X)+ARS(Y)=8 T
HEN S8@

CALL KEY(1,KK,S):: IF (KK<>18)%X{(ABS(X)+A
BS(Y)=0¢) THEN S&d

OK=@ :: IF ABS(X)+ABS(Y)=4 THEN OK=1
C=C-(X=84)+(X=—8):: R=R—-(Y=—4)+(Y=4)
C=C-(C=1)%8+(C=1@) %8B :: R=R~(R=0) X8+ (R=9
) %8

CALL LOCATE(#1,8%R+1,8%XC+1)

IF (KK=18) % (0OK=8) THEN CALL GCHAR(R+1,C+1
.CAR):: CAR=283-CAR

IF (OK=1)X(KK<>18) THEN CALL GCHAR(R+1,C+
1.CAR)

A

A

1

_

L -

A

A

Y32

678
684

694

769

71@
720

74@
759

768
779
788
796
800
814
82a
83a

844

85¢a
860
8709
8809

899

k471%

10
20

==m Sound and Graphics

CALL HCHAR(R+1,C+1,CAR):: CALL SOUND(-1,
294,3):: GOTO S60

IF M<{>116 THEN 740

T=1 :: D$="INPUT MODE" :: GOSUB 158¢ ::

GOSUB 129@ :: IF F=1 THEN 149

IF WS=9 THEN CALL COLDR(3,2,15,4,2,15,9,

2,15)

DISPLAY AT(5,12):"CHAR HEX CODE?" :: ACC

EFT AT(b6,11)SIZE(16)REEP:D% :: IF LEN(DS$
)<>16 THEN 768

GOSUR 179 :: GOSUR 1260

N&(W-L)=2Z% :: GOSUER 218 :: CALL CHARI(W,Z

$)

GOSUB 158 :: IF WS=6 THEN CALL COLOR(3,

R(3).B(3),4,FR(4),B(3),9,FR(9) ,BE(9))z:

0TO 768 ELSE 760

IF M<>114 THEN 778

D$="RESTORE CHAR" :: GOSUR 158¢ :: CALL

CHAR(W,AS(W-L))z:: N$(W-L)=As{(W-L)

Z=1 :: GOSUB 1S58 :: GOSUE 20% :: M=1@1 :
: GOSUR 154@ :: DISPLAY AT(3,15):"EDIT M

ODE" :: CALL SOUND(5%,88%,3):: GOTO S50
IF M<>164 THEN 814

D$="RESTORING SET"” :: GOSUB 158@

DISPLAY AT(5,15):"PLEASE WAIT"

FOR I=L TO 143 :: CALL CHAR(I,A$(I-L))::
N$(I-L)=A$(I-L):: NEXT I :: GOTO 7&9

IF M<>192 THEN B840

D$="COPY MODE” :: GOSUR 1588

DISPLAY AT(S5,15):"FIRST CHAR?" :: GOSUE
129¢ :: IF F=1 THEN 148 ELSE TM=W

GOSUB 286 :: DISPLAY AT(S,15):"SECOND CH
AR?" :: GOSUR 129¢ :: IF F=1 THEN 14@ EL
SE CALL DELSPRITE(#1)

CALL CHARPAT(TM,Z$):: CALL CHAR(W,Z$)::

NS (W-L)=2Z4% :: BOTOD 760

IF M<>128 THEN 920

D$="SWITCH MODE"” :: GOSUE 158@

DISPLAY AT(5,15):"FIRST CHAR?" :: GOSUB
129@ :: IF F=1 THEN 148 ELSE TM=W

GOSUB 28@ :: DISPLAY AT(S,15):"SECOND CH
AR?" :: GOSUR 129@ :: IF F=1 THEN 148 EL
SE TM2=W :: CALL DELSPRITE (#1)

CALL CHARPAT{(TM,D$):: CALL CHARPAT(TM2,F
$):: CALL CHAR(TM2,.D$):: CALL CHAR(TM,F$
)

N&(TM-L)=F$:: N$(TM2-L)=D$:: GOTOD 760
IF M<>199 THEN 948

F
G

219

Sound and Graphics m=

93a

9449
EA=17]

P60

78
98¢

99g9

1660
1919
1920

1a3@
1949

1950

1666

1a870
1080

1696
11
1110
1129
113¢

1149

115@
1169

117¢

118¢

220

D&="MIRROR MODE" :: GOSUER 158@¢ :: GOSUE

244 :: GOTO 7640

IF M<>118 THEN 940

D&="REVERSE MODE" :: GOSUEB 158¢
24 :: GOTO 769

IF M<{>97 THEN 1640

D$="ROTATE MODE" :: GOSUR 1584

GOSUB 24¢ :: GOSUR 24@ :: GOSUR 1548 :

T=@ :: D$="AGAIN (Y/N)?” :: GOSUER 14808
: GOSUR 158 :: IF T=1 THEN 984

GOTO 769
IF M=9%9 THEN D$="CLEAR MODE" :: GOSUE 1
580 :: D&=RFT$("@".16):: CALL CHAR(W,D$
Yz N$(W-L)=D% :: GOTO 760

.
.

: GOSUR

IF M=1¢95 THEN D$="INSERT MODE" :: GOSUR
158¢ :: Z=2 :: GOTO S50

IF M=1¢® THEN D$="DELETE MODE" -:-: GOSUR
1584 :: I=2 :: GOTO 550

IF M<>119 THEN 11igg

IF WS=@¢ THEN CALL COLOR(3,2,15,4,2,15,5
12,15)

DE="WRITE MODE” :: T=1 :: GOSUR 1584 ::
GOSUB 129¢ :: IF F=1 THEN F=@ :: GOTO

1999 ELSE GOSUR 2¢@

DISPLAY AT(7,16):"CHAR=":W :: DISPLAY A

T(P,11): NS (W-L)

DE="AGAIN(Y/N) ?" :: GOSUE 1680

CALL HCHAR(9,11,L.,18):: IF T=1 THEN GOS

UB 156 :: GOTO 1@5@

GOSUB 174 :: IF WS=@ THEN CALL COLOR(3

FR(3) ,B(3),4,FR(4),B(4),5,FR(5) ,B(S5)):
GOTO 49¢ ELSE 49%

IF M=121 THEN STOF

IF M{>168 THEN 1158

D&="LOAD FONT" :: GOSUB 158%

GOSUB 1236 :: OPEN #1:D%, INTERNAL, INPUT
FIXED

INPUT #1:T,N$(T)

CHAR(T+L ,N$(T)):

#1 :: GOSUR 18¢

50 ELSE 49%

IF M<>115 THEN 124a@

D$="SAVE FONT" :: GOSUB 1580 :: GOSUE 1

2308

OPEN #1:D$, INTERNAL,OUTPUT,FIXED :: FOR
I=L TO 143

IF N$(I-L)<>A$(I-L)THEN PRINT #1:I-L,N$
(I-L)

: IF T<»112 THEN CALL
GOTO 1140 ELSE CLOSE
: IF ASC{(D%)=467 THEN 4

A

Ay

i

1194

1264

124@
1259

12698

127@
1289
1294

1406aG
1414
142a
1439

1440

1450

m Sound and Graphics

NEXT I :: T=112 : Fa="" :: PRINT #1:T,

F$:: CLDOSE #1 :: GOSUB 18@ :: IF ASCI{D
$)=67 THEN 4S¢ ELSE 49¢

IF M=112 THEN H=1 :: GOSUB 1669 :: GOTO
499

IF M=116 THEN H=@ :: GOSUR 1666 :: GOTO
494

IF M<>111 THEN 490 ELSE CALL DELSFRITE(

#1):: GOSUB 18S@ :: GOTO 49¢

DISFLAY AT(2@,2):0% :: ACCEPT AT (8,14):

D$:: IF Ds="" THEN GOSUR 18¢ :: GOTO 4
9% ELSE GOSUR 12640

RETURN

'CONVERT TO CAFPS

Zé="" :: FOR I=1 TO LEN{(D$):: F$=SEG$(D

$.I,1):: IF {ASC(F$) >96) X {ASC(F$) <123 T
HEN F$=CHR$ (ASC(F%) -L)

Z$=7Z6%F% :: NEXT I :: D$=7% :: RETURN
'GET CHAR
CALL SPRITE(#1,143.FR{14),BR¥3+1,BCx3+1

)

CALL JOYST(t.X.Y):: IF ABRS{(X)+AES(Y)=8
THEN 1309
BC=BC—(X=4) + (X=-4)
BR=BR-(Y=—-4)+(Y¥=4)
) x28

W=W-(X=4)+(X=-4)
W=W-{(Y=-4)%x28+(Y=4

IF RC<2 THEN BC=29 :: BR=ER-1

IF BC>29 THEN BC=2 :: EBR=BR+!

IF BR<2@ THEN BR=23 :: W=W+112

IF BR>23 THEN BR=2@ :: W=W-112

CALL KEY(1.KK,ST):: CALI FKEY(@.¥K,S)z: 1
F k=122 THEN GOSUB 178¢ :: GOTO 1294

IF S<>@ THEN F=1 :: IF M=111 THEN RETUR
N ELSE CALL DELSPRITE(#1):: RETURN

IF KKk=18 THEN CALL SOUND(14,.11@,2):: IF
M=111 THEN RETURN ELSE GOSUR 154 :: CA
LL DELSPRITE(#1):: RETURN

GOTO 1299

'MENU

DISPLAY AT(1@.14):"0 DOCDLE"

DISFLAY AT(11,1):"E EDIT";TAR(14):"N IN
PUT"”

DISFPLAY AT(12.1):"R RESTORE CH":TAR{14)
:"H RESTORE CHSET"

DISPLAY AT{(13,1):"F COPY":;TAE(14);"X GSW
ITCH"

DISFLAY AT(14,1):"M MIRROR";TAR(14) 3"V
REVERSE"

221

Sound and Graphics e

1474
14840
14940
1500
1S19
1520
15349

1540

15Sa
15640

1574
15849

1599
1600

16140
16240
16356

1640

1650
1664

1670
16840

16940
17¢@
171@

1720

222

DISFPLAY AT(15,1):"A ROTATE":;TAR(14);"C
CLEAR"

DISPLAY AT(16,1):"1 INSERT":TAB(14);"D

DELETE"

DISFLAY AT(17.1):"W WRITE DATA":TAR(14)
:"Y QuIT"

DISFLAY AT(18.1):"L LOAD FONT":;TAEB(14)
"8 SAVE FONT™

DISPLAY AT(19.1):"FP PRINT CH":; TABR(14) ;"
T PRINT CHSET*®

RETURN

'DRAW A FEW CHARS

FOR I=¢g TO S STEP 2 :: CalLL HCHAR{(7 .17+
T.WYz: NEXT I :: RETURN

'POSTITION CURSOR

R=2¢ :: =2 =: W=L :: CALL SPRITE(#1.14
J3,2.R¥8+1,C¥B+1):: RETURN

'DISPLAY MODE

GOSUR 160 :: DISPLAY AT(Z,15):D% :: IF

T=f THEN DISPLAY AT(3.15): "CHOOSE A CHA
R" :: T=¢

RETURNM

DISPLAY AT(5.15)':D% :: ACCEFT AT T(S.27)H

EEF VALIDATE("yn")SIZE(1):Z% : IF Z%="
v" THEN T=1

RETURN

'SAVE ORIG CHAR FPATS

CALL CLEAR :: CALL SCREEN{E):: DISFLAY
AT(1¢,8):"...PATIENCE..." :: DISFLAY AT
(12,2):"LOADING CHARACTER PATTERNS"
DISFLAY AT(23,1):"{ALFPHA-L_OCK KEY MUST

BE UP)™" :: FOR I=127 TO 14¢ :: CALL CHA
ReT,""):: NEXT 1
FOR I=L TO 144 :: CALL CHARFAT(SAS(I-L

1
Yrzi: N&LI-L)=A${TI-L)s: NEXT I :: RETURNM
DISFLAY AT(3,15):"PRINT MODE" :: OFEN #
1:"RS232/2. BA=94063.DA=8. PA=N"

TM=W :: IF H=1 THEN 178@

FOR T=L TO 143 :: 1IF NE(T-L)<*AS(T-L)TH
EN W=T ELLSE 175%

E=E+1 :: E=(E=17)%14+E :: CALL SCREEN(E
)

IF ((F=1)%(H=1))+(H=8) THEN GOSUE 289
GOSUR 1S4
FOR R=2 TO 9 :

B(S5):"CHRS # — "&"{"&STRE(W)&">"y

PRINT #1:TAR(3@):;:: FOR C=3 TO 1¢ :: CA
LL BCHAR(R,C.X):: IF X=141 THEN X=45 EL
SE X=88

: IF R=5 THEN FPRINT #1:TA

3B

B

I

-
~
]
Py

1744

1759
1760

1770
1780

17949

1866

1814

1824

18%4

184@

1850

186@

1870

1884

1890
1900

1914
1920
193d
194%
19509

1966

1974

Sound and Graphics

FRIMNT #1:CHR$(X)3:: NEXT C =: IF R=35 TH
EN PRINT #1:TAB{47);"HEX CODE - "&"<"%N
$(W—-L)&">"

NEXT R :: PRINT #1 :
1 THEN 1764

NEXT T

CLOSE #1 :: F=@ :=:: H=@g ::
:: CALL SCREEN(E):: RETURN
'TOGGLE COLORS

FOR I=1 TO 14 :: IF wWS=¢ THEN FORE=2 ::
EACK=1 ELSE BRACK=R{(I):: FORE=FR{(I)

IF (1<>14)THEN 182¢ ELSE IF ((K=122)% (M
23111 X (WS=@))+ ((M=122) X (WS=a)) THEN BAC
K=16

1F M=111 THEN IF (WS=@)THEN TT=FR{14)::
FR(14)=FORE ELSE FR(14)=TT :: FORE=TT
1F M=111 THEN CALL COLOR((#1.FORE)

CALL COLOR(#2,FORE):: CALL COLOR(I.FORE
SBACK):: NEXT I :: WS=—-(WS=@):: IF (M=1
22)+{(K=122) ¥ (M<>111)) THEN RETURN
=INT{W/8)-3 :: FORE=—(WS5=1)1%2-{WS=0) ¥F
R{(I):: RETURN

'pO0ODLE

FOR J=1 TO 15 :: CALL VCHARI{1.J.L.
CALL YCHAR(1.31-J.L.19):: NEXT Jd
WS=1 THEN CALL COLOR(14,2,1)

DISFLAY AT(1.1):"C F E M=MENU L S=

SAVE";

W= :: BR=2¢ :: RC=2 :: GOSUR 1834 :: G
gSuUBR 1294

GOSUR 183¢@ :: IF F=1 THEN 1754 ELSE BAC

K=—(WS5=1) - (WS=g) ¥E (1)

CALL SPRITE(#2,W.FORE.BR¥8+1.RBCX8+1)

CALL JOYST(1.X.Y):: BR=BR-Y/4 :: BC=BC+
X/4

BER=RBR—-(BR=@)+{(RR*19):: BC=RC-{BC=¢) + (EC

=31)

CALL LOCATE(#1.BRXx8+1,.BC¥3+1,#2,.BR¥B+1,

BC¥8+1)

CALL KEY(1.KK.S):: IF (KKE<{>18) +{(BR>19)T

HEN 1959

CALL HCHAR(EBR+1,BC+1.W):: CALL SOUND(1¢
L112,2):: GOTO 1998

CALL KEY(#,K,85)

IF K=169 THEN CALL DELSPRITE(H#1.#2):
ALl CLEAR :: CALL SCREEN(E}):: F=¢g :: GO
TO 4s¢

IF ¥=13 THEN CALL DELSFRITE(#2):: BGOTO
18749

PRINT #1 :: IF H=

E=15 : W=TM

“ pa
. \U
-
.
»

223

Sound

1984
1994
20840
20010
20249
20030
2043
2059
2069
207 @

2a89
20199

2109
2114
2124
21=a
2149
2159

2169
217@

21849

2260

224

and Graphics e

IF K=122 THEN GOSUR 178¢ :: GOTO 19¢s
IF K=115S THEM 2145

IF K=14¢8 THEN 223¢

IF (K=98)+(k=99)+(K=162) THEN GOSUR Z2&&
IF F=1 THEN F=¢ :: GOSUE g s GOTO 1t

889 ELSE GUOTO 19@g

GO0TO 1989

CALL COLOR(I.FR(I),B{I))

RETURN

IF W3S=31 THEN 2110

IF K{»98 THEN 269@ EILLSE RB{I)=R(I)+1 ::
BII)=BC(I)+(R(I)>186)%1%

GO0TO Z204a

IF K<»182 THEN 211# ELSE FR(I)=FR(I)+1
:r FROIV=FRACOI)+(FR(I)>1b6)%18

GOSUER 183¢ :: CALL COLOR(#2,FORE):: 1IF
=14 THEN CALL COLOR(#1,FORE):: GOTO 2@
4¢ ELSE 2040

IF E<>9% THEN 245@ E|.SE E=E+1 :: E=E+ (E
*16)%15

CALL SCREENM(E):: GOTO 2054

'SAVE SCREEN % CGOLORS

CALL DELSFRITE(ALL):: GOSUEKR 228% :: DIS
FLAY AT(1,1):"PUTTING SCREEN IN ARKAY"
FOR I=2 TO 24 :: FOR J=1 TO L :: CaLL G
CHARCILJ.Z1(1,.J)):: NEXT J :: NEXT I ::
CALL HCHARI(1,1.L,2%5)

OFEN #1:D%. INTERNAL, QDUTFUT.FIXED

FOR I=2 TQ 2@ :: P$="" :: FOR J=it TO L
t: PE=PEACHR${(Z1(T1.3)):: NEXT J :: FRIN
T #1:P% :: NEXT 1

P$=CHRS(E):: FRINT #1:FP$:: Pg="" .. FO
R I=1 TO 14 :: FE=FPSUCHR$ (FR(I)) *CHRS (K&
(Id)z: NEXT I :: PRINT #1:F%

CLOSE #1 :: IF ASC{(D%) <67 THEN 1846@

CALL CLEAR :: FOR I=L TO 147 :: FPRINT C

HR$E(I)z:: NEXT I

FOR I=2 TO 2¢ :: FOR J=1 TO L :: CALL H

CHAR{I,J.Z1(1.3))2: NEXT J :: MEXT 1

G070 186w

'LOAD SCREEN

CALL DELSFRITE(ALL):: GOSUR 2284 :: QFE

N #lzDi,INTERNAL,INPUT «FIXED
FOR I=2 TO 28 :: INPUT #1:FP% :
TO L :: Z1(I.J3)=ASC(SEGH(P%.J.1
XT J =2: NEXT I

INPUT #1:P$% :: E=ASC(P$):: CALL SCREEN(

E):: INPUT #1:P% :: FOR I=1 TO 14 :: FR
(I)=ASC{SEGH(P$,2%I-1,.1)):: B(I)=ASC(SE

GHE(P$,2%x1I,1))

: FOR J=1%
}):z: NE

3

!

)

I

2289

2299

= Sound and Graphics

A B T N

CcALL COLOR(I.FR(I),RB(I)):: NEXT I :: CL
OSE #t :: IF ASC(D$)=67 THEN 224¢ ELSE
2219

DISPLAY AT(1,1):@% :: FOR I=1 TO 4649 :
NEXT I :: ACCEPT AT(1.1)BEEP:D% :: IF
Ds="" THEN 186@ ELSE GOSUR 1254

RETURN

Program 2. SuperFont LOAD Demo

100
110
126
1348

149
150

160
170
186
1949

200

N
-
L]

b
N
Lol

N
2]
&

' GAME

'GET REDEFINED CHARS

DIM 21(28,32),FR(14) ,B(14):: CALL CLEAR
B$="DSK1.FONT" :: C$="DSK1.SCREEN" :: RE
M B$.C$="CS1"::REM EQUIVALENT FOR CASSET

TE

OFEN #1:Bs.INTERNAL. INPUT .FIXED

INPUT #1:F.NEWA%$:: IF F<>112 THEN CALL
CHAR(F+32.NEWAE):: GOTO 15¢

CLOSE #1

'GET SCREEN & COLORS

OPEN #1:C$, INTERNAL, INFUT ,FIXED

FOR I=2 TO 28 :: INPUT #1:P$:: FOR J=1
TO 32 :: Z1(1,3)=ASC(SEGS(P$.J,1))z:: NEX
T J :: NEXT I

INPUT #1:P$% :: E=ASC(P$):: CALL SCREEN(E
y:: INPUT #1:P% :: FOR I=1 TD 14 :: FR(I
) =ASC(SEG$(P$.2%I-1.1)):: EB(I)=ASC(SEB$(
P$.2%1,1))

CALL COLOR(I,FR(I),B(I)):: NEXT I :: CLO

SE #1

CALL CLEAR :: FOR I=2 TO 2¢ :: FOR J=1 T

0O 32 :: CALL HCHAR(I,J,Z1(I,Jd)):: NEXT J
:: NEXT I

FOR T=1 TO 14@%9 :: NEXT T

225

meessm———— Frank Elsesser

The TI-99/4A home computer can produce a great variety of
sounds. “Sound Maker” will appeal to anyone who wants to
add sound effects or music to a program. It's also an easy,
but highly effective way to explore the audio capabilities of
your computer.

The TI-99/4A, like most other computers, requires that you
use numbers to program a sound’s duration, pitch, and vol-
ume. Finding the right numbers to produce exactly the sound
you want can be a fairly inefficient trial-and-error process. You
must type a CALL SOUND statement with each attempt, try-
ing out different values for the parameters, until you find the
combination of numbers that matches the sound you're look-
ing for. Wouldn't it be nice if this process were automated so
you could spend more time being creative and less time typing
and manipulating numbers?

“Sound Maker” does this and more. It allows you to
experiment easily with different settings of amplitude (vol-
ume), frequency (pitch), and time (duration). You can work
with simple and complex tones, noise, and modulation to cre-
ate a variety of special effects. The computer will even print
the program statements used to create the sounds so you can
add them to your own programs.

When you run the program, it will take awhile for the
computer to establish room for variables and arrays and do
other housekeeping chores before you see the introduction.
After a brief demonstration of tones and explosions, the main
menu will be displayed.

You have a choice of three basic tones: simple, noise, and
complex. Selecting simple tones allows you to experiment with
the amplitude, frequency, and time of a simple tone. Choosing
noise tones brings you a menu of four tonal types: periodic,
periodic with tone, white, and white with tone. Complex tones
consist of three simple tones and one noise tone played
simultaneously. The frequency and amplitude of each tone can
be changed individually.

226

=mmsm Sound and Graphics

After you have selected the basic tone and found the
combination of parameters which suits your taste, you will be
taken to the modulation menu. Here, you can make the am-
plitude, frequency, or time change—while the note is play-
ing—to create special effects. The procedure for modulating
frequency and time is fairly straightforward. However, choos-
ing amplitude modulation displays another menu. Three types
of amplitude modulation are available: on/off clicking, pos-
itive ramp, and negative steps. On/off clicking turns the
sound on and off like the busy signal on a telephone. Positive
ramp makes the tone louder with time. Negative steps make it
quieter with time. Positive ramps and negative steps can be
used in your programs to give the effect of an approaching
and receding alien ship.

Experimenting with sounds using Sound Maker is so easy
that you will have the freedom to create sounds you never
thought possible on your TI.

Sound Maker

188 CALL CLEAR

116 DIM S1(68)

126 R$="SOUND MAKER"

136 CALL SCREEN(14)

149 FOR P=1 TO 11

150 CALL SOUND(1S5@4,-4,1)

168 CALL HCHAR(12,9+P,ASC(SEG$(R$,F,1)))

178 NEXT P

189 FOR DE=1 TO S@g

198 NEXT DE

2¢0@ CALL CLEAR

219 FOR I=1 TO 8

220 CALL COLOR(I,16,1)

236 NEXT 1

249 PRINT " YOUR TI COMPUTER 1S CAPAEBLEOF MA
KING AN ALMOST ENDLESS VARIETY OF SPECIA
L EFFECT(3 SPACES}SOUNDS.": :

25¢ PRINT " THE FURPOSE OF THIS FROGRAMIS TO

HELP YOU FIND JUST THERIGHT SOUND FOR Y

OUR SPECIALEFFECT.": :

260 PRINT " IT ALLOWS YOU TO GENERATE SIMPL
E TO COMPLEX SOUNDS ANDTO THEN ADD SFPECI
AL EFFECT MODULATIONS.": : :

276 PRINT "{4 SPACES} (ONE MOMENT PLEASE)": :

286 REM COMPUTING S-OCTAVES

296 FOR N=@ TO 66

309 S1(N)=INT(114X(2~(1/12))"N+.5)

227

Sound and Graphics c==rmmmmms

314
329
338
340
350
366
378
389
399
400
410
429
43@
44
4S9
460
47 @
486
49@
Sea
Sia
S2¢
S34d
S49
SS9
S6d
S79
589
5948
[-Y737)
619
620
L3
649
&598
Y %]
670
689

690
780
719
729
739
740
750
760
779
780
799

228

)

CALL SOUND(-Sg9,S1(N),4)
NEXT N

FOR A=¢ TO 20 STEP S

CALL SOUND(799,-7,A)

NEXT &

REM START VALUES &MAIN MENU
CALL CLEAR

Ti=1000

FR=3009¢

AS=34

F4=30000

AS=3a

Fo=30006

A7=36

L8=1

AF=3g

FRINT TAB(12);"MENU": : : :
PRINT TAR(S)

PRINT TAB(S);"2.NOISE TONES"

s as cas

.
.

"1.5IMPLE TONES":

PRINT TAB(S); "3.COMPLEX TONES":

PRINT TAB(S);"4.EXIT": : :
INPUT "SELECT NO.(1,2.3,0R 4
ON M GOTO 65¢,16590,28306,5114
REM MODULATION MENU

CALL CLEAR

PRINT TAR{10); "MODULATIONS":
PRINT

FRINT TAER(9)
PRINT TAE(9)
PRINT TAB(9);"3I.TIME": :
PRINT TAR(9):"4.MAIN MENU":
INPUT "ENTER NUMBER(1,2,3,4)

"1.AMPLITUDE":
"2.FREQUENCY":

.
~
.
bl
.
s
-
H

ON NS GOTO 930,4579,4848,3740

REM SINGLE TONE GEN

CALL CLEAR

PRINT TAB(9); "SIMPLE TONES":
PRINT

PRINT " (PRESS ENTER 7O SELECT TONE)":

- - - - - -
- H - - - .

A3=2

FOR N=0 TO 60

F2=51 (N)

CALL SOUND(S@8,F2,A3)
CALL KEY(®,K,Z)

IF K=13 THEN 770

NEXT N

GOTO 370

PRINT "FREQUENCY=";F2: :

)

"M

PRINT "TIME=16088,AMPLITUDE=2":
PRINT "CHANGE PARAMETERS(Y OR N)?":

== Sound and Graphics

= 866 CALL KEY(@,K,Z)

816 IF Z+1=1 THEN 8¢d

820 IF K=89 THEN 84¢

836 IF K=78 THEN S50 ELSE 80

849 INPUT "NEW TIME=":T1}

858 INPUT "NEW AMPL=":A2

868 CALL CLEAR

876 CALL SOUND(T1,F2,A3)

884 PRINT TAB(&);"TRY AGAIN(Y DR N)": : :

8998 CALL KEY(9,K,Z)

988 1IF ZI+1=1 THEN 899

919 IF K=89 THEN &5¢8

928 IF K=78 THEN 554 ELSE 89@

938 REM AMPL MODULATION MENU

?49 CALL CLEAR

958 PRINT " {3 SPACES>AMPLITUDE MODULATION"

968 PRINT TAB(S):"1.0N/OFF CLICKING": :
978 PRINT TAB(S);"2.P0S RAMP": :
984 PRINT TAB(S);"3.NEG STEFS": :
99¢ PRINT TAR(S);"4.MODULATION MENU": : :
1688 INPUT "SELECT(1,2,3,0R 4)":NM
16196 ON NM GO TO 1034,1230,1450,550
1026 REM ON/OFF AM GEN
1639 CALL CLEAR
1649 PRINT TAB(B8):"ON/OFF CLICKING": : :
1656 PRINT
19606 PRINT “FOR Z=1 TO 1g"
1978 PRINT "CALL SOUND(S@,F2,A3,...)"
16868 PRINT "NEXT Z": : : :
1696 27=10
1168 T1=S@
1119 GOSUB 4649
1128 PRINT "CHANGE PARAMETERS(Y OR N)?": :
1136 FOR Z=1 TO 72
= 1140 CALL SOUND(T1,F2,A3,F4,AS,F6,.A7,-L8,A9)
1158 NEXT Z
1166 CALL KEY(9,1,3)
i, 1176 1IF 1I=89 THEN 1194
1186 IF I=78 THEN 94¢ ELSE 1139
11986 INPUT "NEW Z MAX=":22Z
1268 INPUT "TIME=":T1
) 1219 GOTO 1120
1226 REM +RAMP AM GEN
1236 CALL CLEAR

s

s 1246 PRINT TAB(8);:;"POSITIVE RAMP": : :
1256 PRINT "FOR A=3@¢ TO @ STEP -2*
1266 PRINT "CALL SOUND(-20@,F2,A,F4,8,...)"

127@d PRINT "NEXT A": : = =

229

Sound

1289
1299
1389
1310
1329
133¢
1340
13549
1360
137@
138¢
139a
1409
1414
142@
1430
1446
1459
14460
147@
1489
149@
1500
1519
1529
153a
1549
155g
15690
1579
158¢
1599
1600
161a8
1620
1638
1649
1650
1660
1670
1680
1693
1700
1710
1720
173@
1740

750
1760
177¢

230

and Graphics ===

T1=-200
8§6=2
GOSUB 44649

PRINT "CHANGE PARAMETERS(Y OR M)?":

FOR A=38 TO @ STEFP -SS

CALL SOUND(T1,F2,A,.F4,A,F6,A,-LB,A
NEXT A

FOR D=¢ TO S00

NEXT D

CALL KEY(@,K,Z)

IF Z+1=1 THEN 132@

IF K=89 THEN 141

IF K=78 THEN 940 ELSE 47@

INPUT "AMPL STEP SIZE=-":88

INPUT "TIME=":T1

GOTO 13180

REM NEG STEFPS AM GEN

CALL CLEAR

PRINT TAR{(&); "NEGATIVE STEPS": : :
PRINT "FOR A=8 TO 3@ STEP S°"

PRINT "CALL SOUND(S@®,F2,A,F4,..)"
PRINT "NEXT A": : :

T1=506

S8=5

GOSUB 4640

PRINT "CHANGE PARAMETERS(Y OR N)?":

FOR A=¢ TO 38 STEP SS

CALL SOUND(T1,F2,A,F4,A,Fb6,A,-L8,A)

NEXT A
CALL KEY(®,K,2)

IF Z+1=1 THEN 1540

IF K=89 THEN 14618

IF K=78 THEN 94¢ ELSE 1538
INPUT "AMPL STEP SIZE=":58
INPUT "TIME=":T1

GOTO 1534

REM NOISE MENU

CALL CLEAR
PRINT TAR(8)
PRINT TAB{(&)
PRINT TAB(&)
PRINT TAB(&)

"NOISE TONES": : : :
"1.PERIODIC NOISE": :

"I.WHITE NOISE":
PRINT TAR{(&):;"4.WHITE WITH TONE":
PRINT TAB{(6);:;"S.MAIN MENU": : : :
INPUT "NOISE TYPE(1.2,3,4,3)":NT
ON NT GOTO 175@,1979,2296,2514¢ 3740
REM PERIODIC N GEN

CALL CLEAR

PRINT TAB(8);"PERIODIC NOISE": : :
Ti=1006a

‘AN AN ‘ad ‘as ‘ae an

)

"2.PERTIODIC WITH TONE":

-
M

)

2}

ﬁa

emmemszm Sound and Graphics

1789 A9=2
1794 FGR L8=1 TO 4
1888 CALL SOUND(T1.-1.8.A9
1814 PRINT TABR(12):"TYPE=":1L3: :
= 1829 NEXT L8
1834 PRINT "SELECT TYPELTIME(Y OR N)Y~Y: =
1843 CALL HKEY(A.K,ZI)
D 1854 IF Z+1=1 THEN 184d¢
1864 IF K=78 THEN 16440
1874 IF =89 THEN 188@ £t 3F 1344
18893 INPUT "TYPE=":1L3
1894 INPUT "TIME=":T1
1996 CALL SOUND(TI.-L8.A%)
1914 PRINT TAR(E): "TRY AGATIN!Y OR N*~7":
1928 CALL KEY(A.¥,I)
1933 IF Z+1=1 THEN 1973
1948 IF K=8%9 THEN 1384
1954 IF K=78 THEN S585@ L3 1973
1968 REM TYPE 4 N WITH TONF
1974 CALL CLEAFR
1284 PRINT * PERIOCDIC NOISE WITH TINE":
1924 PRINT "{(FRESS ENTER TO SELECT TINE: ",

- - - - » -
H H - H - :

2803 Ti=2060
2814 A=33

2028 A9=2

2834 2=

2043 FOR N=@ TO 60

2058 F&6=51(N)

2066 CALL KEY(@.K.,2Z)

2079 IF K=13 THEN 2124

238% CALL SOUND(T1.F&,.A.F&.AF6.A.-4,.AF)
2090 L8=4

210@ NEXT N

2116 GOTQC 165@

212@ CALL CLEAR

3

.

= 2139 PRINT " TYPE -4 SARAMETERS": : : :
2149 PRINT "CALL SOUND(T!.F.3@.F...-4,2)": 3
21S% PRINT "TIME=20@#@": :

o 2168 PRINT "FREQUENCY=":Fé&: : :
2174 PRINT " (DEPRESS ""R""TO REFEAT)": : :
218% PRINT "TRY NEW PARAMETERS(Y OR N)?": :

o 219% CALL SOUND(T1.F&6.38.F5,38,Fb6,38,-4.A9)

2204 CALL KEY(d,K,2Z)

2214 IF Z+1=1 THEN 22049

2220 IF K=89 THEN 2259

) 23 IF K=B2Z THEN 219¢
2249 IF K=78 THEN 594 ELSE 22048
2259 INFPUT "TIME=":T1
226@ INPUT "AMPL=":A9

e

231

Sound and Graphics ===

227% GOTO 218%
2280 REM WHITE N BEN

229% CALL CLEAR

2360¢ PRINT TAB(9):"WHITE NOISE": :
2316 T1=2000

2324 A9=2

2336 FOR L8=S TO 8

2349 CALL SOUND(T1,-L8,A%9)

2358 PRINT TAB(9):"TYPE=":L8: : :
23608 NEXT L8

2379 PRINT "SELECT TYPE&TIME(Y OR N)7T": :
2386 CALL KEY(@,K.2)

2394 IF Z+1=1 THEN 2380

246@ IF K=78 THEN 165d

241¢ IF K=89 THEN 242¢ ELSE 238%

242@¢ INPUT "TYPE=":L8

243@ INPUT "TIME=":T1

244¢ CALL SOUND(T1,-L8,A%)

2459 PRINT TAER(8):"TRY AGAIN(Y OR N)7":
246% CALL KEY(@,¥,7Z

247¢% IF Z+1=1 THEN 2466

248¢ IF K=89 THEN 2424

249% IF K=78 THEN S5¢ ELSE 24644

250¢ REM WHITE N WITH TONES

2510 CALL CLEAR

252% PRINT "(3 SPACES3IWHITE NOISE WITH TONES

253¢ PRINT " {(PRESS ENTER TO SELECT TONE)": :

254¢ PRINT "NOTE:G00D EFFECTS AT HIGH
(3 SPACESIFRERUENCIES": :
25560 Ti=160@
2568 A9=2
257¢ L8=8
2580 I=0
2599 FOR N=0 TO &8
2698 F6=S1(N)
2610 CALL SOUND(T1,F6,36,F6,30,Fb6,38,-L8,A9)
2620 CALL KEY(9,K,Z)
2639 IF K=13 THEN 2660
2648 NEXT N
2658 GOTO 1650
2669 CALL CLEAR
267@ PRINT TAB(7);"TYPE -8 PARAMETERS":
268¢ FRINT "CALL SOUND(T1,F,3@,F..-8,A9)"
2699 PRINT "{3 SPACES:TIME=14@@¢": :
2799 PRINT "{(3 SPACES}FREQUENCY=";:;Fé&: : :
271% PRINT "(3 SPACESINOISE AMP=2": : : :
2720 PRINT "{4 SPACES} (PRESS""R""TO REPEAT)"

"
“w

232

273@
274¢@
2759
2760
2773
2784
2799
2800
2819
2829
2839
2840
285¢
2869
287a
2884

2894

2906
291a
2929
2939

2949

2959
29640
297a@

2989
2994
Jaaa
3614
3029
330
3440
IHSe
369
Ia7a
3089
3899
J1aa
3119
31249
313¢
3149
3158
I16a@
3174
3184

PRINT " NEW PARAMETERS(Y OR N)?": :
CALL SOUND(T1,F&,30,Fb,36,F6,30,~L8,A9)

CALL KEY(9,K,Z)

IF Z+1=1 THEN 2759

IF K=89 THEN 28¢@

IF K=82 THEN 274¢

IF K=78 THEN S5S36 ELSE 2
INPUT "TIME=":T1

INPUT "AMPL=":A9

GOTO 2739

REM COMFPLEX TONE

CALL CLEAR

756

PRINT "CALL SOUND(T1,.F2,A3,F4,AS.F&"
PRINT " {11 SPACES>A7,.-L8,AB)": :
PRINT "—-m—mrmm e e e e
PRINT "-USE KEYS 1-9 T0O INCREASE

{4 SPACES>VALUES"

FRINT "-DEPRESS SHIFT%1-9 KEYS TO

{3 SPACES>DECREASE VALU

ES"

PRINT "-DEPRESS""ENTER""FOR REFEAT"
PRINT "-DEPRESS ""E"" TO EXIT"

PRINT "

SPACESIF2 A3":

PRINT "{12 SPACES}T1{3

PRINT "CALL SOUND({({4 SPACES},

{4 SPACES:>, "

Ti=14809

=9

PRINT "{(9 SPACES:>, . {4
y"'s:

FRINT "{6& SPACES:F4 AS

REM START VALUES

F2=11¢@

A3=

F4=1190

AS=5S

Fe=11¢

A7=3

L8=1

A9=5

REM STRING PRINT(T1,F2,

D1$=STR$(T1)

CALL HCHAR(20,17,32)

FOR L=1 TO LEN(D1%)

SFACES}, ,-— ,

Fé

.-

A7 L8 A"

CALL HCHAR(24,L+13,ASC(SEG$(D1%,L,1)))

NEXT L

IF Z+1=1 THEN 3158 ELSE
D3IE=8TR$ (F2)

CALL HCHAR (20,22, 32)
FOR L=1 TO LEN{(D3%)

RY=Y 217

CALL HCHAR (24,1 +18,ASC(SEG${(D3I¢.L.1)))

233

Sound and Graphics

Sound and Graphics =

3199
3200
32149
3229
3230
3249
32549
I260
327¢
3289
3294
3369
3I31@
3329
I3
3340
3359
3360
I378
3384
I394
Iq4aa
3410
3420
34340
3440
3459
I460
347@
3489
3499
35006
3510
3529
3539
3549
3559
3560
3579
3589
359¢
KY-121"]
3619
3620
I&3Y
3640
3659
3669
3679
3689

234

NEXT L
IF Z+1=1 THEN 3216 ELSE 36@d

D4$=STR$ (A3)

CALL HCHAR(28,25,32)

FOR L=1 TO LEN(D4%)

CALL HCHAR(2%,L+23,ASC(SEG$(D4s,L,1)))
NEXT L

IF Z+1=1 THEN 327¢ ELSE 360¢

DS$=STR$ (F4)

FOR L=1 TO LEN(DS5$%)

CALL HCHAR(21,11,32)

CALL HCHAR(21,L+7,ASC(SEG$(DS$,.L,1)))
NEXT L

IF Z+1=1 THEN 333¢ ELSE 34664

D6$=STR$ (AS)

FOR L=1 TO LEN(D6%)

CALL HCHAR(21,14,32)

CALL HCHAR(21,L+12,ASC(SEG$(D&6S,L,1)))
NEXT L

IF Z+1=1 THEN 339¢ ELSE 3680

D7$=STR$ (F6&)

FOR L=1 TO LEN(D7%)

CALL HCHAR(21,19,32)

CALL HCHAR(21,L+15,ASC(SEG$(D7%,L,1)))
NEXT L

IF zZ+1=1 THEN 3458 ELSE 3609

D8$=STR$ (A7)

FOR L=1 TO LEN(D8%)

CALL HCHAR(21,22,32)

CALL HCHAR(21,L+26,ASC(SEG$(D8%s,L,1)))
NEXT L

IF Z+i=1 THEN 3514 ELSE 3690

DI$=STR$ (L8)

CALL HCHAR(21,25,ASC(D9%))

IF Z+1=1 THEN 3546 ELSE 3400

DA$=STR$ (AF)

FOR L=1 TO LEN(D@$)

CALL HCHAR(21,28,32)

CALL HCHAR(21,L+26,ASC(SEG$(D@A$,L,1)))
NEXT L

REM SEPARATE UP-DN&EXIT

CALL KEY(9,.K,Z)

IF K=69 THEN 558

CALL KEY(®,I,d)

IF I<>13 THEN 3660

GOSUB 414¢

GOTO 3600

IF Z+1=1 THEN 3609

IF K332 THEN 3680 ELSE 3600

IF K=42 THEN 453@

4

merrmmermm Sound and Graphics

= 3690 IF K<42 THEN 4220
‘ 37668 IF K=64 THEN 4179
3716 IF K=94 THEN 4400
X726 IF K>48 THEN 3749 ELSE 3604
3738 REM UP COMMANDS
3749 ON (K-48)60T0 375¢.3799,384¢9,3880¢,3934,
3976 ,4020,4060,4100

o 3759 IF T1>3969 THEN 3499
‘ 37608 T1=T1+100

3779 GOSUBR 4149

3789 GOTO 3Ia994@

3798 IF N2>59 THEN 3158

3809 N2=N2+1

3816 F2=51(N2)

3824 GOSUB 4149

3839 GOTO 3159

3849 IF A3>29 THEN 3210

3856 A3=A3+1

3860 GOSUB 41406

3879 GOTO 3210

3884 IF N4>59 THEN 32749

3898 N4=N4+1

3908 F4=51(N3)

3919 GOSUB 4148

3928 GOTO 3279

3938 IF AS>29 THEN 333¢

3949 AS=AS+1

3959 GOSUB 4144

3968 GOTO 3339

3978 IF N63>59 THEN 339@

39808 N6=N&+1

3999 Fb6=S1(N&)

490@ GOSUB 4144

4019 GOTO 3399

49268 1F A7>29 THEN 3450

4033 A7=A7+1
=R 4G4¢9 GOSUB 4140

495@ GOTO 3459

46663 IF L8>7 THEN 351@
o 4670 L8=LB+1
‘ 4489 GOSUB 4149

4699 GOTO 3IS19

4100 IF A9>29 THEN 3544
) 4110 A9=A9+1

412@¢ GOSUB 414@

4134 GOTO 3549
. 4149 CALL SOUND(-Ti1,F2,A3,F4,A5,F6,A7,-LB,A9

)
4159 RETURN
4168 REM DOWN COMMANDS

235

Sound and Graphics o=

417¢ IF N2<1 THEN 3150

4180 N2=N2-1

4196 F2=S1(N2)

4200 GOSUB 4140

4216 GOTO 31S@

422¢ ON (K-32)GOTO 4230,4230,4270,4310,4360
4450,4400, 4490

4236 IF T1<26@ THEN 3@98¢

4246 Ti1=T1-16@

4250 GOSUEB 4149

4260 GOTO IA9A

4279 IF A3<1 THEN 3210

4288 A3I=A3-1

4299 GOSUB 4140

4360 GOTO 3210

4319 IF N4<1 THEN 327@

4320 N4=N4-1

4333 F4=51(N4)

4349 GOSUB 41490

435¢ GOTo 3279

436@ IF AS<1 THEN 3338
4378 AS=AS-1

4389 GOSUB 4149

439¢ GOTO 3339

44606 IF N6<1 THEN 339¢2
4418 N6=N6-1

4423 F6=S51(N6)

4439 GOSUB 4149

4449 GOTO 3399

4430 IF A7<{1 THEN 34506
4468 A7=A7-1

4479 GOSUB 4149

4489 GOTO 345¢

4490 IF A9<1 THEN 3549
4509 A9=A9-1

45196 GOSUB 41490

4520 GOTO 3549

45398 1IF L8<2 THEN 3St1@
4549 L8=L8-1

4554 GOSUB 4149

4569 GOTO 3519

4574 REM FREG@ MOD

45898 CALL CLEAR

4539@ PRINT " {3 SPACESIFREQUENCY MODULATION":

4609 PRINT "FOR D=¢ TO 196 STEP 2"

4616 PRINT "CALL SOUND(-S@,F2+D,A3,F4+4D, ...
-L8,A9) "

462¢ PRINT "NEXT D": : :

4630 GOTO 44686

236

s

S

4

1

4649
/4650
4660
4679
4689
4693
4703
4719
4728
4736
4749

4730
4769
4770
4780
479@
4806
4810
4820
4839
4849
4859
4860
4870
4889
48990
49003
491¢@
4929
4930
4944
495a
4960
4973
49806
4996
Saog
So919
S929
S83g
Saqa
S859
SO6a
Sa76
Sg89
Sa9a
S199
Si1g

ez Sound and Graphics

PRINT “T1=";T1;"F2="3F2; "A3="3;A3
PRINT "F4="3;F4;"AS="3;A5;"F6=";F6
PRINT "A7=";A7:"LB=";L8B;"A9=":A9: :
RETURN

T1=-50

DD=100

FS=2

GOSUE 46490

PRINT "CHANGE PARAMETERS(Y OR N)7?": :
FOR D=0 TO DD STEP FS

CALL SOUND(T1,F2+D,A3,F4+D,AS,F&+D,A7,—
L8,A9)

NEXT D

CALL KEY(8,K,Z)

IF Z+1=1 THEN 473@

IF K=89 THEN 4860

IF K=78 THEN S55@ ELSE 4739

INPUT "FRER@ RANGE=":DD

INPUT "FREQ STEPS=":FS

INPUT "TIME=":T1

GOTO 472@

REM TIME MOD

CALL CLEAR

PRINT TAB(S):;"TIME MODULATION": : :
PRINT "FOR Ti=1 TO 360 STEP 10"

PRINT "CALL SOUND(T1,F2,A3,...AR9)"
PRINT "FOR D=¢ TO 5"

PRINT "NEXT D"

PRINT "NEXT Ti1": : :

PRINT "LAST VALUES"

GOSUR 4640

TM=360

D=5

TS=1@

PRINT “CHANGE PARAMETERS(Y OR N)?": :
FOR T1=TS TO TM STEP TS

FOR T=@ TO D

NEXT T

CALL SOUND(T1,F2,A3,F4,AS5,F6,A7,-L8,A9)
NEXT T1

CALL KEY(9,K,Z)

IF Z+1=1 THEN 4989

IF K=89 THEN S@7@

IF K=78 THEN S4¢ ELSE 498¢

INPUT "TOT TIME=":TM

INPUT "TIME STEP=":TS

INPUT "DELAY=":D

GOTO 4979

END

237

messsss———— Steven Kaye
TI Translation by Patrick Parrish

“Sound Shaper” manipulates volume and frequency to give
the TI with Extended BASIC a smoother, more musical
sound. The program also runs on the TI with regular BASIC.

The TI produces waveforms which are square. One micro-
second the sound is off, the next it’s on. This abrupt onset of
sound produces somewhat nonmusical sounds. The tones
sound electronic and unlike any acoustic instrument.

As an alternative to turning the sound on and off
abruptly, we can increase and decrease the amplitude (vol-
ume) more gradually under control of the program.

“Sound Shaper” has two sound producing routines that
can be used in your programs. Echo effect produces a sound
that its name implies. The actual routine producing the sound is
in lines 550 to 670. The routine can be extracted as is and used.

The Shaped Musical Notes routine is a bit more flexible.
The program will ask for a rise and fall value. Experiment
with different values. Try low values like .5,2 and .1,1 and
higher values like 10,10. For an eerie sound try 5,20. If the in-
put values are much higher the program seems to continue
endlessly, but will eventually return to the main menu.

Experiment with values and write down the ones you
like. Once you have found the effect you want for a particular
application, copy the routine from lines 400 to 490. Be sure to
supply values for R and D.

Sound Shaper

198 CALL CLEAR

116 CALL SCREEN(15)

126 PRINT TAR{(7);:;"SHAPING TI SOUNDS"

1386 FOR T=1 TO &

148 PRINT

15@ NEXT T

164 PRINT "CHOOSE:"

178 PRINT

188 PRINT

194 PRINT TARBR(4);"1) SHAPED MUSICAL NOTES”

238

200
219
229

238

240

259
260
279
2840

299
360
310
320
3308
349
350
360
370
389
399
400
410
423
430
440
450
460
479
48@
490
Sog
S19
520
539
549
559
S60
570
5840
596
b00
618
626
638
649
659
660
6790
680
698

=== Sound and Graphics

PRINT

PRINT TAB(4);"2) ECHO"

PRINT

PRINT TAB(4):"3) QUIT"

PRINT

INPUT AS$

IF (VAL (A$)<1)+ (VAL (A$) >3) THEN 254
ON VAL (A$)GOTO 299,526,698

REM THIS PART PRODUCES "SHAFED"” MUSICAL
NOTES

CALL CLEAR

CALL SCREEN(13)

PRINT TAR(3):"%x SHAPED MUSICAL NOTES %"
FOR T=1 TO 19

PRINT

NEXT T

PRINT "ENTER RISE AND FALL TIMES ~-"
PRINT "USE VALUES GREATER THAN ZERO";
PRINT

INPUT R,D

IF (R=8)+(D=@) THEN 380

FOR F=11¢ TO 88¢ STEP 38

FOR DR=3¢ TO © STEP -S/R

CALL SOUND(-1@,F.DR)

NEXT DR

FOR DB=¢ TO 3% STEF 5/D

CALL SOUND(-1¢,F,DE)

NEXT DH

FOR T=t TO S9

NEXT T

NEXT F

G0TO 196

REM THIS PART CREATES AN ECHO EFFECT
CALL CLEAR

CALL SCREEN(14)

PRINT TAB(8);"% ECHO EFFECT x*
FOR T=1 70O 12

PRINT

NEXT T

FOR F=116 TO 88@ STEP 34
FOR DB=1 TO 34

CALL SOUND(-16,F,DR)

FOR T=1 70 19

NEXT T

CALL SOUND(-16,99¢-F,.DR)
FOR J=t TO 190

NEXT J

NEXT DR

NEXT F

GOTO 169

END 239

D
TI Translation by Gregg Peele

Your computer can compose music with this special tech-
nique. The compositions are remarkably Mozartian in style.

If you've ever gone through the steps to make your computer
play a particular piece of music, you realize that it can be a
significant programming task. To have your computer actually
write music is a real feat.

To accomplish this, we’ve first got to find a way to work
with CALL SOUND values in DATA statements in order to
make the measures of music. Also, we need to be able to
READ the values in any order so that the songs will be dif-
ferent with each run of the program. The commonly used
string manipulation methods won’t work very well here. We
need variety, and the traditional way of working with strings
quickly results in a tangled mess.

Array Referencing

The shortest, best way to solve this problem is to use a tech-
nique called array referencing. First, to get the measures of
music, you set up an array of all variables, then reference
them by subscript in a loop. Specifically, 14 variations on nine
variables are required to make the music for this program. The
random number generator is used to make the music different
every time the program is run.

A Mozartian flavor results from a deliberate shortening of
the low notes and making the high notes of varying lengths.
And to keep the music from becoming totally random, DATA
statements select the measures by their underlying tonality—
tonic, subdominant, dominant, or supertonic. In keeping with
classical style, a cadence is provided every four measures with
a final ending chord for each tune.

240

S B B R

mn Sound and Graphics

TI Mozart

140
110
124
150
149
159
169
170
184
190
299
214
229
23¢
249
2540
269
276
289
299
K47
319
320
339
340
354
368
376
389
390
400
41
429
43¢@
440
450
4659
47a
480
490
Saa
S10

DIM X(14,9)
REM THE TICLANG AMAZIUS MDZART

cAaLL CLEAR

CALL
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
FOR T
FOR T
READ
NEXT
NEXT
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
P=250
DATA
'6!2.
DATA
£ 6.9
DATA
2 3.7,

SCREEN(14)
"{X SFACESIYWELCOME! I AM TICLANG"
"(& SPACES}AMAZIUS MOZART."

"1 PLAY SONBS LIKE THE CHILD"
"FPRODIGY, WOLFGANG AMADEUS "
" MOZART MIGHT HAVE DONE."

"5 SPACES3MOZART LIVED FROM”
"{8 SFPACES>175&6 TO 1791"

"AND WROTE OVER 626 WORKS IN"
"{8 SPACES>31t YEARS."”

"THE S FPIECES YOU HEAR ARE"
"(3 SPACESIBEING WRITTEN RY THE "
* COMFPUTER AS YOU LISTEN'"

=1 TO 14

T=1 TO 9

X(T,TT)

TT

T

196,494,494 ,.247,494.587,294,494,220
196,494,587,247,587,523,294,494,294
196,494,523,247,587,523,294,494,294
196,523,587,262,659,784, 334,784,262
196,523, 659,262,659,587, 334,523,262
196,659,523,262,392,659,334,523,196
22¢,523,587,262,784,587.294,523, 22

220,440,587 ,220,523,494,294,440 262
22@3,659,784,262,587,523,294,494,220
22@,523,494,262.443,494,330,523, 220
22@3,523,494,262,440,494, 330,523,262
196,494,523,247,587,587,294,587,294
196,587,523, 226,440,440 ,294,440,220

196,659,587,262,523,523, 336,523,262
1,3,6,2,1.4,6.2,3,4,1,5,1,4,6,7,1,4
1.3,6,9

1,1,4,5,1,4,6,2,3,4,1,5,1,4,1,5,1,4

3,6
4.6,

1.' s ?23356515551345657,3,45&’2,1,4
1 .9

Sound and Graphics m==

&S @
b649
&7¢
680
690
7o
716
720
739
740
7549
764
779
7840
796
8ag
810
829
834
84a
854d
869
87¢
889g
89g
09
919
20
939
949
958

603
70
98g
990

TS L A S T 8

DATA 1.4.3,7,1,6,4,5,6,3,6,2,8,6,1,5,1,4
6.9
DATA 1,4,3,7,6,3,6,2,8,6,1,5,1,3,6,7,3,6
2 1,5,1,4,6,9,8

READ RR

ON RR GOTO 65¢.590,73%,780,610,860,640,9
40,1040

Y=12

GOTO 994

Y=14

GOTO 99@

Y=13

60TO 994

Y=1

RANDOMIZE

IF RND>.35 THEN 7d¢

Y=3

RANDOMIZE

IF RND<.75 THEN 728

Y=2

GO0TO 99g

Y=1¢

RANDOMIZE

IF RND>.4 THEN 78¢

Y=11

GOTO 99¢

Y=4

RANDOMI ZE

IF RND>.35 THEN 824

Y=5

RANDOMI ZE

IF RND<.7S THEN 85¢

Y=6

GOTO 999

Y=7

RANDOMIZE

IF RND>.35 THEN 990

Y=8

RANDOMIZE

IF RND<.75 THEN 930

Y=9

GOTO 994

PRINT "(S SPACESIWELL, THAT’S ALL"
PRINT " ({4 SPACESIHOFE YOU LIKED IT!'"

PRINT "RUN IT AGAIN AND HEAR FIVE "
PRINT " ({8 SPACES}MORE SONGS."

END

FOR I=1 TO 9 STEP 3

19668 CALL SOUND(P,X(Y,I),2,X(Y,I+1),2)

242

19190
142¢a
1830
1640
1850
1960
1970
1080
1990

CALL SOUND(P,X(Y,I),38,X(Y,I+2),2)
NEXT I

GOTO S79

CALL SOUND(1860,196,2,494,2,784,2)
FOR T=1 TO 8¢¢

NEXT T

KOL=INT (RND%8) +8

CALL SCREEN(KOL)

GOTO 579

== Sound and Graphics

243

6
Sprites

B mER N n. R =" mn

s Gary K. Hamlin

Sprites are easy to create and use. They enhance the graphic
displays and make smooth moving objects simple to control.
This program requires Extended BASIC.

An exciting feature of most personal computers is their color
graphics capability. Even if the computer was purchased for
financial management or complex mathematical computations,
it’s hard to resist experimenting with graphics. Defining

and manipulating your own characters—from oddly shaped
“’doodles” to those resembling actual objects—can be a lot of
fun, and can have practical applications too.

Graphics are quite easy to use on the TI-99/4A, with TI
BASIC's series of built-in graphics subprograms. Once they are
learned, subprograms used with sprites are also easy. Sprites
require the addition of the TI Extended BASIC cartridge, and
will greatly enhance the computer’s possible graphics
applications.

Sprites Vs. Characters

A sprite can be one of the characters from the TI character set
or can be made from user-created dot patterns, just as is done
in standard BASIC, using the CHAR subprogram. Sprites,
however, are more versatile than standard BASIC characters.
Sprites can be positioned at 49,152 different screen locations
(192 rows by 256 columns); standard characters have only
768 possible screen positions (24 rows by 32 columns). This
permits faster and smoother character movement, a significant
advantage in game programming.

The CALL CHAR statement is used in defining Extended
BASIC sprites much as it is in standard BASIC character defi-
nition. The same 8 X 8 dot grid and hexadecimal on/off
codes are used (Figure 1), but sprites can occupy up to four 8
X 8 dot blocks. The resulting hexadecimal code pattern identi-
fiers can contain up to 64 characters. The computer will auto-
matically reserve four blocks for each sprite, whether or not all

247

Sprites mmrEm——m

of them are actually used; therefore, it’s advisable to think in
sets of four blocks even if the sprite is to occupy only a small
portion of the reserved area. Figure 2 illustrates the arrange-

ment of the blocks.

Figure 1. Pattern Identifier Guide

Binary
Code
(0 = OFF 1 = ON)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal
Code

HEHUOAED> OO NRN D WN = O

Figure 2. Order of 8 X 8 dot blocks
for sprite definition and placement

248

3

3

b

N R R B

!

]

T A AL A M) Sprites

Defining a Sprite

Sprite characters should be assigned character codes divisible
by four if they are to occupy more than one of the four blocks.
This is less critical for single-block sprites, but the character
code assigned to a single-block sprite will affect which
blocks—A, B, C, or D—the sprite will occupy. The computer
will always assign a character code divisible by four to block A.

The order of the blocks, as shown in Figure 2, is also criti-
cal when writing out the pattern identifier of a multiple-block
sprite. If the order is not observed—and if block A’s character
code is not evenly divisible by four—the four segments of the
sprite will become jumbled when displayed on the screen. Al-
ways begin with the pattern identifier for block A, at the up-
per left, proceeding to the lower left (B), upper right (C), and
concluding with block D at the lower right.

It should also be kept in mind that in program references
to the screen location of a sprite, the specified location identi-
fies the dot occupying the upper-left corner of the four re-
served blocks (shown as the shaded dot in block A, Figure 2).
This is true whether or not that dot constitutes a visible part of
the sprite.

The sprite mapped out in Figure 3 is intended to occupy
four 8 X 8 blocks. To illustrate the proper sequence of the
hexadecimal code pattern identifiers, the pattern identifiers
will be referred to as string variables with the letter of the
variable corresponding to the letter designation of each of the
four blocks. The program statements would be:

1600 AS="010204620123568D"
119 B$="8D56230102040241 "
120 C4="8040204080C46AK1"
134 D$="B16ACA480402a4080"
148 CALL CHAR(96,At%XBRELCS&DS)

While it isn’t necessary to use separate statements in this
manner, it may be helpful to do so until the arrangement of
pattern identifiers becomes familiar. The same thing could be
accomplished by a single program statement:

100 CALL CHAR(96,0102040201
23568D8D562301020402018040204
080C46AB16AC48040204080")

249

Sprites e

It's only necessary to specify one character code in the
CALL CHAR statement; the computer automatically assigns
the other three. Even in the case of single-block sprite charac-
ters, three character codes will be set aside for the sprite in
addition to the specified character code.

Again, the computer will always assign a character code
evenly divisible by four to block A, the upper-left portion of
the sprite. For the snowflake sprite just identified (Figure 3),
character 96 was specified. 96 is evenly divisible by four;
therefore, character 96 is assigned to block A. Block B will
automatically be assigned 97; block C will be assigned 98, and
character 99 will be assigned to block D.

Figure 3. Snowflake Sprite

Hexadecimal Code

B 01 80

B W 02 40

B 04 20

[W 02 40

Rl 01 80

] AL B || 23 C4
L R 5 L 56 6A
EAE I i [8D B1

7] U] 8D Bl
B || B [56 6A
i T L [23 C4
[T 01 80

] 02 40

04 20

02 40

LA (4 01 80

The spaceship sprite shown in Figure 4 will occupy only
one of the four blocks. If the character code used for the
spaceship were 90, the sprite itself would be placed in block
C. Since the next lower number evenly divisible by four is 88,
character code 88 would be assigned to block A.

dThe program line identifying the spaceship sprite would
read:

134 CALL CHAR(94."1B18183IC3C3C66C3")

250

A

B

ol

2l

B

D) NN A D Sprites

Figure 4. Spaceship Sprite

sEEEEEE
W
0

SRRl
e

W

@]

g_
§ -
EEE
=
B
(@]
W

Displaying the Sprite

Once a sprite has been defined, the CALL SPRITE statement is
used to display it on the screen. The syntax for the CALL
SPRITE statement is: CALL SPRITE (sprite number, character
code, sprite color, row, column, row velocity, column velocity).
Values for row and column velocities, which cause the sprites
to move, are optional. The CALL MOTION statement is an-
other method to move a sprite. Both methods will be dem-
onstrated below.

The sprite number can be any number from 1 to 28. The
sprite number is always preceded by a #. The character code
must correspond to the one specified in the CALL CHAR
statement. Since the CALL SPRITE statement requires naming
a sprite color, no separate CALL COLOR is needed. The back-
ground color of sprites is always transparent, so only the fore-
ground color is named in the statement.

The row and column determine the sprite’s location on
the screen. Each can be in the range of 1 to 256, but only rows
above 193 will be visible on the screen: Rows 193 and 256 are
offscreen. Position 1,1 is the upper-left corner of the screen.
The values used for row and column will determine the screen
placement of the dot in the upper-left corner of the space
allotted to the sprite.

The following program lines, combined with lines 100 to
150 above, will clear the screen, color it gray, color the snow-
flake sprite red and the spaceship black, and place the sprites

251

Sprites T EE————

on the screen. Once the RUN command is given, line 200 will
cause the program to continue running until CLEAR (FCTN 4)
is pressed.

1690 CALL CLEAR

178 CALL SCREEN(135)

184 CALL SPRITE(#1,96,7,95,75)
199 CALL SPRITE(3#2,96,2.170,12%5)
2a¢ GOTO 24049

Magnify the Sprite

This places the two sprites on the screen. However, the snow-
flake sprite is displaying just the upper-left (block A) part of
the sprite. Only that part of a sprite whose character code is
named in the CALL SPRITE statement will appear.

A CALL MAGNIFY statement can be used to double the
size of sprites or to display multiple-block sprites—our snow-
flake. It can perform either function separately, or both to-
gether, depending upon the magnification factor spec1f1ed

CALL MAGNIFY(1) would make no change in either the
size or appearance of the sprites. CALL MAGNIFY(2) would
double the size of all sprites displayed on screen. Rewriting
line 200 and adding line 210 to the sample program will simply
double the size of the spaceship and the upper-left portion of
the snowflake.

294 CALL MAGNIFY(2)
214 GOTO 2t@

In order to correct the problem with sprite #1, line 200
must read:

2aa CALL MAGNIFY ()

This displays the snowflake correctly, but introduces a prob-
lem with the spaceship sprite. Extraneous characters have sur-
rounded it. The same condition would exist if a magnification
factor of four were used; only the sprites, and the extraneous
characters, would be twice as large.

203 CALL MAGNIFY (4)

The extraneous characters correspond to the ASCII codes
of the characters used for the sprite. Block A is character 88
(X); block B is character 89 (Y); and the open bracket ([) is 1

252

3

T

LR

.

NS B

"1

3

e Sprites

character 91. This problem can be avoided by using one of the
““free”” character codes (128 to 143) for sprites which will oc-
cupy fewer than four blocks.

Note that the CALL MAGNIFY statement affects all
sprites in the program, and cannot be used to single out in-
dividual sprites.

The extraneous characters can be removed by changing
statements 150 and 190 to:

156 CALL CHAR(134,"1818183C3C3C66C3")
19¢ CALL SPRITE(#2,136,2,176,125)

All other program lines will remain the same. After making
the changes, try running the program with both magnification
factors three and four used in line 200. The two sprites will
now appear as intended. For the remaining program demon-
strations, the magnification factor should be set at three.

Where’s the Sprite?

Once sprites have been correctly displayed on screen, various
subprograms can be CALLed to manipulate them. Motion can
be added, the appearance of a sprite can be altered, and infor-
mation can be obtained about character pattern identifiers,
sprite location, and the distance between sprites.

The POSITION subprogram is used when the numeric
values of the screen location of a sprite are desired. In the
CALL POSITION statement, sprite number is first specified,
followed by two numeric variables. When the statement is
executed, the numeric variables are set equal to the values of
the sprite’s row and column, respectively. Values returned are
for the location of the upper-left corner of the four block sprite
allotment.

The following changes and additions to the demonstration
program will illustrate the operation of the POSITION
subprogram:

21¢ CALL POSITION(#1,DR1,DC1)
22@ CALL POSITION(#2,DR2,DC2)
233 PRINT TAR(6):;"ROW"."COL"

24@¢ PRINT "#1: "“;DR1,DC1
256 PRINT "#2: ";DR2,DC2
268 STOP

253

Sprites o=

When the program is run, the result will be:

ROW COL
#1: 95 75
#2: 170 125

What Does It Look Like?

Another built-in Extended BASIC subprogram allows the re-
view of character pattern identifiers. The CALL CHARPAT
statement is not exclusive to sprites and can also be used with
standard user-defined characters as well as with predefined
alphanumeric characters.

The CALL CHARPAT statement calls for the character
code of the character whose pattern identifier is to be found,
followed by a string variable. The result of the string variable
will be the named character’s 16-character pattern identifier,
expressed in hexadecimal. For a multiple-block sprite like the
snowflake, a FOR-NEXT loop should be used in order to ob-
tain all four of its pattern identifiers. By making the following
alterations to the sample program, the pattern identifiers of
the snowflakes and spaceship sprites will be displayed, along
with the asterisk (*) and the numeral four (4) and their charac-
ter pattern identifiers.

219 CALL CHARPAT(13@,CP2%)::PRINT CP2$
220 FOR CC=96 TO 99

3@ CALL CHARPAT(CC,.,CFP1$)

249 FPRINT CP1$:: NEXT CC

25¢ FOR CC=42 T0O S5S2 STEF 19

269 CALL CHARPAT(CC,CP%)

278 PRINT TAR(I);CHR$(CC):;"":;CP%

2838 NEXT CC

299 STOP

This will display:
1818183C3C3C66C3
010204020123568D
8D56230102040201
8040204080C46AB1
B16AC48040204080

* 000028107C102800

4 00081828487C0808

254

2y vy 3

4

L

o

-

) sprites

How Far Is It?

The CALL DISTANCE statement is used to determine the dis-
tance between two sprites, expressed as the square of the
number of dots separating them. It uses the dot occupying the
upper-left corner of the four-block allotment as the point of
measurement. CALL DISTANCE can also be used to measure
the distance between a sprite and a given screen location.

The statement will include either two sprite numbers, or a
sprite number and the row and column values of a screen
location, followed by a numeric variable. The actual dot dis-
tance is found by taking the square root of the value found for
the numeric variable. The results are calculated to eight deci-
mal places, so if it is preferred that values be expressed as
integers, the INT function can be added to the appropriate
program lines. Changing the demonstration program with the
lines below will make the program find the distance between
the two sprites and the distance between the snowflake sprite
and the upper-left corner of the screen (position 1,1):

219 CALL DISTANCE (#1.#2,X)
224 DST=SQR{X)

23¢ PRINT DST

249 CALL DISTANCE(#1.1,1,Y)
259 DIS=SQR(Y)

269 PRINT DIS

276 STOP

2809 REM DELETE THIS LINE

The results of the sample program will be:

90.13878189
119.6327714

Moving Sprites

CALL LOCATE is used to change the screen location of a
sprite. It does so immediately upon execution of the program
line, producing an abrupt change rather than gradual motion.
The syntax is CALL LOCATE(sprite number,row,column).

214 CALL LOCATE(#2,1,209)

226 FOR DELAY=% T0O 1446 :: NEXT DELAY
2368 CALL LOCATE(#2,15,15)

249 FOR DELAY=1 T0O 1606 :: NEXT DELAY
25@ CALL LOCATE((#2,1746,12%5)

269 GOTO 21@

278 REM DELETE THIS LINE

255

Sprites ==

These lines move the spaceship sprite from its original po-
sition first to a point near the upper right of the screen, then
near the upper left, then back to its original location. The pro-
gram will continue to run until CLEAR (FCTN 4) is pressed.

If a change in the character pattern is wanted without
otherwise affecting the sprite, the CALL PATTERN statement
is used. It can be used to completely reshape a sprite or to
make more subtle changes in appearance. When combined
with other statements, it can be used to simulate the visual
effects of motion. By changing the sample program lines as
follows, the spaceship sprite will change from vertical to hori-
zontal orientation, then back again.

214 FOR D=1 TO 14¢@ :: NEXT D

220 CALL CHAR(14¢,"8aC@783IFIF78Co8a")
230 CALL PATTERN(#Z,140)

24¢ FOR D=1 TO 14@8 :: NEXT D

259 CALL PATTERN($#2,139)

268 GOTO 219

The CALL CHAR statement containing the pattern identi-
fier for the modified sprite need not immediately precede the
CALL PATTERN statement; it can be included anywhere in
the program before the CALL PATTERN statement.

Motion of the sprites can be accomplished in either of two
ways: by specifying row and column velocities in the CALL
SPRITE statement, or by adding a CALL MOTION statement
later in the program. In the CALL SPRITE statement, row and
column velocities are specified following row and column val-
ues, which then become the sprite’s starting point; in CALL
MOTION statements, row and column velocities follow the
sprite number.

Values for row and column velocity fall within the range
of —128 to 127. The closer the value is to zero, the slower the
motion will be. Negative values for row velocity move the
sprite upward while negative column velocity moves the sprite
to the left. Conversely, positive values move the sprite down
or to the right. A value of zero for row velocity means that
there is no vertical movement; likewise a column velocity of
zero prevents horizontal movement. When unidirectional
movement is desired, zero must be specified as a velocity for
the direction in which motion is not wanted.

256

4

B B Y B

3)

Examples of both methods of initiating sprite motion can
be added to the demonstration program as follows:
Change line 180 and lines 210 to 240, and add line 250:

180 CALL SPRITE(#1.96,7,.95,75,59,-58)
216 REM

226 REM

238 REM :

246G CALL MOTION(#2,-5.4)

256 GOTO 256

These changes cause the snowflake sprite to move down
and to the left at a diagonal, while the spaceship moves
slowly upward. Notice that motion begins as soon as the pro-
gram line is executed and is continuous until the program is
stopped. The spaceship cycles from the bottom to the top of
the screen over and over. A time-delay FOR-NEXT loop can
be inserted to end the movement of the sprite by deleting the
sprite. Differences in sprite velocity necessitate experimenting
to find the upper limit needed in the FOR-NEXT loop. In this
case, changing the program to:

258 FOR DELAY=1 TO 2260 :: NEXT DELAY
268 CALL DELSPRITE (#2)
279 GOTO 27¢

allows the spaceship to move as far as the top of the screen
when it will disappear. The DELSPRITE subprogram deletes
the specified sprite as soon as the program statement is ex-
ecuted. DELSPRITE can also be used to clear all sprites from
the screen by writing CALL DELSPRITE(ALL).

To restore the sprite to the screen after motion is stopped,
rewrite line 270 to send the computer back to line 240, or fol-
low line 260 with a new CALL SPRITE statement duplicating
line 190. As it was written, once the CALL DELSPRITE state-
ment is executed, the spaceship will not return to the screen.

Motion begins as soon as the CALL SPRITE or CALL
MOTION statement is reached. The start of motion can easily
be controlled, however. Adding a KEY subprogram allows mo-
tion to begin only after a certain key has been pressed. Add
these lines in place of the three REM statements:

216 CALL KEY(#.K,S)
220 IF S=@ THEN 214
236 IF K=32 THEN 240 ELSE 214

257

Now, when the program is run, the spaceship will not
move until the space bar is pressed.

Different values for row and column velocity will, of
course, change both the speed and direction of sprite move-
ment. Changing the values may also affect the angle at which
the sprites move. The closer the values, the greater the angle
at which the sprites move. If values of 50 were specified for
both row and column velocity, the angle would be 45 degrees.
If row velocity were increased to 90, the angle of movement
would be smaller, and motion would be more vertical. Accord-
ingly, a greater value for column velocity would make move-
ment more horizontal. This is true even if a negative value is
specified for either row or column velocity while the other is
positive, as demonstrated by the motion of the snowflake
sprite. Try changing the values of the row and column veloc-
ities given for both sprites. Experimenting with different val-
ues demonstrates how they change the speed and angle of
sprite motion.

Detecting Collision

The CALL COINC statement performs a function especially
useful in game programming. It instructs the computer to
monitor sprite movement to determine when two or more
sprites occupy the same position, or are within a certain num-
ber of dots of each other. It can also be used to determine
when a sprite reaches a specific screen location, or passes
within a certain number of dots of the screen position.

If information is needed for all sprites, then CALL
COINC(ALL) is used in the program; otherwise, CALL
COINC is followed by two sprite numbers, or a sprite number
and the row and column of a screen location, a tolerance
value, and a numeric variable. Tolerance is simply the number
of dots which may separate the two sprites or the sprite and
screen position in order for coincidence to exist. Again, the dot
in the upper-left corner of the sprite is used for measurement
purposes.

When the CALL COINC statement is executed, the com-
puter assigns a value to the numeric variable in the statement.
If there is no coincidence, the numeric variable is set equal to
zero; if there is coincidence within the allowance of the tol-
erance specified, the value is set equal to —1. Instructions can
be given to the computer to act based on the value of the vari-

258

-

4 3

b)

4y)

_k

3

o Sprites

able. IF-THEN statements employed in this way can be used
to change a score or screen color, sound a tone, or even play a
tune by using the proper sequence of CALL SOUND
statements.

It should be remembered that the coincidence of two
sprites, or of a sprite and screen location, does not have to be
visible.

Program lines 250 to 390 below demonstrate the opera-
tion of the COINC subprogram.

25¢ CALL COINC(#1,#2.16,C1)
260 CALL COINC(#2.1,125.1,C2)
278 PRINT C1

284 IF Ci=-1 THEN 38@ ELSE 298
29@ IF C2=-1 THEN 354 ELSE 25@
308 CALL SCREEN(11)

31¢ CALL SOUND(148,262,2)

329 FOR D=1 TO 24@ :: NEXT D
33¢ CALL SCREEN{(15)

340 GOTO 258

IS¢ CALL SCREEN(4)

360 CALL SOUND(1€@,523,2)

i7¢ FOR D=1 TO 2¢@ :: NEXT D
380 CALL SCREEN(15)

399 GOTO 254

Line 270 will continuously print the value of C1 as the
program runs. If C1=—1, coincidence of the two sprites ex-
ists, and control shifts to line 300, where the screen color is
changed to yellow and middle-C is sounded. When the space-
ship sprite comes within one dot of the top of the screen, C2
is set equal to —1, and control moves to line 350, where the
screen becomes green, and C above middle-C is sounded. The
program will continue to run until CLEAR (FCTN 4) is
pressed. It will probably be necessary to allow the spaceship
sprite to cycle the screen several times before coincidence with
the snowflake sprite is detected.

You may notice that sometimes the sprites appear to col-
lide but no coincidence is detected. Coincidence is only de-
tected when the CALL COINC statement is being executed—
in this program, line 250. One way to avoid this problem is to
check coincidence often. This solution, though, tends to make
the program longer than it needs to be, thus slowing it down.
The best solution is to keep the loop (in the example, program

259

Sprites T T

lines 250-290) to as few lines as possible and adjust the tol-
erance. Since too large a tolerance will cause coincidence too
often, it is best to experiment with different values.

Demonstration Program

These are the essentials of sprite programming, and the
demonstrations used are only representative of what can be
done with sprites. After experimenting with the different sub-
programs, you'll discover how to best use sprites in your own
programs.

Below is a complete listing of the sprite demonstration
program.

Sprite Demonstration

18 CALL CLEAR

119 PRIMT TAEBR(S): " *¥x¥SPRITE DEMO¥X%i%"

12¢ PRINT =2 PRINT "DESIGMED TO ACCOMFANY"

13¢ PRIMT """ A BEGINMER®'S GUIDE TO
{6 SFACESISFRITES IN TI EXTENDLD
(S SFACESIRASIC """

174 FOR D=1 TO 1a@adg :: NEXT D

18% CALL CLEAR

190 PRINT "THIS DEMONSTRATION FOLLOWS THE 3
EQUENCE OF THE ARTICLE."

20@ PRINT :: PRINT "THE FPROGRAM STEPS USED A
RE THE SAME AS THOSE USED INI3I SPACES:HT
HE ARTICLE.”

216 PRINT :: PRINT “AT THE END 3F EACH DEMG.
A TONE WILL SOUND."

2260 PRINT :: FRINT "THEN FRESS LETTER & TO C
ON- TINUE WITH THE MEXT DEMO."

23¢ FOR D=1 TO téa@ z: MEXT D

249 CALL CLEAR

259 AS="@182840200127568D"

264 BE="8DS&23G1482040201 "

279 Cs="8@44204480C4LARL "

280 D$="R16ACA8BG4d20448¢"

294 CALL CHAR(96.A%UBSLCHLUDS)

Jag CALL CHAR(94."1818183CIECICHR6CT")

J1¢ CALL SCREEN(15)

3240 CALL SPRITE(#1.96.7.95.75

JI3¢ CALL SPRITE((#2,9d9.2,174d .1

33% FOR D=1 TD S@¢g :: MEXT D

340 GOSUR 2540

IS8 CALL MAGNIFY (2,

I6@ DISFLAY AT(Z.3):"MAG. FACTOR 2"

37¢ FOR D=1 TO S¢4 :: NEXT D

260

by
¥
23)

N R

L

A

B S B |

T

R

384d@
390
40@
419
420
433
444
45%
450
465
467

468
47¢)
480
490
S0
510
52
Rt
S35
53
sS40
SS9
S6a
57
S84
599
YT
510
620
625
26
634
640
650
668
670
680
690
700
710
720
730
735
736
740
750
760

e s Sprites

CALL MAGNIFY {3

DISFLAY AT(3.T)ERASE ALL:"MAG. FACTCR 3

FOR D=1 TO S&# :: MEXT D

CALL MAGNIFY{(4)

DISFLAY AT{(3I.3)ERASE ALL:"MAG. FACTOR &7
FOR D=1 TO S@@ :: NEXT D

CALL CLEAF

CALL CHAR(134."1819183CICICHHCT")

GOSUR Taa

DISFLAY AT(2.%):"MAG. FACTOR ="

DISPLAY AT(I.3):"UMWANTED CHARACTERS NUOW
RE-{3 SFACES3>MOVED WHEN ""FREE"" CHAR-
{Z SPACES>ACTER CODE USED"

FOR D=1 TO S@® :: NEXT D

FOR D=1 TO S&#@ :: NEXT D

CALL MAGNIFY (4)

DISPLAY AT{3,T)ERASE ALL:"MAG. FACTOR 4"
FOR D=1 TO S@@ :: MEXT D

CALL MAGHIFY (3)

DISFLAY ERASE ALL

GOSUE 2S¢

DISFLAY AT(?.3):"FOSITION DEMO"

FOR D=1 TO S#@ :: NEXT D

CALL POSITION(#!.DR1.DC1)

CALL POSITIOM{(#2,DR2,DC2}

PRINT TAR(S):"ROW"." CoOL"

PRINT "#1: “:DR!1.DCH

FRINT "#7T: ":DRZ.DC2

FOR D=1 TO S&@ :: MEXT D

GOSUR 2S@®

CALL CLEAR

GOSUER Iaigd

DISFLAY AT(2.3): "CHARFAT DEMO"

FOR D=1 TO 3@& :: MEYT D

CALL CHARPAT(IZH,.CFZ$):: FRINT (F2$

FOR CC=9& TO 99

CALL CHARFAT(CC.CF1%$)

FRIMT CF1% :: NEXT CC

FOR CC=42 TO S2 STEP 19

CALL CHARPAT(CC,CP$)

PRINT TAR(2);:CHR$(CC):" ";CP% :: NEXT CC
FOR D=1 TO S@@ :: NEXT D

GOSUR 256@

CALL CLEAR

GOSUR 3IG60

DISPLAY AT(2,3):"DISTANCE DEMO"

FOR D=1 TO 386 :: NEXT D

CALL DISTANCE(#1,#2,X)

DST=S@R(X)

PRINT DST

261

Sprites =

779
780
794
8aa
814
820
8304
835
836
84¢
859
8&a
876
88a
890
£4:1
@S
a6
14
92a
93@
249
Sa
6@
265
966
967
979
9849
99a
995

296

997

1000
1a1a
1920
161303
1449
1045
1050
1955

18356
1457
19690
1840
10940
1695
161946

262

CALL DISTANCE(#1,1,1,Y)
DIS=SER(Y)

PRINT DIS

FOR D=1 TO S&@ :: NEXT D
GOSUB 2500
CALL CLEAR
GOSUR 30080
DISPLAY AT(2,3)
FOR D=1 TO 368 :: NEXT D

CALL LOCATE(#2,1,200)

FOR D=1 TO S@® :: NEXT D

CALL LOCATE(#2,16,16)

FOR D=1 TO S@#® :: NEXT D

CALL LOCATE(#2,176,125)

FOR D=1 TO S@@ :: NEXT D

GOSUR 250@

DISPLAY AT(2,3)ERASE ALL:"FPATTERN DEMO"
FOR D=1 TO 368 :: NEXT D

CALL CHAR(14@,"8@CA783IFIF78CH86")

CALL PATTERN(#2,144@)

FOR D=1 TO S@@ :: NEXT D

CALL PATTERN(#2,13@)

G0SUR 2568

GOSUR 3540

DISPLAY AT(2,3)ERASE ALL:"MOTION DEMO"

"L OCATE DEMO"

o e 08w

FOR D=1 7O 349 :: NEXT D
DISFLAY ERASE ALL
FOR D=1 70 3@¢9 :: NEXT D

GOSUB 2500

GOSUR 3I59a

DISFLAY AT{(2,3)YERASE ALL:"DELSPRITE DEMO
L1

FOR D=1 TO 3d¢ :: NEXT D
DISPLAY ERASE ALL

FOR D=1 TO 2266 :: NEXT D
CALL DELSPRITE (#2)

FOR D=1 TO 146@é@ :: NEXT D

GOSUR 2599
CALL CLEAR
CALL SPRITE(#2,134,2,1748,12%5)

GOSUB 4d99d

DISFLAY AT(2.3):"USE OF CALL KEY TO INI
TIATE MOTION"

FOR D=1 TO 3@@ :: NEXT D

DISFLAY ERASE ALL

FOR D=t TO 20¢¢ :: NEXT D

GOSUEBR 250@

GOSUB 5@

DISPLAY AT(2.3)ERASE ALL:"COINC DEMO"
FOR D=1 TO 3@¢% :: NEXT D

S I N D

b

3

A4)

b3

N

1

11a0@
1110
1120
1134
1140
1154
1160
1170
118a
11943
1200
1210
1220
1230
1249
1250
2500@
2S51a

2529

2539
2549
Iaae
Iag1a
Ia20
IN3G
3Ia40
3500
3519
3520
3539
KABD

4835
4606
4010
46206
4030
4840
49506

CALL COINC(#1.#2,15,C1)

CALL COINC((#2,1.125,1.C2)

FRINT C1

IF C1=-1 THEN 115¢ ELSE
IF C2=-1 THEN 12&@ ELSE
CALL SCREEN{11)

CALL SOUND{1@@,.262.2)
FOR D=1 TO 2¢& :: NEXT
CALL SCREEN(1%5)
GOTO 114@

CALL SCREEN{4)
CALL SOUND(18d.523
FOR D=1 TO 2¢@ ::
CALL SCREEN(15)
GOTO 1194

STOP

DISPLAY BEEF

CALL KEY{(@.¥,S)

IF S5=¢ THEN 2S51@
IF K=81 THEN 2549 ELSE
RETURN

CALL SCREEN{15)

CALL SPRITE(#1,96.7,95,
CALL SPRITE(#2.136,.2.17
CALL MAGNIFY (3)

RETURN

. 2)
NEXT

CALL SPRITE(#1,96,7,95,75,54,-58)

CALL MOTION(#2,-5,d)
RETURN

STOF

DISPLAY AT(3I,3):"PRESS
RT MOTION OF SPACESHIF
FOR D=1 TO 2a@d :: NEXT
DISFPLAY ERASE ALL

CALL KEY(8,K,S)

IF S=0 THEN 4916

IF K=32 THEN 46040 ELSE
CALL MOTION(#2,-5,9)
RETURN

114a
11a9

D

D

2514

73)
@.125)

SPACE BRAR
SFRITE"
D

4810

TO STA

263

Sprite

Larry Long

Here's a way to get maximum use of sprites on the TI-
99/4A—and a program that generates listings for your
sprite creations. Requires Extended BASIC.

A very powerful yet often unused feature of the TI-99/4A is
its ability to display and control sprites. With the 99/4A and
the Extended BASIC Module, it’s possible to generate 28
sprites for display and independent simultaneous movement.
Program 1 should convince any doubters that this can be
done. Although a lot of colored letters floating around the
screen are a bit pointless, if we can modify and control the
sprites, we will have a most useful feature.

Sprites can be designed by drawing on a piece of graph
paper and then converting the on/off pixels to a hexadecimal
number. If the two largest sizes of sprites are used, the hexa-
decimal number describing the shape of the sprite would be
64 characters long (for a more extensive discussion on sprite
creation see A Beginner’s Guide to Sprites” elsewhere in this
book). A solution is a sprite editor that will allow us to draw
the pattern we want on the screen and then have the com-
puter create the program we need to make that sprite pattern.
Program 2 will do exactly that, and more. It will allow us to
edit the sprite pattern. Then, when we press the L key, it will
display a complete listing that would, if copied on paper and
then entered into the computer, provide a sprite and the nec-
essary routine to control its movement.

Your Options

When you run the program, the first display screen will be a
design grid with a box-shaped cursor. The area under the
cursor will initially be white (signifying an off pixel). Press 1
to change the color beneath the cursor to black (representing
an on pixel) or to move the cursor about the grid using the ar-
row keys. To turn off a particular pixel, press 0 and the back-
ground color will be returned to white. When you have
completed your design, press the P key to see it displayed as a
sprite.

264

¥

A

4

L

B B

B I

-

e Sprites

At this point, you are given several options. You can mag-
nify your newly constructed sprite (M key), change its color. (C
key), change its background color (B key), or set it in motion
(E, S, D, X keys). If you are not pleased with the sprite’s
shape, you can modify it by striking the T key or (if the
changes required are quite drastic) simply press the A key to
start with a fresh grid. On the other hand, if you are satisfied
with your sprite and its color and directional parameters, press
the L key to create the BASIC statements needed to achieve
these effects.

If using the sprite editor is your only concern, then skip
the rest of this article and go straight to Program 2 and enjoy
this easy access to sprites.

How the Editor Works
To understand what makes the editor work, let’s take a gen-
eral overview of the program:

Lines

100-260 Set up screen display.

270-460 The main loop of the designing portion of the program.

470-680 Evaluate the design, put its values in an array, read the
values in the array, convert them to hexadecimal num-
bers, and then build a 64-character string to describe the
sprite pattern.

690-770 Put the sprite on the screen and display new program
instructions.

780-930 Main loop of the implementation portion of the program.

940-980 Change size of sprite.

1000-1150 Display a listing of the sprite program.

1160-1220 Change the color of the sprite and screen.

A cursor is needed to indicate where you are located on
the design grid. I chose to use a sprite (line 220) because I
could move it around freely without disturbing the display un-
der it. Repositioning the cursor is accomplished in line 380
with a CALL LOCATE. The arrow keys reposition the cursor,
and the ENTER key changes the area under the cursor.

What makes “Sprite Editor”” so valuable is its ability to
generate the hexadecimal pattern for the sprite. The loop from
line 500 through line 560 determines the character in each
position of the design grid and stores that value in the array
B (R,C). Line 570 provides a string with all of the possible

265

Sprites mre——

hexadecimal digits placed in ascending order. Line 580 sets
M$ to null. The loop from line 590 to line 630 evaluates the
array elements and converts each row in the left half of the
design grid to a pair of hexadecimal digits and concatenates
them to M$. Line 620 is probably the most significant line in
this loop, as it provides the hexadecimal numbers. It causes
the computer to look at a particular digit (element) in HEX$
determined by the values calculated for HIGH and LOW. Lines
630-680 perform the same operation as 590-630, only for the
right half of the design grid.

Line 690 assigns the hexadecimal numbers to ASCII
characters 104, 105, 106, and 107. It is necessary to specify
only the first character number in the CALL CHAR statement.
When this feature is used, it is required that you start with a
character that is evenly divisible by 4. Line 730 actually dis-
plays the sprite.

Lines 740-770 provide instructions for the implementa-
tion portion of the program. Lines 780-830 check for specific
key presses and provide appropriate branching to list the pro-
gram; end the program; start from the beginning; change the
background color; modify the existing sprite; change sprite
size; or change sprite color. Lines 840-920 check for arrow key
presses and then increment or decrement sprite speed.

Lines 940-980 change sprite size. Lines 1000-1150 dis-
play a program listing that would generate a sprite like the
one designed by the Sprite Editor. One problem with listing
the program is displaying the quote character. The computer
interprets it to mean that you want to end the PRINT state-
ment. The solution is to redefine an unused character (I chose
the lowercase n) to look like the quote character.

Finally, lines 1160-1220 allow you to change the color of
the sprite and screen.

Program 1. Sprite Generation

163 CALL MAGNIFY(2):: FOR X=1 TO 28 :: CALL
SPRITE(#X,64+X,X/2,96.128, INT(RNDXx1#4d) -5
@, INT(RND¥1@i@) -S@):: NEXT X :: GBGTO 149

Program 2. Sprite Editor

19¢ REM SFRITE EDITOR
114 DIM B{16,16):: 5C=8

266

A

N N

A

B BN

1

1

1

e

270
271
272
274
280
29@
o6
314
312
320
339
349
350
380
420
430
460
47@
480
49@

Sa9
S14
S2

S3g
sS40

mmm Sprites

Ci=7

CALL CHAR{1gg@,"")

CALL CHAR(1@1,"FFFFFFFFFFFFFFFF")

CALL CHAR(1@2,"FFFFCIC3IC3ICIFFFF™)

CALL COLOR({(9.2,18)

CALL CLEAR

DISPLAY AT(1,1%):"SPRITE EDITOR"

FOR R=1 TO 16 :: CALL HCHAR{4+R,2,100,16
Y:: NEXT R

CALL MAGNIFY (1)

IF K=84 THEN GOTO 217

CALL SCREEN({S8)

CALL DELSPRITE (ALL)

CALL SPRITE(#28,1062,14,32,.8)

CALL HCHAR(21.1,32,.31):: CALL HCHAR(22,1
. 32,31)

DISPLAY AT(22.2):"E=UP X=DOWN S=LEFT D=R
IGHT"

DISPLAY AT(23,2):"PRESS 1 - FIXEL ON ,0

- OFF"

DISPLAY AT(24,2):"FPRESS F TO DISPLAY SPR
ITE"

R=1 :: C=1

KHAR=10@

CALL KEY(4,K,S85)

IF S=g THEN 274

IF K=48 THEN KHAR=1¢g

IF K=49 THEN KHAR=1@1

IF K=83X THEN C=C-1 :: GOTO 32

IF K=68 THEN C=C+1t :: GOTO 329
IF K=69 THEN R=R-1 :: GOTO 32¢
IF K=88 THEN R=R+1 :: GOTO 32a

IF K=80 THEN 470

IF C<1 THEN C=16

IF C>16 THEN C=1

IF R<1 THEN R=16

IF R>16 THEN R=t

CALL LOCATE (#28, (BXR)+25,8%C+1)
CALL HCHAR (4+R, 1+C,KHAR)

CALL SOUND(20,286,5)

GOTO 278

CALL DELSPRITE (ALL)

CALL HCHAR(21,1,32,128)

DISPLAY AT(22,2):"PLEASE WAIT WHILE I TH
INK. "

FOR R=1 TO 16

FOR C=1 TO 1&

CALL GCHAR(4+R,1+C,6C)
GC=GC-160

B(R,C)=6C

267

Sprites s

558 NEXT C

S60 NEXT R

S76 HEX$="@0123456789ABCDEF"

S8g ME=""

594 FOR R=1 TO 16

AP LOW=RB(R,S)¥8+B(R.&6)¥4+RB(R,7)X2+B(R,8)+1

619 HIGH=B(R,1)*8+B(R,2)%4+B{(R,3) ¥2+B(R,4) +1

629 ME=MSLSEGH (HEX$,HIGH, 1) XSEG$(HEX%,L0W, 1)

639 NEXT R

649 FOR R=1 TO 16

659 LOW=R(R,13)%8+B(R,14)%4+B(R,15)%x2+R(R,16
) +1

668 HIGH=B(R,9)X8+R(R,1M) Xx4+EH(R,11)¥2+B(R,12
Y+

679 ME=MELSEGH {HEX$,HIGH, 1) &SEGS (HEX%,L0W, 1)

689 NEXT R

69¢ CALL CHAR{(1@¢4_,M$)

78@¢ CALL MAGBNIFY(3)

714 MM=3

720 M=4

73¢ CALL SPRITE(#1,144,.C1,50,174,4a,.4)

746 DISPLAY AT(21,2):"C COLOR ™M MAGNIFY T
EDIT"

73¢9 DISPLAY AT(22.2):"A ERASE 2 QUIT B HAC
KGRD™"

768 DISPLAY AT(23,2):"E=UP X=DOWN S=LEFT D=R
IGHT” .

779 DISPLAY AT(24,8):"L LISTS PROGRAM"

789 CALL KEY(@,K,S)

79¢ IF K=76 THEN GOTO 19@d

8d¢ IF K=81 THEN GOTO 99&

819 IF K=6S THEN GOTO 14¢

812 IF K=66 THEN GOSUE 12¢4

815 IF K=84 THEN GOTO 214g

82¢ IF K=77 THEN GOTO 949

83¢ IF K=67 THEN GOTO 11460

846 IF K=83 THEN H=H-2

85S¢ IF K=68 THEN H=H+2

868 IF K=69 THEN V=V-2

874 IF =88 THEN V=V+2

884 IF V>12¢ THEN v=1{28

89 IF V<-129 THEN V=-128

9a@ IF H>128 THEN H=12¢

19 IF H<—-120 THEN H=-124

92¢ CALL MOTIOM(H#1.V,H)

3¢ GOTO 789

249 CALL MAGNIFY (M)

54 MM=M

P68 IF M=3 THEN M=4 ELSE M=3

9749 FOR D=3%1 TO 2¢ :: NEXT D

268

S B

A

-,

I I |

11

98¢ G6O07T0 7849
99@ STOF

1AD3
1445
1g1d
129
1930
1835
140
1@G5d

1855
1960
147

1gaa
199¢
1180
1118
112a
1136
1140
1159

1156
1157
1158
1159
1160
1170
1184

1260
1210
12249
1239

REM FROGRAM LISTER
CAl.LL. SCREEN({(B)

CALL CHARC(11@®,"@d@2424")
CALL CLEAR

FRINT "{6 SFARCESIFROGRAM LISTING"

CALL DELSFRITE (ALL)

PRINT

PRINT ">1d0@ CALL CHAR(LI#4,.n
TO 64 :: PRINT SEGES(M&.¥. 1
c: PRINT "n¥ "

FRIMT ">1935 CALL SCREEN(":S

PRINT ">114 CALL MAGNIFY (":

PRINT ">124 CALL SPRITE (#!.

SE.15@. "V, "z

FRINT ">17¢ CALL KEY(@,E,S:

FRINT ">14% IF =58 THEN H=

PRINT ">1S3 IF K=8IZ THEN H=

FRINT ">146¢ IF K=88 THEWN Y=

PRINT "=174 1+ =69 THEN V=

PRIMT "»18¢ CALL MCTION#H!Y.

FRINT ">194 GOTO 13a"

PRINT :: PRINT :: PRINT ::
NT
DISFLAY AT(21.3):"A - ERASE

- quIiT”

CALL KEY(@,¥,8T):: IF BT=@
1IF ¥K=81 THEM GOT0O 994

IF K=65 THEN GOTO 14d¢

GOTO 1156

Ci=C1+1 :: IF C1x16 THEN C1I
CALL COLOR({#1,C1»

)

v

-
.
-
-

C:IJ)
MM v
144,

"

H+z2"
-2
7J+235

[y

I.V,SH)

FOR W=1
NEXT W

PRIMT :: PRI

{Z SFACESIQ

THEN

=2

1156

CALL KEY(®#,K.S):: IF S THEN 118% ELSE 7

(=34]

REM SCREEN COLOR CHANGE
SC=8C+1 :: IF SC=17 THEN SC
CALL SCREEN(SC)

=2

CALL KEY{(0.kK,S)Y:: IF 3 THEM 1234 ELSE

RETURN

269

in Extended

James Dunn

The efficient, remarkable sprite-handling ability of Extended
BASIC is clearly evident in this game. The author discusses
creating sprites and explores sprite manipulation. There are
several valuable pointers here for those interested in graph-
ics, animation, or game programming.

One of the biggest problems in designing an arcade-type game
in BASIC is that BASIC can move only one character at a
time, usually slowly and not very smoothly. Ideally, we need
the ability to move an object independently of the operation
of the main program. Once set in motion, the object would
continue in motion until acted upon by a new command from
the main program. Sprites accomplish this.

Although a sprite is a type of subprogram that runs
concurrently with a main program, the main program first
must create the sprite, define its shape, and set it in motion. A
sprite then continues its motion without requiring continuous
control from the main program, except that the main program
may at any time test the sprite for position, change the color
or pattern, delete, or change its motion (see ““A Beginner's
Guide to Sprites” and “Sprite Editor” in this chapter).

Included in TI-99/4A Extended BASIC are 11 commands
to control sprites: CALL COLOR, CALL CHAR, CALL
SPRITE, CALL PATTERN, CALL MAGNIFY, CALL MOTION,
CALL POSITION, CALL LOCATE, CALL DISTANCE, CALL
COINC, and CALL DELSPRITE. To illustrate the use of these
commands, we'll look at an airplane landing game, “Runway
180.” Try some examples for yourself to get a feel for sprite
programming.

Creating Sprites

Certain considerations must be taken into account before
sprites are created. If a special graphics character is to be used
for the sprite, the character must be created by use of CALL

270

L O

a4

S N R R

3

CHAR. For example, in the game there are three special
characters defined for the aircraft. One is with the wheels up
(lines 430-460), one is with the wheels down (lines 510-540),
and one is debris after a crash (lines 550-580).

To create a special character, it’s necessary to redefine an
existing standard character. The standard characters corre-
spond to the numbers 32 through 127 (part of what’s called
the ASCII number code). The new pattern is created by using
CALL CHAR and is referenced by its ASCII number.

Before we choose which ASCII number to use, we must
examine some other factors. CALL MAGNIFY can enlarge a
sprite to one of four magnification factors. Factor four is used
in the game (line 630). This enlarges the sprites to double-size
pixels and uses a block of four sequential characters. The
ASCII number used to define the sprite must be evenly divis-
ible by four and represents the upper-left character in the
block of four. The next three ASCII numbers represent the
lower-left, upper-right, and lower-right characters respectively
in the block of four.

The sprite may be colored independently of the other
characters in the same character set. In addition, the sprite
with the lower sprite number (this is a different number from
the ASCII number) will pass in front of (that is, over) the
higher numbered sprite. Since the aircraft should pass in front
of the tower, it should have a lower sprite number for each of
its three configurations (line 610).

To set up a list of sprites, first number the lines on a sheet
of paper from 32 to 143. Then beside each number, write
what set it belongs to (set 1 to 14). Since you may want to use
letters or numbers in a screen display at the same time, mark
out ASCII numbers 48 through 57 and 65 through 90. The
remaining ASCII numbers can be used to define special
characters for graphics and sprites.

For sprites, using CALL MAGNIFY(4), select four sequen-
tial numbers starting at one of the numbers divisible by four.
Now you are ready to use CALL SPRITE.

CALL CLEAR will not remove a sprite from the screen.
To completely clear the screen, you must also use CALL
DELSPRITE (line 1350).

271

Sprites e W PSR TR

Sprites in Motion

Now that the sprite has been created, there are two ways of
moving it around the screen. Let’s call these two methods ab-
solute and relative. The absolute method uses exact row and
column positions via the CALL LOCATE command. The rel-
ative method uses row and column motion values via the
CALL MOTION command.

The absolute method uses a loop with CALL JOYST to in-
crement row and column variables, and then a CALL LO-
CATE to move the sprite one step each time the loop is
executed. This is analogous to nonsprite methods of anima-
tion. The drawback in using this method is that the sprite does
not move independently; the main program causes the move.
A modified form of this method is used for the stall subroutine
(line 1470) and the new approach routine (line 1380).

The relative method is similar, using a loop with CALL
JOYST to increment row and column motion variables which
are used in a CALL MOTION command. This allows the
sprites to continue moving independently of the main pro-
gram. By this method, the runway stripe is moved horizontally
only (line 680) and the aircraft vertically only (also line 680).

The sprite’s shape may be changed anytime during the
program by using CALL PATTERN to substitute a different
ASCII character number and therefore a different pattern,
When the fire button is depressed (line 1130), the aircraft
landing gear comes down (line 1190). The pattern is changed
again if the aircraft crashes (line 1720).

Testing for Game Conditions

During the operation of the program, it may become necessary
to test for certain conditions. For example, we see if the air-
craft has touched down on the runway (line 690), if the tower
has reached the left side of the screen (line 700), or if the air-
craft is going off the top of the screen (line 710). CALL
COINC is used to test for these conditions.

However, there is a problem with this method. Since the
main program tests for coincidence only when CALL COINC
is executed and since the sprite moves independently of the
main program, it is quite possible to miss an exact coincidence
when it occurs. For this reason a tolerance factor is included in
CALL COINC. So the test is really for a range of + or — tol-
erance. If the tolerance is too large, coincidence can be re-

272

I R B

i L TS 4T Sprites

turned too early. If the tolerance is too small, coincidence can
be missed altogether. How large the tolerance should be de-
pends upon two things: the speed of the sprite and the speed
of the loop which is testing for coincidence.

The test for the tower reaching the left side of the screen
is in both the main loop (line 700) and the stall loop (line
1480). The tolerance in the stall loop is much smaller because
the execution speed is so fast and the sprite moves so slowly
that coincidence is actually read twice before the sprite leaves
the tolerance range. Trial and error is the only way to find out
how large the tolerance should be.

However, after programming this game, it’s obvious that
very fast-moving sprites will require tolerance ranges that will
make arcade-style, fast-action games nearly impossible in Ex-
tended BASIC. The problem is that the coincidence test is ex-
ecuted from the main program. If it were part of the sprite
subprogram instead, it would be possible to keep the tolerance
very small.

CALL POSITION and CALL DISTANCE both suffer from
the same problem as CALL COINC. By the time a position or
distance can be computed and returned to the main program,
the sprite has moved elsewhere. But it's possible to stop the
sprite by using a CALL MOTION before using CALL PO-
SITION or CALL DISTANCE (line 1330), then to restart what-
ever motion is required.

Despite a few shortcomings, the sprite capabilities in Ex-
tended BASIC are remarkable. For true arcade-type play, ma-
chine language is still necessary, but Extended BASIC sprites
will carry the programmer a lot closer to this goal.

Runway 180

138 CALL CLEAR :: CALL SCREEN(S):: CALL COLO
R1.16.1.2,16,1,3,16,1.4,16,1.5,16,1.5.1
6.1.7.16.1,8,16,1)

1409 DISPLAY AT (16,.9):USING "RUNUWAY 188"

1S¢ FOR B=@ TO 30 STEP 2 :: CALL SOUND(-1#4.1
10,306,119, 36, 2506,36,-8.B):: CALL SOUND!
16,116,389, 116,30, 4600,34,-8,B) :: NEXT B

166 CALL CLEAR :: DISPLAY AT(1¢,9):USING "FR
ESS" :: DISPLAY AT(12,9):USING "I-FOR IN
STRUCTIONS"

179 DISPLAY AT(14,14):USING "OR" :: DISFLAY
AT{(16,9):USING "G-FOR GAME"

273

184
190
200
219

279

284

2949

339
3449
358
360

274

CALL KEY(@.K.S):: IF S<>t THEN 18a@

IF K=193 THEN 339

IF K=165 THEN 22¢

PRINT "ALPHA LOCK MUST BE OFF" :: FRIMT
:: PRINT "TRY AGAIN" :: FOR DELAY=1 TO &

gad :: NEXT DELAY :: GOTO 160

CALL CLEAR :: PRINT "YDOU ARE PILOTING &

JET" :: PRINT :: FRINT "ATRCRAFT WHICH H

AS BEEN " :: PRINT :: FRINT "CLEARED TQ0

LAND ON":

PRINT "RUNWAY 18@¢." :: FRINT :: FRINT =:
GOSUB 314

CALL CLEAR PRINT "USE YOUR JOYSTICK T

O CONTROL™ PRINT :: PRINT "SINK RATE

AND AIRSPEED. ": :

PRINT "JOYSTICK CONTROL-" : PRINT

PRINT "LEFT: ACCELERATE" :: PRINT "RIGHT
: BRAKE" :: PRINT "UF: DECREASE SINK RAT

Ell

PRINT "DOWN: INCREASE SINK RATE" :: PRIN
T

PRINT "FIREBUTTON CONTROLS LANDING" :: P

RINT :: PRINT "GEAR." :: PRINT :: FRINT
:: GOSUE 314 :: CALL CLEAR
PRINT "TO RECOVER FROM A STALL" :: PRINT

:: PRINT "INCREASE AIRSFEED AROVE &@."

:: PRINT :: PRINT "IF YOU CANNOT STOP BE

FORE": =)

PRINT "TOWER REACHES LEFT SIDE OF" :: FR

INT :: PRINT “SCREEN, INCREASE AIRSFEED"
t: FRINT

FRINT "“TO 6@ AND LIFT OFF FOR " :: PRINT
:: PRINT "ANOTHER PASS." :: PRINT :: PR

INT :: GOSUBR 314 :: CALL CLEAR

PRINT "YOU MAY HAVE FOUR PASSES" :: PRIN

T :: FRINT "AT THE RUNWAY..... " :: PRINT
:: PRINT "BEWARE OF THE WIND SHIFTS'" -

: PRINT :: PRINT

PRINT "GOOD LUCK!!'!'!" :: PRINT :t: PRINT
23 PRINT :: PRINT :: GOSUR 31 :: GO TO
I3

PRINT :: DISFLAY AT(24,1):USING "HIT ANY

KEY TO CONTINUE"
€ALL KEY(#,R8.S8):: IF S8<>1 THEN 329 EL
SE RETURN

Al=1
REM INITIALIZE
A=g =x: ==75 :: LGB=0 :: CALL SCREEN(2)

CALL CLEAR :: CALL CHAR(33,"FFFFFFFFFFFF
FFFF"):: CALL COLOR(1,8,1)

UL I D R

L R

-

B

N

620
636
&43

&S0
669
&76
689
690
708
719

720
739
744
759

760
776

LC=% :: FOR Z=1 TO 16 :: CALL HCHARI(Z,1,

33,32):: NEXT Z

CALL CHAR(42,"FFFFFFFFFFFFFFFF"):: CALL

COLOR(2,13,1)

FOR Z=17 TO 2¢ :: CALL HCHAR(Z,1,42,32):
: NEXT Z

RANDOMI ZE

REM DEF CHAR

CALL CHAR(96,"G0008G080FFFFFFFFFFFFFFFFag

SOPAGAPOGBOAOPFFFFFFFFFFFFFFFF"™)

CALL CHAR(124,"@a30181C3IF1FA70a")

CALL CHAR(121,"060660")

CALL CHAR(122,"d000000B88FCFF8080")

CALL CHAR(123,"@00@a006")

CALL CHAR(104," 0000060087 1F1S1F")

CALL CHAR(10S,"@2@3836203838203")

CALL CHAR(166, "@000BOBSEGFBABF8")

CALL CHAR(167,"COa0CaCaa4gCaceco”)

CALL CHAR(124,"@003@181C3IFIFE7050008")

CALL CHAR(126,"000000@@FCFF888400@d")

CALL CHAR(125,"0060a060")

CALL CHAR(127,"0@3aaa@a8")

CALL CHAR(128,"0a0asa@aa21F3IREG")

CALL CHAR(129,"00000@@B0ESSEIOG")

CALL CHAR(130,"00G8a80886")

CALL CHAR(131,"000saaaa")

REM DRAW DISPLAY

CALL SPRITE(#1.96,2,186,1,8,8):: CALL CO

LOR(#1,16)

CALL SPRITE(#2,129,2.16,245,A,@):: CALL

COLOR (#2,.7)

CALL SPRITE(#3,164,.2,116,256,8,-2)

CALL MAGNIFY (4)

FOR CS=1 TO 4@ :: CALL LOCATE(#2.1%,CS):
: NEXT CS :: GOSUR 878

REM MAIN LOOFP

GOSUR 112¢ :: GOSUR 898

IF J=8 THEN &9

CALL MOTION(#1,8,E,H#2.8,8)

CALL COINC(#2,17¢,48,9,T)

CALL COINZ(#3,114,1,4,DA)

CALL COINC(#2,24@0,44,9,E):: IF E=-1 THEN
A=1 :: GOSURB 89% :: GOTO 680

IF DA=—-1 THEN 132%

IF T<>—1 THEN 668

CALL MOTION(#2,8,d)

IF A>1 THEN GOSUB 92% :: BGOSUB 946 :: GO
TO 1669

IF LG=¢ THEN 1660

GOTO 1769

275

780
7909
840
819
820
830
849
85a
860
870

88¢
899
9oa
910
2a
938
949
59

60
978
89

996
1000

1019
1929
1836
1¢14¢
18509
1866

1970

1084
1990
1164a
1110

1129
113@

276

REM UPDATE DISPLAY

IMAGE SINK RATE: ##4#
IMAGE RUNWAY ENDS ##4# YDS
IMAGE AIRSPEED: ##4#%

IMAGE TOUCH DOWN

IMAGE SINK RATE TOO HIGH
IMAGE AIRSPEED TOO HIGH
IMAGE CRASH LANDING

IMAGE STALL WARNING!

DISPLAY AT(1,18)SIZE(2¢):USING "ATTEMPT
NO. #":A1

RETURN .

DISPLAY AT(3,1@)S8IZE(29):USINGE 798:A

DISPLAY AT(S5,1@G)5IZE(2¢):USING 8id:-H
RETURN
DISPLAY AT(7,3)SIZE(2@):USING 83¢
RETURN
DISPLAY AT(7,5)SIZE{(2@)BEEF:USING 849
DISPLAY AT(9,5)5I1ZE(20):USING "ROUNCE" :
: RETURN
DISPLAY AT(9,5)81ZE(2¢):USING 850
RETURN
CALL HCHAR(7.5.33,27):: DISPLAY AT(9,5)5
IZE(20)) : USING 829
RETURN
DISPLAY AT(9,5)SIZE(2¢):USING "WARNING
n

DISPLAY AT(11,5)SIZE(24):USING 886:RE

RETURN

CALL HCHAR(7,5,33,27):: RETURN

CALL HCHAR(9,5,33,27):: RETURN

CALL HCHAR(11,5,33,27):: RETURN

DISPLAY AT(9,S)SIZE(2¢):USING "LIFT OFF
" :: CALL HCHAR(11,5,33,27):: RETURN

DISPLAY AT(3,14):USING "END OF RUNWAY ©®
t: DISPLAY AT(S,.1#):USING "NEW APPROAC

H" :: DISPLAY AT(7,14):USING "NECESSARY

RETURN

PRINT "THAT®S 5 PASSES AT THE" :: PRINT
:: PRINT "RUNWAY. TURN IN YOUK" :: FRI

NT :: PRINT "PILOT LICENSE AND PUT": =

FRINT "SOMEONE ELSE IN THE” :: FRINT :
PRINT "COCKFPIT" :: PRINT :: RETURN

DISFPLAY AT(7.9)BEEF SIZE(28):USING 8&¢
:: RETURN

REM JOYST/ LANDING GEAR

CALL KEY(1,RV,.S5T):: IF RV=18 AND LG=8 T

HEN 11948

Y
“

4

.

o

-3

L R R

3

1143

11508
1160
1179
11808
1199
1208
1210
1224
1236
1249
12506
1260
1270
128¢
1299
159@
1314
1320
1339

1346
1358
1360
1379
1389

1390
1480
1414
1420

1430
1440
1459
1469
147¢@
148¢@
1493

1569
1510
1520
1530
15409

1558
156a

2 Sprites

CALL J0OYST(1.X,¥):: IF X=¢ AND Y=% THEN
GOSUR 121¢ :: RETURN
A=A-Y/4 :: B=B+X/4

IF ABS(A) *127 THEN A=127%XSGN{A)

IF B>-S9 THEN 143¢

J=1 :: RETURN

CALL PATTERN(#2,124)

A=A+3 :: B=B+2@ :: LG=1 :: GOTO 1160

REM COMPLICATIONS

CP=INT(RNDX15)

IF CP=1 THEN B=B-1 :
IF CP=6 THEN B=B+1 :
IF CP=18 THEN A=A-1
IF CP=15S THEN A=A+1

J=8 :: RETURN

IF ABS(A) >127 THEN A=127%x8GN(A)

GOTO 1319

IF B<—-127 THEN B=-127

J=1 :: RETURN

REM NEW APPROACH

CALL MOTION(3#2,0,9):: CALL POSITION(#2Z,

R4,C4)

IF A1>4 THEN 1499

CALL DELSPRITE(#1,#3):: CALL CLEAR

GOSUB 1979

CALL PATTERN({(#2,128)

FOR X=C4 T0O 2S5 :: CALL LOCATE(#2,INT(R

4),X):: R4=R4-(R4/(235-C4)):: NEXT X

Al=A1+1 =: GOTO 349

CALL DELSPRITE(ALL):: CALL CLEAR

GOSUB 1499

FOR DELAY=1 TO 9@@8 :: NEXT DELAY :: GOT

0 1979

REM STALL

GOSUB 1119

CALL MOTION({(#2,0.9)

CALL POSITION(#2,5R,S5C)

CALL LODCATE(#2,SR,S0C)

CALL COINC(#2,17¢,406,2,7T)

CALL COINC(#3.119,1,2,DE)

EN Al=A1+1 :: GOSUB 87d@ :
1400

IF T=-1 THEN 1466@

SR=SR+4

CALL KEY(1,RV,ST)

IF RV=18 AND LG=1 THEN 14619

CALL JOYST(1.X.Y):: IF X=0¢ AND Y=¢ THEN
1470

B=B+X/4

REM

G6TO 1369
GOTO 13404
: GOTO 1280
: GOTO 128¢

:: IF DE=-1 TH
: IF A1>4 THEN

277

Sprites

15798
1580
1599
1603
1614
1620
1630
1649
1659
1660
1670

168¢
1693
1706
1714

1720
1730
1749
17548
1760
177¢
1784
1794
1803
i81¢
182a

183a
1843

185a

1863
1870

1889
189a

189S
1999
191g
1929
1930
19249

19508
1960

278

IF B<{-468 THEN 14649

CALL MOTION(#1,4,B)

GOSUB 89a

GOTO 1479

CALL PATTERN(#2,120)

A=A-3 :: B=B-22 :: LG=g

GOTO 1569

GOSUB 1939

RETURN

REM CRASH

CALL MOTION(#1,0,.9,#2,0,0,.#3,0,0,.4#4,0,0
)

CALL SOUND(149@6,-7,9)

FOR P=1 TO 19

CALL SCREEN({(2)

CALL SCREEN(16):: NEXT FP :: CALL SCREEN
(2)

CALL PATTERN(#2,128)

FOR DELAY=1 TO 460@ :: NEXT DELAY

CALL DELSPRITE(ALL)

GOTO 1974

REM TOUCHDOWN/BRAKE/T&G

GOSUR 984 :: IF B<-S3 THEN 194g

CALL J0OYST(1.X,Y):: B=B+X/2

IF B>—-1 THEN 188¢

CALL MOTIONC(#1,9,R)

€CALL COINC(#3,110,1,4,DA)

IF DA=-1 THEN RE=¢ :: GOSUB 181¢ :: GOT
0 1669

CALL DISTANCE(#3,116,1,R0)
RE=INT(SQR(R@)):: GOSUB 1¢g¢g@ :: GOSUB 9
g

CALL KEY(1,RV,ST)
THEN GOSUER 10460 -
GOTO 1784

€AalLL MOTION(#2.A.0):: FOR DELAY=1 TO 26
@ :: NEXT DELAY :: GOTO 650

REM SCORING

CALL MOTIGN(#I,ﬂ,@,#Z,Q,Q,#3,ﬁ,ﬂ,#4,@,@
)

FOR DELAY=1 TO 8¢9 NEXT DELAY

CALL DELSPRITE(ALL) CALL CLEAR

PRINT “CONGRATULATIONS '": :

PRINT "YOUR SCORE IS :"; (RE/A1)X1¢: =
GOTO 199g

A=A-2 :: CALL MOTION(#2,A.9):: GOSUE 94
a

FOR DELAY=1 TO 28 :: NEXT DELAY

A=A+2 :: GOSUR 103@¢ :: GOSUER 164¢@ :: GO
TO 659

: IF RV=18 AND B<-&@
A=A-2 :: GOTO 1870

3

s

S B B

L

I R R

N R

197¢@
19849
1999
2000
2010
2020
2038
2044
20509

REM PLAY AGAIN

CALL CLEAR

PRINT "PLAY AGAIN (Y/N)?"
CALL KEY(2,RV,5V)

IF Sv=¢g THEN 20449

IF RV=135 THEN 2035@

IF RV=18 THEN 338

GOTO 1999

END

Sprites

279

S R

Utilities

7

H] { (}
..- \ - ! . ,. _..

.._-i.ﬂ-iL

. Eene Em e

3 7

sos———— Patrick Parrish

Now you can catalog and delete files on your TI-99/4A disks
from BASIC. And you can print the catalog. Runs in Console
or Extended BASIC.

Although the TI-99/4A has a DELETE command in its BASIC,
its disk operating system (DOS) lacks a cataloging command.
To overcome this limitation, TI provides the Disk Manager
Command Module with its disk systems. Both delete and cat-
alog options are available with this ROM cartridge.

Unfortunately, using this cartridge is not particularly
convenient. First, you must shut down your system, insert the
cartridge, and then power the system back up again. Even
then, a number of keystrokes may still be required to execute
the delete and catalog options. For instance, if you're unsure
of the names of the files you wish to delete, you must se-
quence through all the files on your disk from within the de-
lete option. Alternately, you can run the catalog option,
carefully record the names of files for deletion, and then re-
turn to the delete option. Either way, this is a slow and labori-
ous process.

If you happen to be programming in Extended BASIC,
this is an additional annoyance. Replacement of the Extended
BASIC Module with the Disk Manager Command Module is
not only a time-consuming interruption, but it also puts a lot
of wear and tear on the motherboard cartridge connection.
Eventually, you may even begin to experience shorting prob-
lems at this interface.

It's possible to delete a file and catalog the disk entirely
from BASIC. First, you can delete a file with DELETE
“DSK1.FILENAME". Then, you can catalog the disk with a
BASIC program provided in the TI Disk Memory System
manual.

But this approach is also somewhat tedious. Again, if you
are unsure of the names of the files you wish to delete, you
must first run the cataloging program and carefully record
each filename.

283

Utilities armmmmmmm—

Of course, you can combine these two methods. For in-
stance, you can DELETE from BASIC and then catalog the
disk with the Disk Manager cartridge or vice versa. But again,
there is little, if any, advantage in this.

An Easier Way

Structured much like TI's BASIC catalog program, “‘TI Disk
Deleter” combines the delete and catalog functions in a single
program that runs in Console or Extended BASIC. |

When run, the program immediately prompts you for the
number of the drive you wish to access. If you have only a
single drive, this drive is usually referenced as Drive 1. Enter
the appropriate number and the drive will begin to whir as the
directory is read.

Once the directory has been read, the disk name, the
amount of disk space used (in sectors where 1 sector = 256
bytes), the amount of free disk space (also in sectors), and the
page number (filenames may occupy as many as four screens)
are printed at the top of the screen. Then, a series of filenames
are printed in a two-column format. Protected files, or files
which cannot be erased or written over, will appear with an
asterisk before their names.

Next, a menu with several handy options is given at the
bottom of the screen. The six options in this menu—Advance,
Back, Kill, Print, Catalog, and Quit—are called by typing their
first letters.

The Options
At this time, a pointer (an arrow-shaped character) will be po-
sitioned next to the first filename on your screen. This pointer
is used to indicate which file will be purged when you execute
the Kill function. Move this pointer to any other filename with
the arrow keys (E, S, D, and X). When the pointer is next to
the file you wish to delete, press K.

After you press K, you'll be asked ““Are you sure ?”’ Press
Y (for yes) to delete the file. The filename will disappear from
the screen once the file has been deleted. Press N (for no) to
abort the deletion and return to the menu. If the file is pro-
tected, you cannot delete it without first changing its status to
unprotected with the Disk Manager Command Module.

The Advance and Back options are used to move forward
and backward through pages of filenames. If you happen to be

284

N U N R

S B R

A

A

1 7

13

3

[e e ek P Utilities

on the last page of filenames and press A for Advance, nothing
will happen. Likewise, if you are on the first page of filenames
and press B for Back, nothing happens.

The last three options are very straightforward. Print
sends a list of the remaining files on the disk (original catalog
minus deleted files) to the printer—you‘ll have to adjust line
390 to suit your printer. The filename, the size of each file (in
sectors), the file type (see below), and its status (protected files
are indicated with a P) are given. The Catalog option catalogs
any disk in the drive. So, you can clean up all your disks at
one time without rerunning the program. The last option,
Quit, simply ends the program.

File Types and Program Description

Up to 127 filenames and information on each file are read in
from disk in line 700. Filenames are read in as A$(I). Each file
type is represented as E(I). The five file types are defined in
lines 100-150 as X$(I).

The first four file types are used to store data in records.
Data in these files is stored either in binary (INTernal) or
ASCII format (DISplay). Also, each record in these files is
either FIXed or VARiable in length.

If the value of E(I) is negative, the file is protected. (Only
with the Disk Manager Command Module can the protect sta-
tus be removed.) Next, the length of each file (in sectors) is
read as F(I). And finally, G(I) is the record length of files used
for data storage.

TI1 Disk Deleter Program Structure

Lines

100-190 DIMension and initialize variables

210-240 Subroutine to PRINT at any screen position

250-380 Subroutine to INPUT and PRINT general disk
information

390-470 OPEN printer file, define character and set color codes

490-550 Clear out prior filenames

680-730 Routine to INPUT directory information

840-1180 PRINT each page of filenames

1190-1710 Main loop

1210-1450 Pointer movement

1460-1590 Scroll screen

1630-1650 Routine to catalog

1670-1690 Quit program

285

T

U tiliti €S T

1720-2040 Routine to DELETE file
2050-2240 Printer routine

Disk Deleter

100 DIM A$(127) ,E{(127),F {127, G(127).HE(127)

. PAGE (4)
119 X46<{1)="DIS/FIX"
128 X$(2)="DIS/VAR"
130 X$(3)="INT/FIX"
148 X${(4)="INT/VAR"
158 X$(35)="PROGRAM"
168 PAGE(1)=1
170 PAGE(2)=37
189 PAGE(3)=73
190 PAGE(4)=109
2906 6070 39¢
219 FOR T=1 TO LEN{R$)

220 CALL HCHAR(PROUW,PCOL+T.ASC(SEG$(R$.T,1))

)
238 NEXT T
2408 RETURN

259 OPEN #1:"DSK"&STR&(M)&". ", INFUT

E. INTERNAL
268 INPUT #1:B%$,C.C,A
274 IF D=# THEN 380
286 PROW=1
2908 R$=STR$(C-A)

306 CALL HCHAR(PROW.21,32,3)

319 PCOL=23-LEN(R%)
320 GOSUB 219
338 R$=STR% (A)

348 CALL HCHAR(PROW.28.32.3%)

350 PCOL=30-LEN{(RS$)
360 GOSUB 214

376 D=¢@

384 RETURN

385 REM CHANGE THE FPARAMETERS IN LINE
(SEE YOUR MANUAL)
396 OPEN #2:;"RS232.BA=9484.FA=N.DA=8"
489 CALL CHAR(128."¢8@CAEFFFFAEACHB")

SUIT YOUR PRINTER

416 CALL CHAR(13&6,."")
426 CALL COLOR(14,.1.1)
434 CALL CLEAR

443 CALL SCREEN(9)

4568 FOR I=9 70O 12

469 CALL COLOR(I,Z2.1)
479 NEXT 1

4890 IF FL=0 THEN 5&4

286

LRELATIV

S

3

I B R

490
SO0
Si¢
S20
S39
540
SS@

S6a

S7¢6
S58¢
S9@
=315
619
620
639
6403
650
-Y-¥7}
o748
689
N4
788
710
729
730
749
750
760
779
789
799
809
814

824
839
849

859
860
879
884d
899
9ag
910
920
939
940

e Utilities

PRINT "...CLEARING OLD FILENAMES"
FOR I=1 TO 127

AE(Iy=""
NEXT I

FL=9¢

cAaLL CLEAR
GOTO S57¢
PRINT TAR{(&)

HI=2

PRINT " DRIVE NUMBER (1-3¢(,> ? "3
CALL KEY(@,K,S)

IF (S=8)+{(K<{49)+(K>S1))THEN 599
M=K-48

CALL CLEAR

CALL SCREEN(15)

FOR 1=9 TO 12

CALL COLOR(I,16,1)

NEXT I

GOSUB 258

PRINT TAB(3):"...READING DIRECTORY"
FOR I=1 TO 127

INPUT #1:A$(I),E(I1),F(I),G(I)

IF LEN(AS(I)) <> THEN 738

1=127

NEXT I

sSC=1

LAST=26

=1

ROW=3

coL=3

CALL CLEAR

CALL SCREEN((SC+1)%2+1)

PRINT "DSK:":B$;TAB(16);:"U:"; TAB(21-LEN(
STR${(C—A)))3;C-A3; TAB(23) ;"F: "; TAB(28-LEN(
STR${(A))):A

PRINT TAB(21);"PAGE #";SC;

IF AS=1 THEN 858

IF (LEN(AS(IN)I=0)+((I=37)+(I=73)+(1=189)
) THEN 959

AS=0@

PRINT TAB(1);CHR$(136);

IF E(1)>=0 THEN 896

PRINT "%x";

PRINT TAB(3):A$(I);TAB(15);CHRS(136);
IF E(I+1)3>=6 THEN 920

PRINT "%x";

PRINT TAB(17):A$(I+1)

I=1+2

6O0TO 040

*TI DISK DELETER": :

287

Utilities =

EA=17]

63

7%

8¢

?9d

1aae
1a140
1@2a
1a3¢
1040
1a5a
160
16873
1a8a3
1a1949
1109
1119

1126

1130
1144
1159
116@
117a
1189
1190
i20a
1210
1224
1230
1243
1259
12690
1279
1289
1299
13a9
13140
1329
1330
1344
1359
1360
137@
158a@
1399
1400
1419
1424

288

HI=INT((I1-2)/36+1)
ON HI GOTO 976,999,14140, 1038
DIFF=37-1
GCOTO 1449
DIFF=73~-1

GOTO t¢40
DIFF=149-1

GOTO 1940
DIFF=145~-1
HI=HI+1
U=INT{(DIFF/2)
LAST=2d¢-U

FOrR O=1 TO U
PRINT

NEXT @

PRINT

PRINT "Advance{3 SFACES}Back{7 SPACESIK

it1l”

FRINT "Print{6 SPACES}Catalog

{5 SPACES>Ruit”

PRINT " (USE ARROW KEYS TO MOVE) ":
ODD=¢

IF LEN(A$S(I-1))<>9 THEN 118%d

CALL HCHAR(Z+(I-({(SC-1)%x3I&6)-1)/2,17.32)

ODD=1
CALL HCHAR(ROW.COL..128)
CALL KEY(@,k.S)

IF S=¢ THEN {393

IF K<369 THEN 1298
OLDROW=ROW

ROW=ROW-1

CALL GCHAR(RDW,COL, Q)

IF @=136 THEN 127@
ROW=LAST-(ODD=1) ¥ (COL=17)
CALL HCHAR (OLDROW.COL, 134)
GOTO 1709

IF (K<>68) % (K<3>83)THEN !384
OLDCOL=COL

COL=2¢-COL

CALL GCHAR (ROW,COL.8)

IF @=136 THEN 1344
COL=2¢-COL

GOTO 119

CALL HCHAR(ROW,OLDCOL.136)
GOTO 1799

IF K<>88 THEN 1466
OLDROW=ROW

ROW=ROW+ 1

CALL GCHAR(ROW,COL ., @)

IF @=136 THEN 1440

NRE

-3

S B B

B

L

o

.

FM

g

1430
1440
145a
1460
1479
148¢
1499
1590
1510
1529
15348
1543
1559
1564
1579
1589
1594
1600
1610
1620
1630
1649
1650
1668
1670
1683
1690
1706
1719
1724
173
17490
1750
175653
1770
178¢
1794
184%
igta
1829
1834
1849
13850
18640
ig7d
188¢
1894a
1900
1910
1920

ROW=3

CALL HCHAR (OLDROW.COL,136&)

GOTO 17488

IF K< >»65 THEN 13524

AS=1
SC=SC+1

IF (SC<=HI)&(LENC(AS(I)) < :¢) THEN

S€=5C-1
GOTO 1199

IF Kd<=66 THEN 14604

AS=1

SC=5C-1

IF SC=¢ THEN 158¢
I=PAGE (SC)

GOTO 7749

sSC=1

GOTO 1194

IF =75 THEN 172¢
IF ¥=8% THEN 24354¢
IF K<367 THEN 162
CLOSE #1

1]

FL=1

GOTO 473%#4

IF K81 THEN 1194
CLOSE #1

CLOSE #2

STOF

CALL HCHAR(ROW,COL.128)

GOTO 1198

77

J=(8C—-1) %36+ ((ROW-2)%2-1)-{(COL=17)

IF E(J3)<=¢g THEN 1
Ci:" "
FOR 7T=2 TO 11

1949

CALL GCHAR(ROW,.COL+T,2)

IF (Z<>3T2)+(TC22)THEN 1810
T=11

FL=1

GOTO 1854

IF Z<>32 THEN 1849

T=11

GOTO 1854
Cs=CHs&CHR®(Z)
NEXT T

IF FL=@ THEN 139d¢
FL=@

GOTC 1194
PROW=21

PCOL=S

R$="ARE YOU SURE
GOSuUB 214

(Y/N)?M

a Utilities

289

Utilities er—mremmmrmmrgm

1939
1944
1950
1960
1974d
1980
1990
2000
2914
2a20
2630
2049

2050

2060

207
2080
2099
2196
2119

2120

2138
2149
2150
2160
21703
2189
2190
2209
2210
22246
2234
2240

290

CALL KEY(®,£,.S)
IF S=@# THEN 193¢

IF (K<3>78) % (K<>B9) THEN 193@

CALL HCHAR(21,5,32,28)

IF K<>89 THEN 1198

D=1

DELETE "DSK"%STR3(M)&"."%C%

CLOSE #1

GOSUR 258

CALL HCHAR(ROW,COL+2,32, 1)

As(J)="

GOTO 1199

PRINT #2:"DSK":STR$(M); TAK(8) ; "DISKNAME
: ":B$:"FREE= ";A;"{8 SPACES3}USED= ";C

-A

FPRINT #2:" FILENAME SIZE{(4 SPACES:TYPE
{4 SPACES}ST":"———m——————m ——— e

FOR J=1 TO 127

IF A$(J)=" " THEN 2284

IF LEN(A$(JI)) <@ THEW 2129
J=127

GOTO 22499

PRINT #2:A$(J):TAB(12);F(J);TAB(19) 3 X% (
ABS(E<J))) ;

IF ABS(E(J))=5 THEN 216#%

We=" "LETRE(G(JI))

PRINT #2:SEG$(WH.LEN(WS)-2,3);
IF E(J)<eg THEN 219¢

PRINT #2

GOTO 2290

PRINT #2:TAR(28);"fF"

NEXT J

FOR Jd=1 TO S

FPRINT #2

NEXT J

GOTO 1199

-

B B A |

D R

-}

A

Ui

Raymond].

This menu-driven utility lets you update, list, search, delete,
sort, and print a directory of the files on your disks. It also
displays the number and length of files, and the remaining
free sectors per disk. Extended BASIC, disk drive, and 32K
memory expansion are required.

’Master Disk Directory,” for the TI-99/4A, requires the
following system configuration: Peripheral Expansion box, Ex-
tended BASIC command module, disk controller card, at least
one disk drive, and 32K memory board. For those who have
this system, this program provides an easy way to keep track
of the various disks and the programs and files you have
stored on them. Anyone who has a library of 20 or more disks
and a hundred or more programs knows the headache involved
in trying to keep track of where a particular program is.
Master Disk Directory maintains a catalog of all your
disks and the programs and files stored on them. This pro-
gram lets you display a list of all your disks, showing how
many files and how much free space is available on each. You
can also display a list of all your programs and files, indicating
how large they are and identifying the disk on which they re-
side. You can search the directory by disk number or program
name. You can also sort the directory in program name se-

m quence, list the directory on a printer, delete the entries for a
particular disk, and update and save your directory, which will
hold data for up to 50 disks and 450 programs and files.

Main Menu Options

When the program is first run, the main menu listing all avail-
able functions is displayed. Figure 1 shows the format of this
menu. Simply type in the appropriate number for the option
you choose. The program provides prompts for easier use.

291

Utilities s

Figure 1. Disk Directory Menu

1—LOAD CURRENT DIRECTORY

2—ADD NEW DISKS TO DIR.

3—LIST ALL DISKS IN DIR.

4—LIST ALL FILES IN DIR.

5—SEARCH DIR. BY DISK #

6—SEARCH DIR. BY FILENAME

7—DELETE DISK # FROM DIR.

8—SORT DIR. BY FILENAME

9—SAVE NEW/UPDATED DIR.
10—PRINT DIRECTORY SELECTION—>

1—Load current directory. This first option allows you to
load an existing disk directory into the computer’s memory. It
assumes that a directory exists with the default filename
DSK1.DISKDATA which is created by the SAVE option (9).
This operation will overlay any directory currently residing in
memory. To insure that a directory in memory is not in-
advertently destroyed, you will be asked to verify loading of
an exiting directory.

2—Add new disks to directory. This allows you to place
information for new disks into the directory file. This option is
used when a directory file is initially created, or when new
disks are to be added to the directory. The program will
prompt you to indicate which drive is to be used to load the
disks. Once this is established, you will be instructed to insert
a disk into the assigned drive. The program will then display
the name of that disk and ask you to enter its number (1-50).
If you enter 00 the program will return to the menu.

You must number your disks consecutively. You must
have cataloged disks 1 to 5 before you number a disk 6. If you
are adding to an existing directory, it is best to follow this
procedure: From the menu, load the current directory (option
1), list all disks in directory (option 3) to find out how many
disks you have already cataloged, use this information to
determine the next available disk number, then go to the
menu and select option 2.

3—List all disks in directory. This option displays a list
of all disks currently in the directory. The display includes the
disk number and name, number of files on the disk, and the
number of available sectors on the disk. The format of this
display is shown in Figure 2.

292

;L

&

3

3

1

e

== Utilities

Figure 2: Disks on File

SECT
NAME FILES FREE
1 WORKDISK 7 256
2 RHSOFTWARE 1 102
3 EDITASSMWK 5 252
4 ASSMDEBUG 7 94
5 ASSMGAMES2 3 301
6 CJFMASTER1 8 158
7 E/A 1 1
8 E/A*PARTB 9 5

PRESS ENTER TO CONTINUE

4—List all files in directory. This displays a list of all
files (data files and programs) in the directory. For each file,
the display provides the filename, file type, file size in sectors,
and the disk number on which the file resides. If a particular
filename exists on more than one disk, it will be listed the
appropriate number of times. This can be helpful in reducing
redundancy and, consequently, increasing available storage
space. It is helpful if the filenames have first been sorted
alphabetically. Figure 3 shows a typical screen display for this
option.

Figure 3: Files in Directory

NAME TYPE SIZE DISK
ARTICLES PROGRAM 30 11
ASSM1 PROGRAM 33 3
ASSM1 PROGRAM 33

ASSM2 PROGRAM 20 3
ASSM2 PROGRAM 20 7
BACHMUSIC PROGRAM 31 2
BARCHARTS PROGRAM 31 6
BARRICADE PROGRAM 30 10

PRESS ENTER TO CONTINUE

5—Search directory by disk #. This allows you to search
the directory file by disk number. It will generate a display
similar to Figure 3. However, the list will contain only those
files on the indicated disk number. This is useful for determin-
ing which files are on a particular disk.

6—Search directory by filename. This allows you to
search the directory file for a particular filename. It will dis-
play the disk number and name on which the requested file

293

Utilities ==

D T TRy SRS S

resides. This is useful when you want to locate a particular file
or program, but don’t remember which disk it is on. The
search routine will handle a generic argument. For example, a
search argument of ASSM will display the location of ASSMA,
ASSMB, ASSMSORT, and so on. This way you can find the
location of a program even if you don’t remember its exact
name.

7—Delete disk # from directory. This option allows you
to delete all data for a particular disk from the directory. The
program will display the disk name and ask if you are sure
you want to delete it. If you respond with Y, all information
for that disk is erased. The filenames deleted will be displayed
on the screen.

This option has two main purposes. First, it can be used
to delete information for a disk which has been erased or de-
stroyed. Second, this option in conjunction with the add op-
tion (2) can be used to easily update the directory periodically.
For example, if disk 5 has had files added, changed, or deleted
since the last directory update, you would do the following:
delete disk 5; invoke the add option (2) and put disk 5 into
the appropriate drive; invoke the sort routine (8). The direc-
tory would then be updated to reflect any changes to disk 5.
Of course, you can update more than one disk at a time this
way. You would only need to invoke the sort routine once at
the end. Since deletion creates “holes” in the directory array,
an array compression routine is automatically invoked after
the delete function is complete.

8—Sort directory by filename. This option alphabetically
sorts the directory file by filename. The routine involves a
BASIC sort and is therefore the slowest function in the pro-
gram. Just so you don’t think the machine has bogged down,
the routine will continuously display the number of sort
passes remaining. In my own tests, the program took 13 min-
utes to sort 220 records.

: 9—Save new/updated directory. This will save the
newly created or updated directory file on a disk. The direc-
tory will be saved with the default filename:
DSK1.DISKDATA. The file may then be referenced or updated
at a later time.

10—Print directory. This provides a hard copy list of the
directory. The print routine is set up to use a parallel printer.

294

3

1

L S

Utilities

If you are using a serial printer or have different parameters
than mine, you will have to change the OPEN statement in
line 10015.

Master Disk Directory

19 DIM D&(S@) Fs(4ae) , TFH(3)

290 TF${(1)="DIS/FIX" :: TF$(2)="DIS/VAR" ::: T
FE(II="INT/FIX"” :: TF&(4)="INT/VAR" :2: TF
$(S)="FROGRAM"

@ D=g :: F=¢

168 CALL CLEAR :: CALL SCREEN{6)

116 CALL CHAR(9&,"FFFFFFFFFFFFFFFF™)

112 CALL CHAR(112,"EJE@FFFFFFFFFFFF")

113 CALL CHAR(1240,"@@FFFFFFFFFFFFa@")

115 CALL CHAR(184,"@1871F3F3IF7F7FFFFF7F7FIF3
FIFB701BPEBFSFCFCFEFEFFFFFEFEFCFCFBE@BH "
)

126 CALL COLOR(9,2,2)

13¢ FOR L=1¢ TO 18

135 CALL HCHAR(L,12,95,9)

140 NEXT L

1S@ CALL SPRITE(#1,144,.6,188,115):: CALL MAG
NIFY (3)

160 CALL HCHAR{14.13.112.1)

176 DISPLAY AT(3,11):"D I S K" :: DRISFLAY AT
(S.6):"D 1 R EC T OFR Y"

19¢ DISPLAY AT(22,3):"FRESS ANY KEY TO REGIN

2@3@ CALL KEY{(3.K,S5T):: C=C+1 :: IF C=2¢ THEN

DISFLAY AT(24.1):RFTS(" », 28

282 1IF C=44 THEN C=¢ : GOTO 199

295 IF ST=@¢ THEN 2dd

21¢ CALL DELSPRITE{(#1)

Seg CALL CLEAR :: CALL SCREEN(14)

S18 DISPLAY AT (1.2):"%x DISK DIRECTORY MENU
**Il

S29 DISPLAY AT{4.1):"1 - LOAD CURKRENT DIRECT
OoRY™

S3¢8 DISFLAY AT(&6,1):"2 — ADD NEW DISKS TO DI
R."

S4@ DISPLAY AT(8.1):"3Z - LIST ALL DISKS IN D
IR. n

S55S8 DISPLAY AT(1d,13:"4 - LIST ALL FILES IN
DIR."

S68 DISPLAY AT(12,1):"S - SEARCH DIR. EY DIS
K #"

S78¢ DISPLAY AT(14.1):"6 - SEARCH DIR. RY FIL
E NAME"

295

Utiliti

579

615
&2%

999
1600
181

1320
1930

1340
1450

19&9
1160

1145
1114
1120
1134
11440
1156
1169
1189

1185
119¢@
1199
2006
2085

2019

2015

296

S ===

DISPLAY AT{1&,1)
DIR."
DISFLAY AT(18,1):"8 - SORT DIR. RY FILE
NAME"
DISFLAY AT(28,1):"92 — SAVE NEW/UFDATED D
IR. 1]
DISPLAY AT{22.1):"184- PRINT DIRECTORY"™
DISPLAY AT{(24.4):"SELECTION--—-=3" :: ACC
EPT AT(24.19)SI1ZE(2)VALIDATE(NUMERIC)REE
F:8

IF 5*1¢ OR S+<1 THEN &14¢
ON S GOTO 1@@@,2@@@,3%@@,4@@@,SQQﬂ,6@@@,
700 ,800%, 9000, 1 BHHG
GOTO Sag

CALL CLEAR :: CAlLL SCREEN(S8)

DISFLAY AT(4,1):"THIS OFTIOM WILIL LOAD
THE"

DISPLAY AT(&,31):“DIRECTORY FILE FROM DI
SE.

DISFLAY AT(8.,1):"1T WItL. OVERLAY ANY FI
LEIS

DISFPLAY AT (1d,1): "CURKENTLY IN MEMORY."
DISFPLAY AT(14,1):"L0AD DIRECTORY FILE (
Y/M)? " :: ACCERPT AT{(13,28)YVALIDATE("Y
N")SIZE{-1)REEF:0%

IF O%="N" THEN Sg¢

OPEN #2:"DSK1.DISKDATA". INPUT . INTERMAL
.FIXED 249

INFUT #2:MD,NF

FOR L=1 TG ND

INPUT #2:Ds (L)

NEXT L

FOR L=1 TO NF

INPUT #2:F&s (L)

NEXT L

DISPLAY AT (28,13 :"DIRECTORY FILE LOADED
" :: DISFLAY AT (22,1):"PRESS ANY KEY FO
R MENU"

CLOSE #2

CALL KEY(3,K,S5):: IF S=¢ THEN 119¢

GOTO Sa¢

CALL CLEAR :: CALL SCREEN(8)

DISFLAY AT(4,1):"DISKS WILL BE PLACED I
N” =z: DISPLAY AT(6,1):"DRIVE 1. 2 OR 37
" :: ACCEPT AT (6,18)VALIDATE("123")SIZE
{1)BEEP:N :: CALL CLEAR

DISFPLAY AT(4,1):"INSERT DISK AND PRESS
ENTER"

FOR L=1 TO 146 :: NEXT L

"7 - DELETE DISE # FROM

.

L

;.

R

-

A

)

2043
2650
2060

2062
2865
2076
2080

2685
2090
2695
2397
2108

2185
211a
2129
213¢@
2140

2159

I@19
3920
S22
3825
IB3B

a Utilities

CALL KEY{Z.K.S):: IF K<{>13 THEN 2420
OPEN #1:"DSK"%STR$(N)&".",INPUT ,RELATI
VE. INTERNAL

INPUT #1:A%.1,J,A

DISFLAY AT(1@,1):"DISKNAME: ";A%$
DISFLAY AT(12,.1):"ENTER DISK NUMBER:
" :: ACCEFT AT(12,28)VALIDATE (NUMERIC)S
1ZE(-2)BEEF:DN

IF DN=@@ THEN CLOSE #1 :: GOTO Sag

IF DN3>S@ THEN 2850

IF D$(DN)="" THEN 214

DISFLAY AT(16,1):"DISK NUMBER ALREADY U
SED" :: DISFLAY AT(18,1):"FRESS R TO RE
TRY" :: DISPLAY AT(19,1):"PRESS M FOR M
ENU"

CALL KEY(3,K,5):: IF S=¢ THEN 2085

IF ¥=82 THEN CALL CLEAR :: GOTO 205%

IF K=77 THEN CLOSE #1 :: GOTO S@8

GOTO 2685

DN$=A$L(RFTS (" ", 1F-LEN(AS))I I :: AVE=RFT
(" ",I-LEN(STR$(A)})IEETRE (A?
C=a¢

FOR L=1 70 127

INPUT #1:A4%.1.J,K

IF LEN(AS)=3 THEN 22404
C=C+1 :: NF=NF+|

N$=ASLRPTS (" ", 1@#-LEM(A$Y):: SE=RPTH ("
" Z-LEN(STR${(I))I1&STHR&(J):: TE=STR$ {AES
(I)):: DD&=RPT&(" ",2-LEN(STR$(DN)))%ST
R& (DN)

F$ (NF)=N$L5sLTSLDD%

NEXT L

NF$=RPT$ (" ",3-LEN(STR$(C)))LSTR$ (L)

D% (DN)=DN$XAVSELNF S

CLOSE #1 :: ND=ND+1

DISPLAY AT(1&6.1):"DISK CATALOGED" :: DI
SPLAY AT{18.1):"FRESS A TO ADD ANOTHER

DISK"™ :: DISFLAY AT(12,1): "FREES M FOK

MENU ™

CALL KEY(3,K,S):: IF S=¢ THEN 222

IF K=65 THEN CALL CLEAR :: GOTQO 2010

IF K=77 THEN Sgd@

GOTO 2229

CALL CLEAR :: CALL SCREEN(8)

X=g

GOSUE T1ad

FOR L=1 TO S¢

IF D&s(L)="" THEN 3Id44

GOSUB 3394

DISPLAY AT (X%2+7,1; :USING "## #I3#44444
H#HHH {7 SFACESI HH#H#":L,DNS,NF$,AVS

297

Utilities Lo S S] AT

3IB3S
Jgqg9
3859
Ja6w
IP7 8
Ilaa
B]

S1249

3125
3139
I200
3210

3224
32349
240
IZ00
314
3320
3338
4aHg
L40BHS
4416
4a2%
4@22
4623
4 @340

BEH3G
40545
:37011]
4863
4a7 4
4106

4110

4115
4120
420¢
4210

4226
4239
4243
4364
431%
4329

298

X=X+1 :: IF X=8 THEN GOSUR Z2#@
NEXT L

DISPLAY AT(24,.1):"FRESS ENTER FOR MENU"
CALL KEY(Z,K.S):: IF KE<>17 THEN 34480
GOTO Sa@

DISPLAY AT(2.4):"%% DISKS ON FILE XX"
DISFLAY AT(4.24):"SECT"

DISPLAY AT{(S,i):" # NAME{7 SPACES!FILES
{4 SPACES}FREE"

CALL HCHAR(5.3,45,28)

RETURN

X =i

DISFLAY AT(24.1):"PRESS ENTER TO COMTIN
Ug"

CALL KEY(Z.K.S):: IF K<X1I THEN 3224
CALL CLEAR :: GOSUR Ztag
RETURN

DN$=SEG$ (D$ (L), 1, 1¢)
AYV$=SEG$ (DS (L) .11,3)
NF$=SEG$ (D% {l.) .14, 3)

RETURN
CALL CLEAR :: CALL SCREEN(IS:
X=0

GOSUR 4149

FOR L=1 TO NF

IF F$(L)="" THEN 4@4%

GOSUER 43@@

DISFLAY AT (X%2+7.1):USING “H#H48#88#8% #
HENHHY HBHH T SPACESIHH":NS, TFS (ARS (VAL ¢
T$))).S5%.DD%

X=X+1 :: IF X=8 THEN GOSUR 4260

NEXT L

DISPLAY AT(Z4,1):"PRESS ENTER FOR MENU"
CALL KEY(I,K.Z):: IF E<:>13 THEM 4@o6H

GOTO Sod
DISFLAY AT(2.3)
Xy

DISFLAY AT(4,1):"NAME(9 SPACESXTYPE SI
ZE DISK"

CALL HCHAR{S5,3,45,28)

RETURN

X=g

DISPLAY AT(24,1):"PRESS ENTER TO CONTIN
UE™"

CALL KEY(3.K.S):: IF K<>13 THEN 4229
CALL CLEAR :: GOSUR 4140

RETURN

NE=SEGS(F$ (L), 1,14)

S$=SEG$(F$ (L), 11,3)

T$=SEG$(F$(L) .14, 1)

"% FILES IN DIRECTORY

A

A 3

3k

B B R B

4

3

1 3

1

K

4250
4343
Saan
SOz
SO8S
SO10
S@15

So29
SOz22
SH23
S@24
SE25

SES9

5835
5040
5856
5060
5670
S160

S114

S115
S129
S200
S219

S220

= -
S23

5240
SSaa
SS519

S529

= Utilities

DD$=SEG$(F$ (L) . 15,2

RETURN

GOSUR SSa¢

CALL CLEAR :: CALL SCREEN(8)

X=0

GOSUER S1a@

IF D$(DN)="" THEN DISFLAY AT (12,1):"XX
NDO SUCH DISK # IN DIR. xx" :: GOTQ 5459
FOR L=1 TO NF

IF F$(L)="" THEN S#44

DWE=RET$ (" ".2-LEN{STR${(DN)))I&STR$ (DN)

IF DW$< >SEG$ (F$(L).15,2) THEN S¢40
GOSUER 4348

DISPLAY AT(XX2+7.1):USING "##5##48488 #
HHSHEE HNH (S SPACESIHH":N$, TFE (ARS (VAL (
T$))),.S%.DD%

X=X+1 :: IF X=8 THEN GOSUER S5244%

NEXT L

DISPLAY AT(24.1):"PRESS ENTER FOR MENU"
CALL KEY(3,K,S8):: IF K<313 THEN 5464
GOTO Sod

DISPLAY AT(2,3):"%% FILES ON DISK #":DN
=ll**ll

DISFLAY AT{(4,1):"NAME{9 SFPACESITYFE S1
ZE DISK"

CALL HCHAR(6.3,45.28)

RETURN

X=g¢

DISPLAY AT(24.1):"PRESS ENTER TO CONTIN
UE™"

CALL KEY(3.,¥,.S):: IF K<>»13 THEN 5224
CALL CLEAR :: GOS5UE 51448

RETURN

CALL CLEAR :: CALL SCREEN(&)

DISPLAY AT(4,1):"SEARCH DIRECTORY ERY DI
SK #"

DISFLAY AT(8,.1):"ENTER DISK # " :: AC

CEPT AT(8.14)VALIDATE (NUMERIC)SIZE (-

2)BEEP:DN

SS39
SSSe
LADG
6HA3
=301 1]
&B19
@23
&B22
&A24

IF DN<@1 OR DN:5@ THEN 552

RETURN

GOSUR 6509

CALL CLEAR :: CALL SCREEN(B)

X=@ =:: SW=a

GOSUR 6100

FOR L=1 TO NF

IF F&(L)="" THEN &84

IF SEG$(FW$.1.LEM(PWS)) < *SEGS(F$(L).1,L
EN(PWS$)) THEN &£343 -

299

Utilities m==

6033

6933
&340
6045

&350
686D
&B70
6109
6110

6115
6129
L2049
621%

&622d¢
6230
6249
&Soe
6519

&6S2a
6359

Taaan
7R14

7820

78348
7858

74355
79357
7839
7864

Ta7%
74898

300

DISPLAY AT(X%X2+7,1):USING "##
{3 SPACESIH#H##H4H#NBNSE HENNEHHBYS " : SEGS (

F$(L),15,2),SEGH (DS (VAL (SEG$(F$ (L), 15,2
))),1,16) ,SEBS(F$(L) ,1,18)

X=X+1 :: SW=1 :: IF X=8 THEN GOSUR &2¢d

NEXT L ,

IF SW=¢g THEN DISPLAY AT(12,4):"%x%x NO MA

TCH FOUND xx"

DISPLAY AT(24,1):"FRESS ENTER FOR MENU"

CALL KEY(3,K,S):: IF K<>13X THEN 6863

GOTO S@o

DISPLAY AT(2,.6):"SEARCH FOR ":FWs

DISPLAY AT(S.1):"DISK DISKNAME

{3 SPACES}FILENAME"

CALL HCHAR(&6,3,.45.28)

RETURN

X=g

DISPLAY AT(24,1):"PRESS ENTER TO CONTIN

UE ”n

CALL KEY(3,K,S8):: IF K<3>13 THEN 6220
CALL CLEAR :: GOSUB 6100

RETURN

CALL CLEARR :: CALL SCREEN(&)

DISPLAY AT(4,1):"SEARCH DIRECTORY RY FI
LENAME"

DISPLAY AT(8,1):"ENTER FILE NAME " :: A
CCEFT AT(8,17)SIZE(14)BEEF:FWS$

RETURN

CALL CLEAR :: CALL SCREEN(16)

DISPLAY AT(4,1):"THIS OFTION WILL DELET
E ALL" :: DISPLAY AT(46,1):"FILES FOR A
SPECIFIED DISK"

DISPLAY AT(8,1):"NUMBER." :: DISPLAY AT
(12.1):"DELETE DISK? Y/N _" :: Q$="" ::
ACCEFPT AT(10,18)VALIDATE("YN")SIZE{(~1)
BEEP: 0%

IF 0$="N" THEN Sg@g

DISPLAY AT(12,1):"DISK # TD BE DELETED?
__" :z: DEL=@ :: ACCEPT AT(12,23)VALIDA

TE(NUMERIC)SIZE(-2)BEEF: DEL

IF DEL=@@ THEN Sg¢

IF DEL>S® THEN 7859

IF D$(DEL)<>"" THEN 7188

DISPLAY AT(16.1):"%%x NO SUCH DISK # IN

DIR.” :: DISPLAY AT(18,1):"R TO RETRY -
M FOR MENU"

CALL KEY(3,K,S):: IF S=@ THEN 7674

IF K=82 THEN CALL HCHAR(16,1,32,32):: C

ALL HCHAR(18,1,32,32):: GOTO 74Sa@

L T I B

-

N

LN

N

)

11

T%

7485
7899
7100

7110

7115
712@

7139

7149
7159

7160
7179

7175
718¢@

7190
7200
721

7215

7229
7230
7249
7259
7269
7262
7264
7266
7270
7298
7366
7310
8aea
8a1d
8a2ae
8625
84340

Utilities

L et o T T T T)

IF K=77 THEN 7248

GOTO 79740

CALL CLEAR :: DISPLAY AT(2,1):"DISK TO
DELETE = "&SEG$(D$(DEL),1,18):: DISPLAY
AT(4,1):"DELETE? Y/N _"

0$="" :: ACCEPT AT(4,13)VALIDATE("YN")S
I1ZE(-2)BEEP:0% :: IF 0%="N" THEN 7200
IF 0$<>"Y” THEN 710@

CALL CLEAR :: DISPLAY AT(1.,4):"%x%x FILES
DELETED xx*"

L2=¢ :: D$(DEL)="" :: DELSTR&=RPTS(" ",
2-LEN(STR$(DEL)))&STR$(DEL):: XX=NF =::
DC=¢

FOR L=t TO XX

IF DELSTR$=SEG& (F$(L),15,2)THEN GOSUB 7
3883 :=:: DISFLAY AT(I+INT(DC/2).PC):8EG%$(
Fe(L),1.18);z2: Fe(L)="" :: DC=DC+t :: D
S=1

NEXT L

DISFLAY AT{24.1):"PRESS ANY KEY TO CONT
INUE™"

CALL KEY(3,K,S):: IF S=@¢ THEN 7175

CALL CLEAR :: DISPLAY AT(4,1):"DELETE A
NOTHER DISK? Y/N _" :: 0O%$="" :: ACCEPT
AT (4,26)VALIDATE("YN")SIZE(-1)BEEF:0%
IF O%="Y" THEN 78S¢

IF DS=¢g THEN Sa9

CALL CLEAR :: CALL SCREEN{(4):: DISPLAY
AT(B8,4):"AUTOMATIC COMPRESSION" :: DISP
LAY AT(14,6):"ROUTINE ACTIVATED"
DISFLAY AT(14,1):"-——-> PLEASE STAND BRY

———-
L2=@ :: XX=@
FOR L=1 TO NF

IF F&(L)Y="" THEN 72&¢

L2=L2+1 :: F$(L2)=F$(Lrz: XX=XX+1
NEXT L

FOR L=NF+1 TO 4g¢

F&(L)=""

NEXT L

NF=XX

GO0TO S¢g

IF DC/2=INT{(DC/2) THEN PC=1 ELSE FC=15
RETURN

CALL CLEAR :: CALL SCREEN(4)
DISPLAY AT(1@,5):"SORTING...."
Fs(@)="___" =2t ¥=1 :: HX=¢

SS=@ :: DISPLAY AT (1@,.17):NF-Y

FOR L=Y TO NF

301

Utilities ===

sa4a

8asSa
8460

8a7a
8089
849a
BBG
K420 %]

B2
FUETH

343
9059

063
199

185
711
129
138
9149
?159
160
9189

9185

199

9199

1agaana
19610
10615
1ga2a
18039
14040
190059

19060
16070
16475
10999
11900

302

IF FH{L)<F&S () THEN F$(@y=Fs{l.)2: HX=L :

: §S=1

NEXT L

IF 85=1 THEN HF$=F$(Y):: FS$(Y)=F&{HX)::
FE(HX)=HHF %

Y=Y+1 :: F&(@)=F&(Y)

IF Y<NF THEN 8#25

GOTO Saa

CALL CLEAR :: CALL SCREEN(8)

DISPLAY AT(4,1):"THIS OFTION WILL WRITE
THE™”

DISFPLAY AT(6.1):"DIRECTORY FILE TO DISK

. T

DISPLAY AT(8.1):"WILL OVERLAY ANY FREVI

gus-"

DISPLAY AT(196,1):"DIRECTORY FILE."

DISPLAY AT(14,1):"WRITE FILE (Y/N)? . "
:: ACCEFPT AT(14.28)VALIDATE("YN")SIZE(

—-1)REEP:0%

IF O%="N" THEN Sgg

GFEN #2:"DSKI.DISKDATA",DUTPUT,INTERNAL

,FIXED 2@

PRINT #2:ND,NF

FOR L=1 TO ND

PRINT #2:Ds(L)

NEXT L

FOR L=1 TO NF

PRINT #2:F&$ (L)

NEXT L

DISPLAY AT(2@,1): "UPDATE.COMFLETE" :: D

ISPLAY AT(22,1):"PRESS ANY KEY FOR MENU

CLOSE #2

CALL KEY(3,.K,S):: IF S=@ THEN 9198

G0TO So8

CALL CLEAR :: CALL SCREEN(6)

DISPLAY AT(8,1):"PRINTING..... "

OPEN #3:"FIO.LF",0UTPUT

GOSUB 12800

FOR L=1 TO NF

GOSUR 43@0

PRINT #3,USING "(& SPACESI##H###3848#
(S SPACESI###(5 SPACES) ######4#

{4 SPACESI##":N$,5%,TF$(VAL(T$)),DD%
LC=LC+1 :: IF LC=5S8 THEN GOSUB 11000
NEXT L

CLOSE #3

GOTO SO0@ ,

FOR X=LC TO 65 :: FRINT #3:" " :: NEXT
X

N RN D |

3

N

11614
11020
12006
12019

12020

1283a

12944
12856

GOSUR 12000

s Utilities

RETURN

PRINT #3:"{(16 SPACES>DIRECTORY INDEX"
PRINT #3:" " :: PRINT #3:" " :: PRINT
#3: " i

PRINT #3:"{& SFACESIFILENAME

{7 SPACESXSIZE{(S SPACESITYFE
{5 SPACESIDISK"

PRINT #3:"

LC=6

RETURN

303

Coror S

® Appendix

What Is a Program?

A computer cannot perform any task by itself. Like a car with-
out gas, a computer has potential, but without a program, it
isn’t going anywhere. The programs published in this book are
written in a computer language called BASIC. BASIC is easy
to learn and is built into the TI.

BASIC Programs

Computers can be picky. Unlike the English language, which
is full of ambiguities, BASIC usually has only one right way of
stating something. Every letter, character, or number is signifi-
cant. A common mistake is substituting a letter such as O for
the numeral 0, a lowercase 1 for the numeral 1, or an upper-
case B for the numeral 8. Also, you must enter all punctuation
such as colons and commas just as they appear in the book.
Spacing can be important. To be safe, type in the listings ex-
actly as they appear. Enter all programs with the ALPHA
LOCK on (in the down position). Release the ALPHA LOCK
to enter lowercase text.

Braces 3
The exception to this typing rule is when you see the braces,
such as {%O SPACES}. This special situation occurs in PRINT
statements. For example,

ENERGY {10 SPACES}MANAGEMENT
means that ten spaces should be left between the words

ENERGY and MANAGEMENT. Do not type in the braces or
the words 10 SPACES.

306

1

Appendix

S T A T 0T |

About DATA Statements

Some programs contain a section or sections of DATA state-
ments. These lines provide information needed by the pro-
gram; they are especially sensitive to errors.

If a single number in any one DATA statement is
mistyped, your machine could lock up, or crash. The keyboard
may seem dead, and the screen may go blank. Don’t panic—
no damage is done. To regain control, you have to turn off
your computer, then turn it back on. This will erase whatever
program was in memory, so always save a copy of your program
before you run it. If your computer crashes, you can load the
program and look for your mistake.

Sometimes a mistyped DATA statement will cause an er-
ror message when the program is run. The error message may
refer to the program line that READs the data. The error is still
in the DATA statements, though.

Get to Know Your Machine

You should familiarize yourself with your computer before
attempting to type in a program. Learn the statements you use
to store and retrieve programs from tape or disk. You'll want
to save a copy of your program, so that you won't have to
type it in every time you want to use it. Learn to use your ma-
chine’s editing functions. How do you change a line if you
made a mistake? You can always retype the line, but you at
least need to know how to backspace. It's all explained in
your owner’s manual.

A Quick Review :

1. Type in the program a line at a time, in order. Press ENTER
at the end of each line.

2. Check the line you've typed against the line in the book.
You can check the entire program again if you get an error
when you run the program.

3. Make sure you've typed all the DATA statements and CALL
CHAR statements correctly.

307

algorithms 41
Al Khuwarizmi 41
alphabetical/linear search 44
animation 201-7
annuity formula 103
arccosine 31
arcsine 30-31
arrays 41-42
arrow keys 11
ASC function 20
ASCII character set 23-24
ASCII codes 9, 43-44, 49-50, 147, 211,
266, 271
ATN function 29
base 16 199
““Basic Bubble Sort” program 38
““Basic Shell Sort” program 38-39
"“Basic Sort C” program 39
“Basic Sort D" program 39-40
binary search 45
“Bowling Champ"’ program v, 179-85
bubble sort 36
budgeting 77-78
CALL CHAR 20, 24, 49-54, 197, 203-7,
211, 247-51, 256, 266, 270-71
CALL CHARPAT 254
CALL CLEAR 202-7, 271
CALL COINC 258-60, 270, 272, 273
CALL COLOR 56, 204-7, 251, 270
CALL DELSPRITE 257, 270, 271
CALL DISTANCE 255, 270, 273 .
CALL GCHAR 147, 152, 202-5
CALL HCHAR 19, 202-3
CALL JOYST 272
CALL KEY 12, 19, 24, 34-35, 152
CALL LOCATE 255, 265, 270, 272
CALL MAGNIFY 252-53, 270-71
CALL MOTION 251, 256-57, 270, 272
CALL PATTERN 256, 270, 272
CALL POSITION 253-54, 270, 273
CALL SCREEN 14
CALL SOUND 3-4, 226, 240
CALL SPRITE 9, 251-52, 270, 271
CALL VCHAR 19, 202
cassette recorder 6, 109, 111-13
character set 18-25
redefining 211-16
character table 202-3

308

characters, numeric codes and 19-20
redefining 49-54
CHARPAT subprogram 49
“Chase, The” program 165-71
CHRS$ function 20
CLEAR key 15
command modules 5
compound savings formula 102
“Computer Visuals’ program 55-59
COS function 29
data base management 109
DATA statement 55
defined functions 29-33
DEF statement 29-33
degrees 30
DIM statement 41
disk controller 6, 291
disk directory 291-95
disk drives 6, 283-303
Disk Manager Command Module 283
DISPLAY AT statement (Extended
BASIC) 8
“Duck Leader” program 150-57
duration (sound) 226
editing 14-17
ERASE key 15
Extended BASIC 8, 9, 36, 56, 84, 109,
158, 201, 247, 264, 270, 283
fantasy, in game programming 179
FCTN key 14-15
features, of TI-99/4A computer 3-8
“Financial Interest” program 99-108
formulae
annuity 103
compound savings 102
loan payment 103
mortgage payment 103
FOR-NEXT loop 152
“Freeway 2000 program 158-64
function key codes 22-23
games, writing 9-13, 158
increasing speed of 165
graphics 3, 55-56, 197-200
graphics characters, user-definable 24-25
INPUT statement 21, 24, 35

A

N N

B DT B R

W

]

interest, simple and compound 99-100

INT function 10, 29

joysticks 11-13, 147, 158, 165

keys, functions of 14-16

linear search 44

linked list file access 127

LINPUT statement 128

LIST command 16

loan payment formula 103

logarithms 30

LOG function 29

“Mailing List” program v, 65-74

“Marble” program 207-10

““Master Disk Directory” program
291-303

mazes 150

mean 75-78

MERGE (Extended BASIC) 8

“MINI-DBMS” program 109-13, 115-20

“MINI-REPT” program 109, 113-14,
120-26

modulo 33

mortgage payment formula 103

mortgage 100-101

moving objects 11

music 3

naming variables 4-5

NUM command 5, 1

numeric codes 19-22

OPEN statement 61

Panasonic RQ2309A cassette recorder 6

“Passing Variables” program 53

pattern-identifier 49-52, 197-200, 211,
248

peripheral box 7

pitch (sound) 226

pixel 201, 264

portability 55

printers 60-62

PRINT USING (Extended BASIC) 8

radians 30

RANDOMIZE command 1-11

random numbers 10-11

range 76

reality, game simulation of 179

Receiving Variables” program 54

RES command 5, 16-17

RND function 10

rounding 31

RS-232 interface 60-61

“Runway 180" program 270-79

“Searching Algorithms” program 46-48

searching data 41-48

sexagesimal numbers 32

shell sort 37

SIN function 29
sorting 36-40
“Sound Maker” program 226-37
“Sound Shaper” program v, 238-39
speech 5, 7, 158
speed, game design and 165
spreadsheets 84-92
“Sprite Demonstration” program 260-63
“Sprite Editor”” program v, 264-69
sprites 8, 9, 158, 201, 247-79
collisions 258-60
defining 249-51, 270-72
displaying 251-52
magnifying 252-53
moving 255-58, 272
standard deviation 76-78
““Statistics” program 78-83
strings 4
“SuperFont Load Demo” program 225
“SuperFont” program v, 211-25
TAN function 29
telecommunications 7
Terminal Emulator I Command Module 7
Terminal Emulator II Command Module 7
text 3
“Thinking Harder” modification of
“Thinking’* program 173
“Thinking”’ program v, 172-78
TI BASIC 4
“Tlcalc” program 84-98
commands 90-91
hardware requirements 84-85
missing values 89-90
“TI Disk Deleter” program 283-90
TI Extended BASIC. See Extended BASIC
“TI Mozart” program 240-42
TI RS-232 interface 7-8
“TI Word Processor” program 127-43
hardware requirements 127
operation 128-32
printing 132-33
TMS9918 video display processor 201
TMSS9900 chip 201
TRACE command 5
transferring variables 49-54
“Trap” program 147-49
unbiased random sample 75
user’s reference manual 5, 211
variable data
storing 51-52
recovering 52
variables 41
volume (sound) 226
“Worm of Bemer” program v, 186-94

309

COMPUTE! Books

Ask your retailer for these COMPUTE! Books or order

directly from COMPUTE!.

Call toll free (in US) 800-334-0868 (in NC 919-275-
9809) or write COMPUTE! Books, P.O. Box 5406,

Greensboro, NC 27403.

Titte
COMPUTE!'s First Book of Tl Games

COMPUTE!'s Guide to Extended BASIC
Home Applications on the TI-99/4A

Creating Arcade Games on the TI-99/4A
Programmer’s Reference Guide to the TH99/4A
TI Games for Kids

33 Programs for the TI-99/4A

COMPUTE!"s Guide to Tl Sound & Graphics
COMPUTE!'s Tl Collection, Volume 1

BASIC Programs for Small Computers

Computing Together: A Parents & Teachers
Guide to Computing with Young Children

Personal Telecomputing
COMPUTE!'s Guide to Adventure Games

*Add $2.00 per book for shipping and handling.
Outside US add $5.00 air mail or $2.00 surface mail.

ARANAE

Price
$12.95

$12.95
$12.95
$14.95
$12.95
$12.95
$12.95
$12.95
$12.95

$12.95
$12.95
$12.95

Shipping & handling: $2.00/book
Total payment

Total

All orders must be prepaid (check, charge, or money order).

All payments must be in US funds.
NC residents add 4.5% sales tax.
O Payment enclosed.

Charge 0O Visa 0O MasterCard 0O American Express

Acct. No Exp. Date
Name

Address

City. State Zip.

*Allow 4-5 weeks for delivery.
Prices and availability subject to change.
Current catalog available upon request.

"

T

173

19

If you've enjoyed the articles in this book, you'll find
the same style and quality in every monthly issue of
COMPUTEI's Gazette for Commmodore.

For Fastest Service
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE's
CaAZBRTTE
P.O. Box 5406

Greensboro, NC 27403

My computer is:
O Commodore 64 0O VIC-20 0O Other.

O $24 One Year US Subscription
0 $45 Two Year US Subscription
0O $65 Three Year US Subscription

Subscription rates outside the US:

O $30 Canada

0 $45 Air Mail Delivery

O $30 International Surface Mail

Name

Address

City State Zip
Country

Payment must be in US funds drawn on a US bank, international
money order, or charge card. Your subscription will begin with the
next available issue. Please allow 4-6 weeks for delivery of first issue.
Subscription prices subject to change at any time.

O Payment Enclosed 0O Visa

0O MasterCard 0O American Express

Acct. No. Expires /

‘The COMPUTE!'s Gazette subscriber list Is made available to carefully screened

organizations with a product or service which may be of Interest to our readers. If you
prefer not to receive such mallings, please check this box O.

A Tl Anthology

COMPUTE!'s TI Collection, Volume 1 contains a wide variety of
articles, all selected because of their excellence and high quality.
But unlike most anthologies, this book also includes dozens of
programs that you can type in and run on your TI-99/4A
computer. Games, applications, utilities, and tutorials show
you how to make your TI a powerful game machine, as well
as a versatile tool for the home, for education, and even for
business.

COMPUTE!'s TI Collection, Volume 1 continues the
tradition of presenting the best programs and articles from
COMPUTE! Publications in a clear and easy-to-understand
style. Just as with the best-selling Programmer’s Reference
Guide to the TI-99/4A and COMPUTE!s First Book of TI Games,
this anthology gives you a wealth of information you can im-
mediately use. And like all COMPUTE! books, the programs
have been thoroughly tested and are ready to run.

Most of the 30 programs in this book have never before
been published. Included are:

* “SuperFont,” an easy-to-use character editor.

« Articles on how to add sprites to your own programs, plus a
sprite editor that makes sprite creation fun and easy.

* Seven games—some strategic, some arcade action—including
the popular “Worm of Bemer.”

 “The Mozart Machine,”” a program that produces computer-
generated music.

» A complete data base management system.

* An electronic spreadsheet for your TI-99/4A.

» A word processor you can use to write reports, memos, let-
ters, or even stories.

* A way to transfer variables from one program to another.

« Useful applications, such as a program to keep track of your
disk files and another to record your mailing lists.

Whether you're looking for programming applications, useful -
home applications, or just some entertaining games, you'll find
COMPUTE!'s TI Collection, Volume 1 full of high quality pro-
grams that are easy to use and enjoy.

ISBN 0-942386-71-X

	front-cover
	ti-collection-volume-one.pdf
	chapter001
	content001
	chapter002
	content002
	chapter003
	content003
	chapter004
	content004
	content005
	content006
	chapter005
	content007
	content008
	chapter006
	content009
	content010
	chapter007
	content011
	chapter008
	content012
	chapter009
	content013

	back-cover

